1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
|
:mod:`sqlite3` --- DB-API 2.0 interface for SQLite databases
============================================================
.. module:: sqlite3
:synopsis: A DB-API 2.0 implementation using SQLite 3.x.
.. sectionauthor:: Gerhard Häring <gh@ghaering.de>
**Source code:** :source:`Lib/sqlite3/`
.. Make sure we always doctest the tutorial with an empty database.
.. testsetup::
import sqlite3
src = sqlite3.connect(":memory:", isolation_level=None)
dst = sqlite3.connect("tutorial.db", isolation_level=None)
src.backup(dst)
del src, dst
.. _sqlite3-intro:
SQLite is a C library that provides a lightweight disk-based database that
doesn't require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It's also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.
The :mod:`!sqlite3` module was written by Gerhard Häring. It provides an SQL interface
compliant with the DB-API 2.0 specification described by :pep:`249`, and
requires SQLite 3.7.15 or newer.
This document includes four main sections:
* :ref:`sqlite3-tutorial` teaches how to use the :mod:`!sqlite3` module.
* :ref:`sqlite3-reference` describes the classes and functions this module
defines.
* :ref:`sqlite3-howtos` details how to handle specific tasks.
* :ref:`sqlite3-explanation` provides in-depth background on
transaction control.
.. seealso::
https://www.sqlite.org
The SQLite web page; the documentation describes the syntax and the
available data types for the supported SQL dialect.
https://www.w3schools.com/sql/
Tutorial, reference and examples for learning SQL syntax.
:pep:`249` - Database API Specification 2.0
PEP written by Marc-André Lemburg.
.. We use the following practises for SQL code:
- UPPERCASE for keywords
- snake_case for schema
- single quotes for string literals
- singular for table names
- if needed, use double quotes for table and column names
.. _sqlite3-tutorial:
Tutorial
--------
In this tutorial, you will create a database of Monty Python movies
using basic :mod:`!sqlite3` functionality.
It assumes a fundamental understanding of database concepts,
including `cursors`_ and `transactions`_.
First, we need to create a new database and open
a database connection to allow :mod:`!sqlite3` to work with it.
Call :func:`sqlite3.connect` to to create a connection to
the database :file:`tutorial.db` in the current working directory,
implicitly creating it if it does not exist:
.. testcode::
import sqlite3
con = sqlite3.connect("tutorial.db")
The returned :class:`Connection` object ``con``
represents the connection to the on-disk database.
In order to execute SQL statements and fetch results from SQL queries,
we will need to use a database cursor.
Call :meth:`con.cursor() <Connection.cursor>` to create the :class:`Cursor`:
.. testcode::
cur = con.cursor()
Now that we've got a database connection and a cursor,
we can create a database table ``movie`` with columns for title,
release year, and review score.
For simplicity, we can just use column names in the table declaration --
thanks to the `flexible typing`_ feature of SQLite,
specifying the data types is optional.
Execute the ``CREATE TABLE`` statement
by calling :meth:`cur.execute(...) <Cursor.execute>`:
.. testcode::
cur.execute("CREATE TABLE movie(title, year, score)")
.. Ideally, we'd use sqlite_schema instead of sqlite_master below,
but SQLite versions older than 3.33.0 do not recognise that variant.
We can verify that the new table has been created by querying
the ``sqlite_master`` table built-in to SQLite,
which should now contain an entry for the ``movie`` table definition
(see `The Schema Table`_ for details).
Execute that query by calling :meth:`cur.execute(...) <Cursor.execute>`,
assign the result to ``res``,
and call :meth:`res.fetchone() <Cursor.fetchone>` to fetch the resulting row:
.. doctest::
>>> res = cur.execute("SELECT name FROM sqlite_master")
>>> res.fetchone()
('movie',)
We can see that the table has been created,
as the query returns a :class:`tuple` containing the table's name.
If we query ``sqlite_master`` for a non-existent table ``spam``,
:meth:`!res.fetchone()` will return ``None``:
.. doctest::
>>> res = cur.execute("SELECT name FROM sqlite_master WHERE name='spam'")
>>> res.fetchone() is None
True
Now, add two rows of data supplied as SQL literals
by executing an ``INSERT`` statement,
once again by calling :meth:`cur.execute(...) <Cursor.execute>`:
.. testcode::
cur.execute("""
INSERT INTO movie VALUES
('Monty Python and the Holy Grail', 1975, 8.2),
('And Now for Something Completely Different', 1971, 7.5)
""")
The ``INSERT`` statement implicitly opens a transaction,
which needs to be committed before changes are saved in the database
(see :ref:`sqlite3-controlling-transactions` for details).
Call :meth:`con.commit() <Connection.commit>` on the connection object
to commit the transaction:
.. testcode::
con.commit()
We can verify that the data was inserted correctly
by executing a ``SELECT`` query.
Use the now-familiar :meth:`cur.execute(...) <Cursor.execute>` to
assign the result to ``res``,
and call :meth:`res.fetchall() <Cursor.fetchall>` to return all resulting rows:
.. doctest::
>>> res = cur.execute("SELECT score FROM movie")
>>> res.fetchall()
[(8.2,), (7.5,)]
The result is a :class:`list` of two :class:`!tuple`\s, one per row,
each containing that row's ``score`` value.
Now, insert three more rows by calling
:meth:`cur.executemany(...) <Cursor.executemany>`:
.. testcode::
data = [
("Monty Python Live at the Hollywood Bowl", 1982, 7.9),
("Monty Python's The Meaning of Life", 1983, 7.5),
("Monty Python's Life of Brian", 1979, 8.0),
]
cur.executemany("INSERT INTO movie VALUES(?, ?, ?)", data)
con.commit() # Remember to commit the transaction after executing INSERT.
Notice that ``?`` placeholders are used to bind ``data`` to the query.
Always use placeholders instead of :ref:`string formatting <tut-formatting>`
to bind Python values to SQL statements,
to avoid `SQL injection attacks`_
(see :ref:`sqlite3-placeholders` for more details).
We can verify that the new rows were inserted
by executing a ``SELECT`` query,
this time iterating over the results of the query:
.. doctest::
>>> for row in cur.execute("SELECT year, title FROM movie ORDER BY year"):
... print(row)
(1971, 'And Now for Something Completely Different')
(1975, 'Monty Python and the Holy Grail')
(1979, "Monty Python's Life of Brian")
(1982, 'Monty Python Live at the Hollywood Bowl')
(1983, "Monty Python's The Meaning of Life")
Each row is a two-item :class:`tuple` of ``(year, title)``,
matching the columns selected in the query.
