summaryrefslogtreecommitdiffstats
path: root/Doc/library/signal.rst
blob: d02a0a8e3c8cb464b302a467db1a18d6c6917a87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
:mod:`signal` --- Set handlers for asynchronous events
======================================================

.. module:: signal
   :synopsis: Set handlers for asynchronous events.


This module provides mechanisms to use signal handlers in Python.


General rules
-------------

The :func:`signal.signal` function allows defining custom handlers to be
executed when a signal is received.  A small number of default handlers are
installed: :const:`SIGPIPE` is ignored (so write errors on pipes and sockets
can be reported as ordinary Python exceptions) and :const:`SIGINT` is
translated into a :exc:`KeyboardInterrupt` exception.

A handler for a particular signal, once set, remains installed until it is
explicitly reset (Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler for
:const:`SIGCHLD`, which follows the underlying implementation.


Execution of Python signal handlers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A Python signal handler does not get executed inside the low-level (C) signal
handler.  Instead, the low-level signal handler sets a flag which tells the
:term:`virtual machine` to execute the corresponding Python signal handler
at a later point(for example at the next :term:`bytecode` instruction).
This has consequences:

* It makes little sense to catch synchronous errors like :const:`SIGFPE` or
  :const:`SIGSEGV` that are caused by an invalid operation in C code.  Python
  will return from the signal handler to the C code, which is likely to raise
  the same signal again, causing Python to apparently hang.  From Python 3.3
  onwards, you can use the :mod:`faulthandler` module to report on synchronous
  errors.

* A long-running calculation implemented purely in C (such as regular
  expression matching on a large body of text) may run uninterrupted for an
  arbitrary amount of time, regardless of any signals received.  The Python
  signal handlers will be called when the calculation finishes.


.. _signals-and-threads:


Signals and threads
^^^^^^^^^^^^^^^^^^^

Python signal handlers are always executed in the main Python thread,
even if the signal was received in another thread.  This means that signals
can't be used as a means of inter-thread communication.  You can use
the synchronization primitives from the :mod:`threading` module instead.

Besides, only the main thread is allowed to set a new signal handler.


Module contents
---------------

.. versionchanged:: 3.5
   signal (SIG*), handler (:const:`SIG_DFL`, :const:`SIG_IGN`) and sigmask
   (:const:`SIG_BLOCK`, :const:`SIG_UNBLOCK`, :const:`SIG_SETMASK`)
   related constants listed below were turned into
   :class:`enums <enum.IntEnum>`.
   :func:`getsignal`, :func:`pthread_sigmask`, :func:`sigpending` and
   :func:`sigwait` functions return human-readable
   :class:`enums <enum.IntEnum>`.


The variables defined in the :mod:`signal` module are:


.. data:: SIG_DFL

   This is one of two standard signal handling options; it will simply perform
   the default function for the signal.  For example, on most systems the
   default action for :const:`SIGQUIT` is to dump core and exit, while the
   default action for :const:`SIGCHLD` is to simply ignore it.


.. data:: SIG_IGN

   This is another standard signal handler, which will simply ignore the given
   signal.


.. data:: SIG*

   All the signal numbers are defined symbolically.  For example, the hangup signal
   is defined as :const:`signal.SIGHUP`; the variable names are identical to the
   names used in C programs, as found in ``<signal.h>``. The Unix man page for
   ':c:func:`signal`' lists the existing signals (on some systems this is
   :manpage:`signal(2)`, on others the list is in :manpage:`signal(7)`). Note that
   not all systems define the same set of signal names; only those names defined by
   the system are defined by this module.


.. data:: CTRL_C_EVENT

   The signal corresponding to the :kbd:`Ctrl+C` keystroke event. This signal can
   only be used with :func:`os.kill`.

   Availability: Windows.

   .. versionadded:: 3.2


.. data:: CTRL_BREAK_EVENT

   The signal corresponding to the :kbd:`Ctrl+Break` keystroke event. This signal can
   only be used with :func:`os.kill`.

   Availability: Windows.

   .. versionadded:: 3.2


.. data:: NSIG

   One more than the number of the highest signal number.


.. data:: ITIMER_REAL

   Decrements interval timer in real time, and delivers :const:`SIGALRM` upon
   expiration.


.. data:: ITIMER_VIRTUAL

   Decrements interval timer only when the process is executing, and delivers
   SIGVTALRM upon expiration.


.. data:: ITIMER_PROF

   Decrements interval timer both when the process executes and when the
   system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL,
   this timer is usually used to profile the time spent by the application
   in user and kernel space. SIGPROF is delivered upon expiration.


.. data:: SIG_BLOCK

   A possible value for the *how* parameter to :func:`pthread_sigmask`
   indicating that signals are to be blocked.

   .. versionadded:: 3.3

.. data:: SIG_UNBLOCK

   A possible value for the *how* parameter to :func:`pthread_sigmask`
   indicating that signals are to be unblocked.

   .. versionadded:: 3.3

.. data:: SIG_SETMASK

   A possible value for the *how* parameter to :func:`pthread_sigmask`
   indicating that the signal mask is to be replaced.

   .. versionadded:: 3.3


The :mod:`signal` module defines one exception:

.. exception:: ItimerError

   Raised to signal an error from the underlying :func:`setitimer` or
   :func:`getitimer` implementation. Expect this error if an invalid
   interval timer or a negative time is passed to :func:`setitimer`.
   This error is a subtype of :exc:`OSError`.

   .. versionadded:: 3.3
      This error used to be a subtype of :exc:`IOError`, which is now an
      alias of :exc:`OSError`.


The :mod:`signal` module defines the following functions:


.. function:: alarm(time)

   If *time* is non-zero, this function requests that a :const:`SIGALRM` signal be
   sent to the process in *time* seconds. Any previously scheduled alarm is
   canceled (only one alarm can be scheduled at any time).  The returned value is
   then the number of seconds before any previously set alarm was to have been
   delivered. If *time* is zero, no alarm is scheduled, and any scheduled alarm is
   canceled.  If the return value is zero, no alarm is currently scheduled.  (See
   the Unix man page :manpage:`alarm(2)`.) Availability: Unix.


.. function:: getsignal(signalnum)

   Return the current signal handler for the signal *signalnum*. The returned value
   may be a callable Python object, or one of the special values
   :const:`signal.SIG_IGN`, :const:`signal.SIG_DFL` or :const:`None`.  Here,
   :const:`signal.SIG_IGN` means that the signal was previously ignored,
   :const:`signal.SIG_DFL` means that the default way of handling the signal was
   previously in use, and ``None`` means that the previous signal handler was not
   installed from Python.


.. function:: pause()

   Cause the process to sleep until a signal is received; the appropriate handler
   will then be called.  Returns nothing.  Not on Windows. (See the Unix man page
   :manpage:`signal(2)`.)

   See also :func:`sigwait`, :func:`sigwaitinfo`, :func:`sigtimedwait` and
   :func:`sigpending`.


.. function:: pthread_kill(thread_id, signalnum)

   Send the signal *signalnum* to the thread *thread_id*, another thread in the
   same process as the caller.  The target thread can be executing any code
   (Python or not).  However, if the target thread is executing the Python
   interpreter, the Python signal handlers will be :ref:`executed by the main
   thread <signals-and-threads>`.  Therefore, the only point of sending a
   signal to a particular Python thread would be to force a running system call
   to fail with :exc:`InterruptedError`.

   Use :func:`threading.get_ident()` or the :attr:`~threading.Thread.ident`
   attribute of :class:`threading.Thread` objects to get a suitable value
   for *thread_id*.

   If *signalnum* is 0, then no signal is sent, but error checking is still
   performed; this can be used to check if the target thread is still running.

   Availability: Unix (see the man page :manpage:`pthread_kill(3)` for further
   information).

   See also :func:`os.kill`.

   .. versionadded:: 3.3


.. function:: pthread_sigmask(how, mask)

   Fetch and/or change the signal mask of the calling thread.  The signal mask
   is the set of signals whose delivery is currently blocked for the caller.
   Return the old signal mask as a set of signals.