Finally, verify that the database has been written to disk
by calling :meth:`con.close() <Connection.close>`
to close the existing connection, opening a new one,
creating a new cursor, then querying the database:
.. doctest::
>>> con.close()
>>> new_con = sqlite3.connect("tutorial.db")
>>> new_cur = new_con.cursor()
>>> res = new_cur.execute("SELECT title, year FROM movie ORDER BY score DESC")
>>> title, year = res.fetchone()
>>> print(f'The highest scoring Monty Python movie is {title!r}, released in {year}')
The highest scoring Monty Python movie is 'Monty Python and the Holy Grail', released in 1975
You've now created an SQLite database using the :mod:`!sqlite3` module,
inserted data and retrieved values from it in multiple ways.
.. _SQL injection attacks: https://en.wikipedia.org/wiki/SQL_injection
.. _The Schema Table: https://www.sqlite.org/schematab.html
.. _cursors: https://en.wikipedia.org/wiki/Cursor_(databases)
.. _flexible typing: https://www.sqlite.org/flextypegood.html
.. _sqlite_master: https://www.sqlite.org/schematab.html
.. _transactions: https://en.wikipedia.org/wiki/Database_transaction
.. seealso::
* :ref:`sqlite3-howtos` for further reading:
* :ref:`sqlite3-placeholders`
* :ref:`sqlite3-adapters`
* :ref:`sqlite3-converters`
* :ref:`sqlite3-connection-context-manager`
* :ref:`sqlite3-howto-row-factory`
* :ref:`sqlite3-explanation` for in-depth background on transaction control.
.. _sqlite3-reference:
Reference
---------
.. We keep the old sqlite3-module-contents ref to prevent breaking links.
.. _sqlite3-module-contents:
.. _sqlite3-module-functions:
Module functions
^^^^^^^^^^^^^^^^
.. function:: connect(database, timeout=5.0, detect_types=0, \
isolation_level="DEFERRED", check_same_thread=True, \
factory=sqlite3.Connection, cached_statements=128, \
uri=False, \*, \
autocommit=sqlite3.LEGACY_TRANSACTION_CONTROL)
Open a connection to an SQLite database.
:param database:
The path to the database file to be opened.
Pass ``":memory:"`` to open a connection to a database that is
in RAM instead of on disk.
:type database: :term:`path-like object`
:param float timeout:
How many seconds the connection should wait before raising
an exception, if the database is locked by another connection.
If another connection opens a transaction to modify the database,
it will be locked until that transaction is committed.
Default five seconds.
:param int detect_types:
Control whether and how data types not
:ref:`natively supported by SQLite <sqlite3-types>`
are looked up to be converted to Python types,
using the converters registered with :func:`register_converter`.
Set it to any combination (using ``|``, bitwise or) of
:const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES`
to enable this.
Column names takes precedence over declared types if both flags are set.
Types cannot be detected for generated fields (for example ``max(data)``),
even when the *detect_types* parameter is set; :class:`str` will be
returned instead.
By default (``0``), type detection is disabled.
:param isolation_level:
Control legacy transaction handling behaviour.
See :attr:`Connection.isolation_level` and
:ref:`sqlite3-transaction-control-isolation-level` for more information.
Can be ``"DEFERRED"`` (default), ``"EXCLUSIVE"`` or ``"IMMEDIATE"``;
or ``None`` to disable opening transactions implicitly.
Has no effect unless :attr:`Connection.autocommit` is set to
:data:`~sqlite3.LEGACY_TRANSACTION_CONTROL` (the default).
:type isolation_level: str | None
:param bool check_same_thread:
If ``True`` (default), only the creating thread may use the connection.
If ``False``, the connection may be shared across multiple threads;
if so, write operations should be serialized by the user to avoid data
corruption.
:param Connection factory:
A custom subclass of :class:`Connection` to create the connection with,
if not the default :class:`Connection` class.
:param int cached_statements:
The number of statements that :mod:`!sqlite3`
should internally cache for this connection, to avoid parsing overhead.
By default, 128 statements.
:param bool uri:
If set to ``True``, *database* is interpreted as a
:abbr:`URI (Uniform Resource Identifier)` with a file path
and an optional query string.
The scheme part *must* be ``"file:"``,
and the path can be relative or absolute.
The query string allows passing parameters to SQLite,
enabling various :ref:`sqlite3-uri-tricks`.
:param autocommit:
Control :pep:`249` transaction handling behaviour.
See :attr:`Connection.autocommit` and
:ref:`sqlite3-transaction-control-autocommit` for more information.
*autocommit* currently defaults to
:data:`~sqlite3.LEGACY_TRANSACTION_CONTROL`.
The default will change to ``False`` in a future Python release.
:type autocommit: bool
:rtype: Connection
.. audit-event:: sqlite3.connect database sqlite3.connect
.. audit-event:: sqlite3.connect/handle connection_handle sqlite3.connect
.. versionadded:: 3.4
The *uri* parameter.
.. versionchanged:: 3.7
*database* can now also be a :term:`path-like object`, not only a string.
.. versionadded:: 3.10
The ``sqlite3.connect/handle`` auditing event.
.. versionadded:: 3.12
The *autocommit* parameter.
.. function:: complete_statement(statement)
Return ``True`` if the string *statement* appears to contain
one or more complete SQL statements.
No syntactic verification or parsing of any kind is performed,
other than checking that there are no unclosed string literals
and the statement is terminated by a semicolon.
For example:
.. doctest::
>>> sqlite3.complete_statement("SELECT foo FROM bar;")
True
>>> sqlite3.complete_statement("SELECT foo")
False
This function may be useful during command-line input
to determine if the entered text seems to form a complete SQL statement,
or if additional input is needed before calling :meth:`~Cursor.execute`.
See :func:`!runsource` in :source:`Lib/sqlite3/__main__.py`
for real-world use.
.. function:: enable_callback_tracebacks(flag, /)
Enable or disable callback tracebacks.
By default you will not get any tracebacks in user-defined functions,
aggregates, converters, authorizer callbacks etc. If you want to debug them,
you can call this function with *flag* set to ``True``. Afterwards, you
will get tracebacks from callbacks on :data:`sys.stderr`. Use ``False``
to disable the feature again.
Register an :func:`unraisable hook handler <sys.unraisablehook>` for an
improved debug experience:
.. testsetup:: sqlite3.trace
import sqlite3
.. doctest:: sqlite3.trace
>>> sqlite3.enable_callback_tracebacks(True)
>>> con = sqlite3.connect(":memory:")
>>> def evil_trace(stmt):
... 5/0
...
>>> con.set_trace_callback(evil_trace)
>>> def debug(unraisable):
... print(f"{unraisable.exc_value!r} in callback {unraisable.object.__name__}")
... print(f"Error message: {unraisable.err_msg}")
>>> import sys
>>> sys.unraisablehook = debug
>>> cur = con.execute("SELECT 1")
ZeroDivisionError('division by zero') in callback evil_trace
Error message: None
.. function:: register_adapter(type, adapter, /)
Register an *adapter* callable to adapt the Python type *type* into an
SQLite type.
The adapter is called with a Python object of type *type* as its sole
argument, and must return a value of a
:ref:`type that SQLite natively understands <sqlite3-types>`.
.. function:: register_converter(typename, converter, /)
Register the *converter* callable to convert SQLite objects of type
*typename* into a Python object of a specific type.
The converter is invoked for all SQLite values of type *typename*;
it is passed a :class:`bytes` object and should return an object of the
desired Python type.
Consult the parameter *detect_types* of
:func:`connect` for information regarding how type detection works.
Note: *typename* and the name of the type in your query are matched
case-insensitively.
.. _sqlite3-module-constants:
Module constants
^^^^^^^^^^^^^^^^
.. data:: LEGACY_TRANSACTION_CONTROL
Set :attr:`~Connection.autocommit` to this constant to select
old style (pre-Python 3.12) transaction control behaviour.
See :ref:`sqlite3-transaction-control-isolation-level` for more information.
.. data:: PARSE_COLNAMES
Pass this flag value to the *detect_types* parameter of
:func:`connect` to look up a converter function by
using the type name, parsed from the query column name,
as the converter dictionary key.
The type name must be wrapped in square brackets (``[]``).
.. code-block:: sql
SELECT p as "p [point]" FROM test; ! will look up converter "point"
This flag may be combined with :const:`PARSE_DECLTYPES` using the ``|``
(bitwise or) operator.
.. data:: PARSE_DECLTYPES
Pass this flag value to the *detect_types* parameter of
:func:`connect` to look up a converter function using
the declared types for each column.
The types are declared when the database table is created.
:mod:`!sqlite3` will look up a converter function using the first word of the
declared type as the converter dictionary key.
For example:
.. code-block:: sql
CREATE TABLE test(
i integer primary key, ! will look up a converter named "integer"
p point, ! will look up a converter named "point"
n number(10) ! will look up a converter named "number"
)
This flag may be combined with :const:`PARSE_COLNAMES` using the ``|``
(bitwise or) operator.
.. data:: SQLITE_OK
SQLITE_DENY
SQLITE_IGNORE
Flags that should be returned by the *authorizer_callback* callable
passed to :meth:`Connection.set_authorizer`, to indicate whether:
* Access is allowed (:const:`!SQLITE_OK`),
* The SQL statement should be aborted with an error (:const:`!SQLITE_DENY`)
* The column should be treated as a ``NULL`` value (:const:`!SQLITE_IGNORE`)
.. data:: apilevel
String constant stating the supported DB-API level. Required by the DB-API.
Hard-coded to ``"2.0"``.
.. data:: paramstyle
String constant stating the type of parameter marker formatting expected by
the :mod:`!sqlite3` module. Required by the DB-API. Hard-coded to
``"qmark"``.
.. note::
The ``named`` DB-API parameter style is also supported.
.. data:: sqlite_version
Version number of the runtime SQLite library as a :class:`string <str>`.
.. data:: sqlite_version_info
Version number of the runtime SQLite library as a :class:`tuple` of
:class:`integers <int>`.
.. data:: threadsafety
Integer constant required by the DB-API 2.0, stating the level of thread
safety the :mod:`!sqlite3` module supports. This attribute is set based on
the default `threading mode <https://sqlite.org/threadsafe.html>`_ the
underlying SQLite library is compiled with. The SQLite threading modes are:
1. **Single-thread**: In this mode, all mutexes are disabled and SQLite is
unsafe to use in more than a single thread at once.
2. **Multi-thread**: In this mode, SQLite can be safely used by multiple
threads provided that no single database connection is used
simultaneously in two or more threads.
3. **Serialized**: In serialized mode, SQLite can be safely used by
multiple threads with no restriction.
The mappings from SQLite threading modes to DB-API 2.0 threadsafety levels
are as follows:
+------------------+-----------------+----------------------+-------------------------------+
| SQLite threading | `threadsafety`_ | `SQLITE_THREADSAFE`_ | DB-API 2.0 meaning |
| mode | | | |
+==================+=================+======================+===============================+
| single-thread | 0 | 0 | Threads may not share the |
| | | | module |
+------------------+-----------------+----------------------+-------------------------------+
| multi-thread | 1 | 2 | Threads may share the module, |
| | | | but not connections |
+------------------+-----------------+----------------------+-------------------------------+
| serialized | 3 | 1 | Threads may share the module, |
| | | | connections and cursors |
+------------------+-----------------+----------------------+-------------------------------+
.. _threadsafety: https://peps.python.org/pep-0249/#threadsafety
.. _SQLITE_THREADSAFE: https://sqlite.org/compile.html#threadsafe
.. versionchanged:: 3.11
Set *threadsafety* dynamically instead of hard-coding it to ``1``.
.. data:: version
Version number of this module as a :class:`string <str>`.
This is not the version of the SQLite library.
.. deprecated-removed:: 3.12 3.14
This constant used to reflect the version number of the ``pysqlite``
package, a third-party library which used to upstream changes to
:mod:`!sqlite3`. Today, it carries no meaning or practical value.
.. data:: version_info
Version number of this module as a :class:`tuple` of :class:`integers <int>`.
This is not the version of the SQLite library.
.. deprecated-removed:: 3.12 3.14
This constant used to reflect the version number of the ``pysqlite``
package, a third-party library which used to upstream changes to
:mod:`!sqlite3`. Today, it carries no meaning or practical value.
.. _sqlite3-connection-objects:
Connection objects
^^^^^^^^^^^^^^^^^^
.. class:: Connection
Each open SQLite database is represented by a ``Connection`` object,
which is created using :func:`sqlite3.connect`.
Their main purpose is creating :class:`Cursor` objects,
and :ref:`sqlite3-controlling-transactions`.
.. seealso::
* :ref:`sqlite3-connection-shortcuts`
* :ref:`sqlite3-connection-context-manager`
An SQLite database connection has the following attributes and methods:
.. method:: cursor(factory=Cursor)
Create and return a :class:`Cursor` object.
The cursor method accepts a single optional parameter *factory*. If
supplied, this must be a callable returning an instance of :class:`Cursor`
or its subclasses.
.. method:: blobopen(table, column, row, /, *, readonly=False, name="main")
Open a :class:`Blob` handle to an existing
:abbr:`BLOB (Binary Large OBject)`.
:param str table:
The name of the table where the blob is located.
:param str column:
The name of the column where the blob is located.
:param str row:
The name of the row where the blob is located.
:param bool readonly:
Set to ``True`` if the blob should be opened without write
permissions.
Defaults to ``False``.
:param str name:
The name of the database where the blob is located.
Defaults to ``"main"``.
:raises OperationalError:
When trying to open a blob in a ``WITHOUT ROWID`` table.
:rtype: Blob
.. note::
The blob size cannot be changed using the :class:`Blob` class.