   The behavior of the call is dependent on the value of *how*, as follows.

   * :data:`SIG_BLOCK`: The set of blocked signals is the union of the current
     set and the *mask* argument.
   * :data:`SIG_UNBLOCK`: The signals in *mask* are removed from the current
     set of blocked signals.  It is permissible to attempt to unblock a
     signal which is not blocked.
   * :data:`SIG_SETMASK`: The set of blocked signals is set to the *mask*
     argument.

   *mask* is a set of signal numbers (e.g. {:const:`signal.SIGINT`,
   :const:`signal.SIGTERM`}). Use ``range(1, signal.NSIG)`` for a full mask
   including all signals.

   For example, ``signal.pthread_sigmask(signal.SIG_BLOCK, [])`` reads the
   signal mask of the calling thread.

   Availability: Unix. See the man page :manpage:`sigprocmask(3)` and
   :manpage:`pthread_sigmask(3)` for further information.

   See also :func:`pause`, :func:`sigpending` and :func:`sigwait`.

   .. versionadded:: 3.3


.. function:: setitimer(which, seconds[, interval])

   Sets given interval timer (one of :const:`signal.ITIMER_REAL`,
   :const:`signal.ITIMER_VIRTUAL` or :const:`signal.ITIMER_PROF`) specified
   by *which* to fire after *seconds* (float is accepted, different from
   :func:`alarm`) and after that every *interval* seconds. The interval
   timer specified by *which* can be cleared by setting seconds to zero.

   When an interval timer fires, a signal is sent to the process.
   The signal sent is dependent on the timer being used;
   :const:`signal.ITIMER_REAL` will deliver :const:`SIGALRM`,
   :const:`signal.ITIMER_VIRTUAL` sends :const:`SIGVTALRM`,
   and :const:`signal.ITIMER_PROF` will deliver :const:`SIGPROF`.

   The old values are returned as a tuple: (delay, interval).

   Attempting to pass an invalid interval timer will cause an
   :exc:`ItimerError`.  Availability: Unix.


.. function:: getitimer(which)

   Returns current value of a given interval timer specified by *which*.
   Availability: Unix.


.. function:: set_wakeup_fd(fd)

   Set the wakeup file descriptor to *fd*.  When a signal is received, the
   signal number is written as a single byte into the fd.  This can be used by
   a library to wakeup a poll or select call, allowing the signal to be fully
   processed.

   The old wakeup fd is returned.  *fd* must be non-blocking.  It is up to the
   library to remove any bytes before calling poll or select again.

   Use for example ``struct.unpack('%uB' % len(data), data)`` to decode the
   signal numbers list.

   When threads are enabled, this function can only be called from the main thread;
   attempting to call it from other threads will cause a :exc:`ValueError`
   exception to be raised.

   .. versionchanged:: 3.5
      On Windows, the function now also supports socket handles.


.. function:: siginterrupt(signalnum, flag)

   Change system call restart behaviour: if *flag* is :const:`False`, system
   calls will be restarted when interrupted by signal *signalnum*, otherwise
   system calls will be interrupted.  Returns nothing.  Availability: Unix (see
   the man page :manpage:`siginterrupt(3)` for further information).

   Note that installing a signal handler with :func:`signal` will reset the
   restart behaviour to interruptible by implicitly calling
   :c:func:`siginterrupt` with a true *flag* value for the given signal.


.. function:: signal(signalnum, handler)

   Set the handler for signal *signalnum* to the function *handler*.  *handler* can
   be a callable Python object taking two arguments (see below), or one of the
   special values :const:`signal.SIG_IGN` or :const:`signal.SIG_DFL`.  The previous
   signal handler will be returned (see the description of :func:`getsignal`
   above).  (See the Unix man page :manpage:`signal(2)`.)

   When threads are enabled, this function can only be called from the main thread;
   attempting to call it from other threads will cause a :exc:`ValueError`
   exception to be raised.

   The *handler* is called with two arguments: the signal number and the current
   stack frame (``None`` or a frame object; for a description of frame objects,
   see the :ref:`description in the type hierarchy <frame-objects>` or see the
   attribute descriptions in the :mod:`inspect` module).