Use the SQL function ``zeroblob`` to create a blob with a fixed size.
.. versionadded:: 3.11
.. method:: commit()
Commit any pending transaction to the database.
If :attr:`autocommit` is ``True``, or there is no open transaction,
this method does nothing.
If :attr:`!autocommit` is ``False``, a new transaction is implicitly
opened if a pending transaction was committed by this method.
.. method:: rollback()
Roll back to the start of any pending transaction.
If :attr:`autocommit` is ``True``, or there is no open transaction,
this method does nothing.
If :attr:`!autocommit` is ``False``, a new transaction is implicitly
opened if a pending transaction was rolled back by this method.
.. method:: close()
Close the database connection.
If :attr:`autocommit` is ``False``,
any pending transaction is implicitly rolled back.
If :attr:`!autocommit` is ``True`` or :data:`LEGACY_TRANSACTION_CONTROL`,
no implicit transaction control is executed.
Make sure to :meth:`commit` before closing
to avoid losing pending changes.
.. method:: execute(sql, parameters=(), /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.execute` on it with the given *sql* and *parameters*.
Return the new cursor object.
.. method:: executemany(sql, parameters, /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.executemany` on it with the given *sql* and *parameters*.
Return the new cursor object.
.. method:: executescript(sql_script, /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.executescript` on it with the given *sql_script*.
Return the new cursor object.
.. method:: create_function(name, narg, func, *, deterministic=False)
Create or remove a user-defined SQL function.
:param str name:
The name of the SQL function.
:param int narg:
The number of arguments the SQL function can accept.
If ``-1``, it may take any number of arguments.
:param func:
A callable that is called when the SQL function is invoked.
The callable must return :ref:`a type natively supported by SQLite
<sqlite3-types>`.
Set to ``None`` to remove an existing SQL function.
:type func: :term:`callback` | None
:param bool deterministic:
If ``True``, the created SQL function is marked as
`deterministic <https://sqlite.org/deterministic.html>`_,
which allows SQLite to perform additional optimizations.
:raises NotSupportedError:
If *deterministic* is used with SQLite versions older than 3.8.3.
.. versionadded:: 3.8
The *deterministic* parameter.
Example:
.. doctest::
>>> import hashlib
>>> def md5sum(t):
... return hashlib.md5(t).hexdigest()
>>> con = sqlite3.connect(":memory:")
>>> con.create_function("md5", 1, md5sum)
>>> for row in con.execute("SELECT md5(?)", (b"foo",)):
... print(row)
('acbd18db4cc2f85cedef654fccc4a4d8',)
.. method:: create_aggregate(name, /, n_arg, aggregate_class)
Create or remove a user-defined SQL aggregate function.
:param str name:
The name of the SQL aggregate function.
:param int n_arg:
The number of arguments the SQL aggregate function can accept.
If ``-1``, it may take any number of arguments.
:param aggregate_class:
A class must implement the following methods:
* ``step()``: Add a row to the aggregate.
* ``finalize()``: Return the final result of the aggregate as
:ref:`a type natively supported by SQLite <sqlite3-types>`.
The number of arguments that the ``step()`` method must accept
is controlled by *n_arg*.
Set to ``None`` to remove an existing SQL aggregate function.
:type aggregate_class: :term:`class` | None
Example:
.. testcode::
class MySum:
def __init__(self):
self.count = 0
def step(self, value):
self.count += value
def finalize(self):
return self.count
con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.execute("CREATE TABLE test(i)")
cur.execute("INSERT INTO test(i) VALUES(1)")
cur.execute("INSERT INTO test(i) VALUES(2)")
cur.execute("SELECT mysum(i) FROM test")
print(cur.fetchone()[0])
con.close()
.. testoutput::
:hide:
3
.. method:: create_window_function(name, num_params, aggregate_class, /)
Create or remove a user-defined aggregate window function.
:param str name:
The name of the SQL aggregate window function to create or remove.
:param int num_params:
The number of arguments the SQL aggregate window function can accept.
If ``-1``, it may take any number of arguments.
:param aggregate_class:
A class that must implement the following methods:
* ``step()``: Add a row to the current window.
* ``value()``: Return the current value of the aggregate.
* ``inverse()``: Remove a row from the current window.
* ``finalize()``: Return the final result of the aggregate as
:ref:`a type natively supported by SQLite <sqlite3-types>`.
The number of arguments that the ``step()`` and ``value()`` methods
must accept is controlled by *num_params*.
Set to ``None`` to remove an existing SQL aggregate window function.
:raises NotSupportedError:
If used with a version of SQLite older than 3.25.0,
which does not support aggregate window functions.
:type aggregate_class: :term:`class` | None
.. versionadded:: 3.11
Example:
.. testcode::
# Example taken from https://www.sqlite.org/windowfunctions.html#udfwinfunc
class WindowSumInt:
def __init__(self):
self.count = 0
def step(self, value):
"""Add a row to the current window."""
self.count += value
def value(self):
"""Return the current value of the aggregate."""
return self.count
def inverse(self, value):
"""Remove a row from the current window."""
self.count -= value
def finalize(self):
"""Return the final value of the aggregate.
Any clean-up actions should be placed here.
"""
return self.count
con = sqlite3.connect(":memory:")
cur = con.execute("CREATE TABLE test(x, y)")
values = [
("a", 4),
("b", 5),
("c", 3),
("d", 8),
("e", 1),
]
cur.executemany("INSERT INTO test VALUES(?, ?)", values)
con.create_window_function("sumint", 1, WindowSumInt)
cur.execute("""
SELECT x, sumint(y) OVER (
ORDER BY x ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
) AS sum_y
FROM test ORDER BY x
""")
print(cur.fetchall())
.. testoutput::
:hide:
[('a', 9), ('b', 12), ('c', 16), ('d', 12), ('e', 9)]
.. method:: create_collation(name, callable)
Create a collation named *name* using the collating function *callable*.
*callable* is passed two :class:`string <str>` arguments,
and it should return an :class:`integer <int>`:
* ``1`` if the first is ordered higher than the second
* ``-1`` if the first is ordered lower than the second
* ``0`` if they are ordered equal
The following example shows a reverse sorting collation:
.. testcode::
def collate_reverse(string1, string2):
if string1 == string2:
return 0
elif string1 < string2:
return 1
else:
return -1
con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)
cur = con.execute("CREATE TABLE test(x)")
cur.executemany("INSERT INTO test(x) VALUES(?)", [("a",), ("b",)])
cur.execute("SELECT x FROM test ORDER BY x COLLATE reverse")
for row in cur:
print(row)
con.close()
.. testoutput::
:hide:
('b',)
('a',)
Remove a collation function by setting *callable* to ``None``.
.. versionchanged:: 3.11
The collation name can contain any Unicode character. Earlier, only
ASCII characters were allowed.
.. method:: interrupt()
Call this method from a different thread to abort any queries that might
be executing on the connection.
Aborted queries will raise an exception.
.. method:: set_authorizer(authorizer_callback)
Register callable *authorizer_callback* to be invoked for each attempt to
access a column of a table in the database. The callback should return
one of :const:`SQLITE_OK`, :const:`SQLITE_DENY`, or :const:`SQLITE_IGNORE`
to signal how access to the column should be handled
by the underlying SQLite library.
The first argument to the callback signifies what kind of operation is to be
authorized. The second and third argument will be arguments or ``None``
depending on the first argument. The 4th argument is the name of the database
("main", "temp", etc.) if applicable. The 5th argument is the name of the
inner-most trigger or view that is responsible for the access attempt or
``None`` if this access attempt is directly from input SQL code.
Please consult the SQLite documentation about the possible values for the first
argument and the meaning of the second and third argument depending on the first
one. All necessary constants are available in the :mod:`!sqlite3` module.
Passing ``None`` as *authorizer_callback* will disable the authorizer.
.. versionchanged:: 3.11
Added support for disabling the authorizer using ``None``.
.. method:: set_progress_handler(progress_handler, n)
Register callable *progress_handler* to be invoked for every *n*
instructions of the SQLite virtual machine. This is useful if you want to
get called from SQLite during long-running operations, for example to update
a GUI.
If you want to clear any previously installed progress handler, call the
method with ``None`` for *progress_handler*.
Returning a non-zero value from the handler function will terminate the
currently executing query and cause it to raise a :exc:`DatabaseError`
exception.
.. method:: set_trace_callback(trace_callback)
Register callable *trace_callback* to be invoked for each SQL statement
that is actually executed by the SQLite backend.
The only argument passed to the callback is the statement (as
:class:`str`) that is being executed. The return value of the callback is
ignored. Note that the backend does not only run statements passed to the
:meth:`Cursor.execute` methods. Other sources include the
:ref:`transaction management <sqlite3-controlling-transactions>` of the
:mod:`!sqlite3` module and the execution of triggers defined in the current
database.
Passing ``None`` as *trace_callback* will disable the trace callback.
.. note::
Exceptions raised in the trace callback are not propagated. As a
development and debugging aid, use
:meth:`~sqlite3.enable_callback_tracebacks` to enable printing
tracebacks from exceptions raised in the trace callback.
.. versionadded:: 3.3
.. method:: enable_load_extension(enabled, /)
Enable the SQLite engine to load SQLite extensions from shared libraries
if *enabled* is ``True``;
else, disallow loading SQLite extensions.
SQLite extensions can define new functions,
aggregates or whole new virtual table implementations. One well-known
extension is the fulltext-search extension distributed with SQLite.
.. note::
The :mod:`!sqlite3` module is not built with loadable extension support by
default, because some platforms (notably macOS) have SQLite
libraries which are compiled without this feature.
To get loadable extension support,
you must pass the :option:`--enable-loadable-sqlite-extensions` option
to :program:`configure`.
.. audit-event:: sqlite3.enable_load_extension connection,enabled sqlite3.Connection.enable_load_extension
.. versionadded:: 3.2
.. versionchanged:: 3.10
Added the ``sqlite3.enable_load_extension`` auditing event.
.. testsetup:: sqlite3.loadext
import sqlite3
con = sqlite3.connect(":memory:")
.. testcode:: sqlite3.loadext
:skipif: True # not testable at the moment
con.enable_load_extension(True)
# Load the fulltext search extension
con.execute("select load_extension('./fts3.so')")
# alternatively you can load the extension using an API call:
# con.load_extension("./fts3.so")
# disable extension loading again
con.enable_load_extension(False)
# example from SQLite wiki
con.execute("CREATE VIRTUAL TABLE recipe USING fts3(name, ingredients)")
con.executescript("""
INSERT INTO recipe (name, ingredients) VALUES('broccoli stew', 'broccoli peppers cheese tomatoes');
INSERT INTO recipe (name, ingredients) VALUES('pumpkin stew', 'pumpkin onions garlic celery');
INSERT INTO recipe (name, ingredients) VALUES('broccoli pie', 'broccoli cheese onions flour');
INSERT INTO recipe (name, ingredients) VALUES('pumpkin pie', 'pumpkin sugar flour butter');
""")
for row in con.execute("SELECT rowid, name, ingredients FROM recipe WHERE name MATCH 'pie'"):
print(row)
con.close()
.. testoutput:: sqlite3.loadext
:hide:
(2, 'broccoli pie', 'broccoli cheese onions flour')
(3, 'pumpkin pie', 'pumpkin sugar flour butter')
.. method:: load_extension(path, /)
Load an SQLite extension from a shared library located at *path*.
Enable extension loading with :meth:`enable_load_extension` before
calling this method.
.. audit-event:: sqlite3.load_extension connection,path sqlite3.Connection.load_extension
.. versionadded:: 3.2
.. versionchanged:: 3.10
Added the ``sqlite3.load_extension`` auditing event.
.. method:: iterdump
Return an :term:`iterator` to dump the database as SQL source code.
Useful when saving an in-memory database for later restoration.
Similar to the ``.dump`` command in the :program:`sqlite3` shell.
Example:
.. testcode::
# Convert file example.db to SQL dump file dump.sql
con = sqlite3.connect('example.db')
with open('dump.sql', 'w') as f:
for line in con.iterdump():
f.write('%s\n' % line)
con.close()
.. method:: backup(target, *, pages=-1, progress=None, name="main", sleep=0.250)
Create a backup of an SQLite database.
Works even if the database is being accessed by other clients
or concurrently by the same connection.
:param Connection target:
The database connection to save the backup to.
:param int pages:
The number of pages to copy at a time.
If equal to or less than ``0``,
the entire database is copied in a single step.
Defaults to ``-1``.
:param progress:
If set to a callable, it is invoked with three integer arguments for
every backup iteration:
the *status* of the last iteration,
the *remaining* number of pages still to be copied,
and the *total* number of pages.
Defaults to ``None``.
:type progress: :term:`callback` | None
:param str name:
The name of the database to back up.
Either ``"main"`` (the default) for the main database,
``"temp"`` for the temporary database,
or the name of a custom database as attached using the
``ATTACH DATABASE`` SQL statement.
:param float sleep:
The number of seconds to sleep between successive attempts
to back up remaining pages.
Example 1, copy an existing database into another:
.. testcode::
def progress(status, remaining, total):
print(f'Copied {total-remaining} of {total} pages...')
src = sqlite3.connect('example.db')
dst = sqlite3.connect('backup.db')
with dst:
src.backup(dst, pages=1, progress=progress)
dst.close()
src.close()
.. testoutput::
:hide:
Copied 0 of 0 pages...