   On Windows, :func:`signal` can only be called with :const:`SIGABRT`,
   :const:`SIGFPE`, :const:`SIGILL`, :const:`SIGINT`, :const:`SIGSEGV`, or
   :const:`SIGTERM`. A :exc:`ValueError` will be raised in any other case.
   Note that not all systems define the same set of signal names; an
   :exc:`AttributeError` will be raised if a signal name is not defined as
   ``SIG*`` module level constant.


.. function:: sigpending()

   Examine the set of signals that are pending for delivery to the calling
   thread (i.e., the signals which have been raised while blocked).  Return the
   set of the pending signals.

   Availability: Unix (see the man page :manpage:`sigpending(2)` for further
   information).

   See also :func:`pause`, :func:`pthread_sigmask` and :func:`sigwait`.

   .. versionadded:: 3.3


.. function:: sigwait(sigset)

   Suspend execution of the calling thread until the delivery of one of the
   signals specified in the signal set *sigset*.  The function accepts the signal
   (removes it from the pending list of signals), and returns the signal number.

   Availability: Unix (see the man page :manpage:`sigwait(3)` for further
   information).

   See also :func:`pause`, :func:`pthread_sigmask`, :func:`sigpending`,
   :func:`sigwaitinfo` and :func:`sigtimedwait`.

   .. versionadded:: 3.3


.. function:: sigwaitinfo(sigset)

   Suspend execution of the calling thread until the delivery of one of the
   signals specified in the signal set *sigset*.  The function accepts the
   signal and removes it from the pending list of signals. If one of the
   signals in *sigset* is already pending for the calling thread, the function
   will return immediately with information about that signal. The signal
   handler is not called for the delivered signal. The function raises an
   :exc:`InterruptedError` if it is interrupted by a signal that is not in
   *sigset*.

   The return value is an object representing the data contained in the
   :c:type:`siginfo_t` structure, namely: :attr:`si_signo`, :attr:`si_code`,
   :attr:`si_errno`, :attr:`si_pid`, :attr:`si_uid`, :attr:`si_status`,
   :attr:`si_band`.

   Availability: Unix (see the man page :manpage:`sigwaitinfo(2)` for further
   information).

   See also :func:`pause`, :func:`sigwait` and :func:`sigtimedwait`.

   .. versionadded:: 3.3

   .. versionchanged:: 3.5
      The function is now retried if interrupted by a signal not in *sigset*
      and the signal handler does not raise an exception (see :pep:`475` for
      the rationale).


.. function:: sigtimedwait(sigset, timeout)

   Like :func:`sigwaitinfo`, but takes an additional *timeout* argument
   specifying a timeout. If *timeout* is specified as :const:`0`, a poll is
   performed. Returns :const:`None` if a timeout occurs.

   Availability: Unix (see the man page :manpage:`sigtimedwait(2)` for further
   information).

   See also :func:`pause`, :func:`sigwait` and :func:`sigwaitinfo`.

   .. versionadded:: 3.3

   .. versionchanged:: 3.5
      The function is now retried with the recomputed *timeout* if interrupted
      by a signal not in *sigset* and the signal handler does not raise an
      exception (see :pep:`475` for the rationale).


.. _signal-example:

Example
-------

Here is a minimal example program. It uses the :func:`alarm` function to limit
the time spent waiting to open a file; this is useful if the file is for a
serial device that may not be turned on, which would normally cause the
:func:`os.open` to hang indefinitely.  The solution is to set a 5-second alarm
before opening the file; if the operation takes too long, the alarm signal will
be sent, and the handler raises an exception. ::

   import signal, os

   def handler(signum, frame):
       print('Signal handler called with signal', signum)
       raise OSError("Couldn't open device!")

   # Set the signal handler and a 5-second alarm
   signal.signal(signal.SIGALRM, handler)
   signal.alarm(5)

   # This open() may hang indefinitely
   fd = os.open('/dev/ttyS0', os.O_RDWR)

   signal.alarm(0)          # Disable the alarm