Example 2, copy an existing database into a transient copy:
.. testcode::
src = sqlite3.connect('example.db')
dst = sqlite3.connect(':memory:')
src.backup(dst)
.. versionadded:: 3.7
.. method:: getlimit(category, /)
Get a connection runtime limit.
:param int category:
The `SQLite limit category`_ to be queried.
:rtype: int
:raises ProgrammingError:
If *category* is not recognised by the underlying SQLite library.
Example, query the maximum length of an SQL statement
for :class:`Connection` ``con`` (the default is 1000000000):
.. testsetup:: sqlite3.limits
import sqlite3
con = sqlite3.connect(":memory:")
con.setlimit(sqlite3.SQLITE_LIMIT_SQL_LENGTH, 1_000_000_000)
con.setlimit(sqlite3.SQLITE_LIMIT_ATTACHED, 10)
.. doctest:: sqlite3.limits
>>> con.getlimit(sqlite3.SQLITE_LIMIT_SQL_LENGTH)
1000000000
.. versionadded:: 3.11
.. method:: setlimit(category, limit, /)
Set a connection runtime limit.
Attempts to increase a limit above its hard upper bound are silently
truncated to the hard upper bound. Regardless of whether or not the limit
was changed, the prior value of the limit is returned.
:param int category:
The `SQLite limit category`_ to be set.
:param int limit:
The value of the new limit.
If negative, the current limit is unchanged.
:rtype: int
:raises ProgrammingError:
If *category* is not recognised by the underlying SQLite library.
Example, limit the number of attached databases to 1
for :class:`Connection` ``con`` (the default limit is 10):
.. doctest:: sqlite3.limits
>>> con.setlimit(sqlite3.SQLITE_LIMIT_ATTACHED, 1)
10
>>> con.getlimit(sqlite3.SQLITE_LIMIT_ATTACHED)
1
.. versionadded:: 3.11
.. _SQLite limit category: https://www.sqlite.org/c3ref/c_limit_attached.html
.. method:: serialize(*, name="main")
Serialize a database into a :class:`bytes` object. For an
ordinary on-disk database file, the serialization is just a copy of the
disk file. For an in-memory database or a "temp" database, the
serialization is the same sequence of bytes which would be written to
disk if that database were backed up to disk.
:param str name:
The database name to be serialized.
Defaults to ``"main"``.
:rtype: bytes
.. note::
This method is only available if the underlying SQLite library has the
serialize API.
.. versionadded:: 3.11
.. method:: deserialize(data, /, *, name="main")
Deserialize a :meth:`serialized <serialize>` database into a
:class:`Connection`.
This method causes the database connection to disconnect from database
*name*, and reopen *name* as an in-memory database based on the
serialization contained in *data*.
:param bytes data:
A serialized database.
:param str name:
The database name to deserialize into.
Defaults to ``"main"``.
:raises OperationalError:
If the database connection is currently involved in a read
transaction or a backup operation.
:raises DatabaseError:
If *data* does not contain a valid SQLite database.
:raises OverflowError:
If :func:`len(data) <len>` is larger than ``2**63 - 1``.
.. note::
This method is only available if the underlying SQLite library has the
deserialize API.
.. versionadded:: 3.11
.. attribute:: autocommit
This attribute controls :pep:`249`-compliant transaction behaviour.
:attr:`!autocommit` has three allowed values:
* ``False``: Select :pep:`249`-compliant transaction behaviour,
implying that :mod:`!sqlite3` ensures a transaction is always open.
Use :meth:`commit` and :meth:`rollback` to close transactions.
This is the recommended value of :attr:`!autocommit`.
* ``True``: Use SQLite's `autocommit mode`_.
:meth:`commit` and :meth:`rollback` have no effect in this mode.
* :data:`LEGACY_TRANSACTION_CONTROL`:
Pre-Python 3.12 (non-:pep:`249`-compliant) transaction control.
See :attr:`isolation_level` for more details.
This is currently the default value of :attr:`!autocommit`.
Changing :attr:`!autocommit` to ``False`` will open a new transaction,
and changing it to ``True`` will commit any pending transaction.
See :ref:`sqlite3-transaction-control-autocommit` for more details.
.. note::
The :attr:`isolation_level` attribute has no effect unless
:attr:`autocommit` is :data:`LEGACY_TRANSACTION_CONTROL`.
.. versionadded:: 3.12
.. attribute:: in_transaction
This read-only attribute corresponds to the low-level SQLite
`autocommit mode`_.
``True`` if a transaction is active (there are uncommitted changes),
``False`` otherwise.
.. versionadded:: 3.2
.. attribute:: isolation_level
Controls the :ref:`legacy transaction handling mode
<sqlite3-transaction-control-isolation-level>` of :mod:`!sqlite3`.
If set to ``None``, transactions are never implicitly opened.
If set to one of ``"DEFERRED"``, ``"IMMEDIATE"``, or ``"EXCLUSIVE"``,
corresponding to the underlying `SQLite transaction behaviour`_,
:ref:`implicit transaction management
<sqlite3-transaction-control-isolation-level>` is performed.
If not overridden by the *isolation_level* parameter of :func:`connect`,
the default is ``""``, which is an alias for ``"DEFERRED"``.
.. note::
Using :attr:`autocommit` to control transaction handling is
recommended over using :attr:`!isolation_level`.
:attr:`!isolation_level` has no effect unless :attr:`autocommit` is
set to :data:`LEGACY_TRANSACTION_CONTROL` (the default).
.. attribute:: row_factory
The initial :attr:`~Cursor.row_factory`
for :class:`Cursor` objects created from this connection.
Assigning to this attribute does not affect the :attr:`!row_factory`
of existing cursors belonging to this connection, only new ones.
Is ``None`` by default,
meaning each row is returned as a :class:`tuple`.
See :ref:`sqlite3-howto-row-factory` for more details.
.. attribute:: text_factory
A callable that accepts a :class:`bytes` parameter and returns a text
representation of it.
The callable is invoked for SQLite values with the ``TEXT`` data type.
By default, this attribute is set to :class:`str`.
If you want to return ``bytes`` instead, set *text_factory* to ``bytes``.
Example:
.. testcode::
con = sqlite3.connect(":memory:")
cur = con.cursor()
AUSTRIA = "Österreich"
# by default, rows are returned as str
cur.execute("SELECT ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA
# but we can make sqlite3 always return bytestrings ...
con.text_factory = bytes
cur.execute("SELECT ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) is bytes
# the bytestrings will be encoded in UTF-8, unless you stored garbage in the
# database ...
assert row[0] == AUSTRIA.encode("utf-8")
# we can also implement a custom text_factory ...
# here we implement one that appends "foo" to all strings
con.text_factory = lambda x: x.decode("utf-8") + "foo"
cur.execute("SELECT ?", ("bar",))
row = cur.fetchone()
assert row[0] == "barfoo"
con.close()
.. attribute:: total_changes
Return the total number of database rows that have been modified, inserted, or
deleted since the database connection was opened.
.. _sqlite3-cursor-objects:
Cursor objects
^^^^^^^^^^^^^^
A ``Cursor`` object represents a `database cursor`_
which is used to execute SQL statements,
and manage the context of a fetch operation.
Cursors are created using :meth:`Connection.cursor`,
or by using any of the :ref:`connection shortcut methods
<sqlite3-connection-shortcuts>`.
Cursor objects are :term:`iterators <iterator>`,
meaning that if you :meth:`~Cursor.execute` a ``SELECT`` query,
you can simply iterate over the cursor to fetch the resulting rows:
.. testsetup:: sqlite3.cursor
import sqlite3
con = sqlite3.connect(":memory:", isolation_level=None)
cur = con.execute("CREATE TABLE data(t)")
cur.execute("INSERT INTO data VALUES(1)")
.. testcode:: sqlite3.cursor
for row in cur.execute("SELECT t FROM data"):
print(row)
.. testoutput:: sqlite3.cursor
:hide:
(1,)
.. _database cursor: https://en.wikipedia.org/wiki/Cursor_(databases)
.. class:: Cursor
A :class:`Cursor` instance has the following attributes and methods.
.. index:: single: ? (question mark); in SQL statements
.. index:: single: : (colon); in SQL statements
.. method:: execute(sql, parameters=(), /)
Execute SQL statement *sql*.
Bind values to the statement using :ref:`placeholders
<sqlite3-placeholders>` that map to the :term:`sequence` or :class:`dict`
*parameters*.
:meth:`execute` will only execute a single SQL statement. If you try to execute
more than one statement with it, it will raise a :exc:`ProgrammingError`. Use
:meth:`executescript` if you want to execute multiple SQL statements with one
call.
If :attr:`~Connection.autocommit` is
:data:`LEGACY_TRANSACTION_CONTROL`,
:attr:`~Connection.isolation_level` is not ``None``,
*sql* is an ``INSERT``, ``UPDATE``, ``DELETE``, or ``REPLACE`` statement,
and there is no open transaction,
a transaction is implicitly opened before executing *sql*.
.. method:: executemany(sql, parameters, /)
Execute :ref:`parameterized <sqlite3-placeholders>` SQL statement *sql*
against all parameter sequences or mappings found in the sequence
*parameters*. It is also possible to use an
:term:`iterator` yielding parameters instead of a sequence.
Uses the same implicit transaction handling as :meth:`~Cursor.execute`.
Example:
.. testcode:: sqlite3.cursor
rows = [
("row1",),
("row2",),
]
# cur is an sqlite3.Cursor object
cur.executemany("INSERT INTO data VALUES(?)", rows)
.. method:: executescript(sql_script, /)
Execute the SQL statements in *sql_script*.
If the :attr:`~Connection.autocommit` is
:data:`LEGACY_TRANSACTION_CONTROL`
and there is a pending transaction,
an implicit ``COMMIT`` statement is executed first.
No other implicit transaction control is performed;
any transaction control must be added to *sql_script*.
*sql_script* must be a :class:`string <str>`.
Example:
.. testcode:: sqlite3.cursor
# cur is an sqlite3.Cursor object
cur.executescript("""
BEGIN;
CREATE TABLE person(firstname, lastname, age);
CREATE TABLE book(title, author, published);
CREATE TABLE publisher(name, address);
COMMIT;
""")
.. method:: fetchone()
If :attr:`~Cursor.row_factory` is ``None``,
return the next row query result set as a :class:`tuple`.
Else, pass it to the row factory and return its result.
Return ``None`` if no more data is available.
.. method:: fetchmany(size=cursor.arraysize)
Return the next set of rows of a query result as a :class:`list`.
Return an empty list if no more rows are available.
The number of rows to fetch per call is specified by the *size* parameter.
If *size* is not given, :attr:`arraysize` determines the number of rows
to be fetched.
If fewer than *size* rows are available,
as many rows as are available are returned.
Note there are performance considerations involved with the *size* parameter.
For optimal performance, it is usually best to use the arraysize attribute.
If the *size* parameter is used, then it is best for it to retain the same
value from one :meth:`fetchmany` call to the next.
.. method:: fetchall()
Return all (remaining) rows of a query result as a :class:`list`.
Return an empty list if no rows are available.
Note that the :attr:`arraysize` attribute can affect the performance of
this operation.
.. method:: close()
Close the cursor now (rather than whenever ``__del__`` is called).
The cursor will be unusable from this point forward; a :exc:`ProgrammingError`
exception will be raised if any operation is attempted with the cursor.
.. method:: setinputsizes(sizes, /)
Required by the DB-API. Does nothing in :mod:`!sqlite3`.
.. method:: setoutputsize(size, column=None, /)
Required by the DB-API. Does nothing in :mod:`!sqlite3`.
.. attribute:: arraysize
Read/write attribute that controls the number of rows returned by :meth:`fetchmany`.
The default value is 1 which means a single row would be fetched per call.
.. attribute:: connection
Read-only attribute that provides the SQLite database :class:`Connection`
belonging to the cursor. A :class:`Cursor` object created by
calling :meth:`con.cursor() <Connection.cursor>` will have a
:attr:`connection` attribute that refers to *con*:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> cur = con.cursor()
>>> cur.connection == con
True
.. attribute:: description
Read-only attribute that provides the column names of the last query. To
remain compatible with the Python DB API, it returns a 7-tuple for each
column where the last six items of each tuple are ``None``.
It is set for ``SELECT`` statements without any matching rows as well.
.. attribute:: lastrowid
Read-only attribute that provides the row id of the last inserted row. It
is only updated after successful ``INSERT`` or ``REPLACE`` statements
using the :meth:`execute` method. For other statements, after
:meth:`executemany` or :meth:`executescript`, or if the insertion failed,
the value of ``lastrowid`` is left unchanged. The initial value of
``lastrowid`` is ``None``.
.. note::
Inserts into ``WITHOUT ROWID`` tables are not recorded.
.. versionchanged:: 3.6
Added support for the ``REPLACE`` statement.
.. attribute:: rowcount
Read-only attribute that provides the number of modified rows for
``INSERT``, ``UPDATE``, ``DELETE``, and ``REPLACE`` statements;
is ``-1`` for other statements,
including :abbr:`CTE (Common Table Expression)` queries.
It is only updated by the :meth:`execute` and :meth:`executemany` methods.
.. attribute:: row_factory
Control how a row fetched from this :class:`!Cursor` is represented.
If ``None``, a row is represented as a :class:`tuple`.
Can be set to the included :class:`sqlite3.Row`;
or a :term:`callable` that accepts two arguments,
a :class:`Cursor` object and the :class:`!tuple` of row values,
and returns a custom object representing an SQLite row.
Defaults to what :attr:`Connection.row_factory` was set to
when the :class:`!Cursor` was created.
Assigning to this attribute does not affect
:attr:`Connection.row_factory` of the parent connection.
See :ref:`sqlite3-howto-row-factory` for more details.
.. The sqlite3.Row example used to be a how-to. It has now been incorporated
into the Row reference. We keep the anchor here in order not to break
existing links.
.. _sqlite3-columns-by-name:
.. _sqlite3-row-objects:
Row objects
^^^^^^^^^^^
.. class:: Row
A :class:`!Row` instance serves as a highly optimized
:attr:`~Connection.row_factory` for :class:`Connection` objects.
It supports iteration, equality testing, :func:`len`,
and :term:`mapping` access by column name and index.
Two :class:`!Row` objects compare equal
if they have identical column names and values.
See :ref:`sqlite3-howto-row-factory` for more details.
.. method:: keys
Return a :class:`list` of column names as :class:`strings <str>`.
Immediately after a query,
it is the first member of each tuple in :attr:`Cursor.description`.
.. versionchanged:: 3.5
Added support of slicing.
.. _sqlite3-blob-objects:
Blob objects
^^^^^^^^^^^^
.. versionadded:: 3.11
.. class:: Blob
A :class:`Blob` instance is a :term:`file-like object`
that can read and write data in an SQLite :abbr:`BLOB (Binary Large OBject)`.
Call :func:`len(blob) <len>` to get the size (number of bytes) of the blob.
Use indices and :term:`slices <slice>` for direct access to the blob data.
Use the :class:`Blob` as a :term:`context manager` to ensure that the blob
handle is closed after use.
.. testcode::
con = sqlite3.connect(":memory:")
con.execute("CREATE TABLE test(blob_col blob)")
con.execute("INSERT INTO test(blob_col) VALUES(zeroblob(13))")
# Write to our blob, using two write operations:
with con.blobopen("test", "blob_col", 1) as blob:
blob.write(b"hello, ")
blob.write(b"world.")
# Modify the first and last bytes of our blob
blob[0] = ord("H")
blob[-1] = ord("!")
# Read the contents of our blob
with con.blobopen("test", "blob_col", 1) as blob:
greeting = blob.read()
print(greeting) # outputs "b'Hello, world!'"
.. testoutput::
:hide:
b'Hello, world!'
.. method:: close()
Close the blob.
The blob will be unusable from this point onward. An
:class:`~sqlite3.Error` (or subclass) exception will be raised if any
further operation is attempted with the blob.
.. method:: read(length=-1, /)
Read *length* bytes of data from the blob at the current offset position.
If the end of the blob is reached, the data up to
:abbr:`EOF (End of File)` will be returned. When *length* is not
specified, or is negative, :meth:`~Blob.read` will read until the end of
the blob.
.. method:: write(data, /)
Write *data* to the blob at the current offset. This function cannot
change the blob length. Writing beyond the end of the blob will raise
:exc:`ValueError`.
.. method:: tell()
Return the current access position of the blob.
.. method:: seek(offset, origin=os.SEEK_SET, /)
Set the current access position of the blob to *offset*. The *origin*
argument defaults to :data:`os.SEEK_SET` (absolute blob positioning).
Other values for *origin* are :data:`os.SEEK_CUR` (seek relative to the
current position) and :data:`os.SEEK_END` (seek relative to the blob’s
end).
PrepareProtocol objects
^^^^^^^^^^^^^^^^^^^^^^^
.. class:: PrepareProtocol
The PrepareProtocol type's single purpose is to act as a :pep:`246` style
adaption protocol for objects that can :ref:`adapt themselves
<sqlite3-conform>` to :ref:`native SQLite types <sqlite3-types>`.
.. _sqlite3-exceptions:
Exceptions
^^^^^^^^^^
The exception hierarchy is defined by the DB-API 2.0 (:pep:`249`).
.. exception:: Warning
This exception is not currently raised by the :mod:`!sqlite3` module,
but may be raised by applications using :mod:`!sqlite3`,
for example if a user-defined function truncates data while inserting.
``Warning`` is a subclass of :exc:`Exception`.
.. exception:: Error
The base class of the other exceptions in this module.
Use this to catch all errors with one single :keyword:`except` statement.
``Error`` is a subclass of :exc:`Exception`.
If the exception originated from within the SQLite library,
the following two attributes are added to the exception:
.. attribute:: sqlite_errorcode
The numeric error code from the
`SQLite API <https://sqlite.org/rescode.html>`_
.. versionadded:: 3.11
.. attribute:: sqlite_errorname
The symbolic name of the numeric error code
from the `SQLite API <https://sqlite.org/rescode.html>`_
.. versionadded:: 3.11
.. exception:: InterfaceError
Exception raised for misuse of the low-level SQLite C API.
In other words, if this exception is raised, it probably indicates a bug in the
:mod:`!sqlite3` module.
``InterfaceError`` is a subclass of :exc:`Error`.
.. exception:: DatabaseError
Exception raised for errors that are related to the database.
This serves as the base exception for several types of database errors.
It is only raised implicitly through the specialised subclasses.
``DatabaseError`` is a subclass of :exc:`Error`.
.. exception:: DataError
Exception raised for errors caused by problems with the processed data,
like numeric values out of range, and strings which are too long.
``DataError`` is a subclass of :exc:`DatabaseError`.
.. exception:: OperationalError
Exception raised for errors that are related to the database's operation,
and not necessarily under the control of the programmer.
For example, the database path is not found,
or a transaction could not be processed.
``OperationalError`` is a subclass of :exc:`DatabaseError`.
.. exception:: IntegrityError
Exception raised when the relational integrity of the database is affected,
e.g. a foreign key check fails. It is a subclass of :exc:`DatabaseError`.
.. exception:: InternalError
Exception raised when SQLite encounters an internal error.
If this is raised, it may indicate that there is a problem with the runtime
SQLite library.
``InternalError`` is a subclass of :exc:`DatabaseError`.
.. exception:: ProgrammingError
Exception raised for :mod:`!sqlite3` API programming errors,
for example supplying the wrong number of bindings to a query,
or trying to operate on a closed :class:`Connection`.
``ProgrammingError`` is a subclass of :exc:`DatabaseError`.
.. exception:: NotSupportedError
Exception raised in case a method or database API is not supported by the
underlying SQLite library. For example, setting *deterministic* to
``True`` in :meth:`~Connection.create_function`, if the underlying SQLite library
does not support deterministic functions.
``NotSupportedError`` is a subclass of :exc:`DatabaseError`.
.. _sqlite3-types:
SQLite and Python types
^^^^^^^^^^^^^^^^^^^^^^^
SQLite natively supports the following types: ``NULL``, ``INTEGER``,
``REAL``, ``TEXT``, ``BLOB``.
The following Python types can thus be sent to SQLite without any problem:
+-------------------------------+-------------+
| Python type | SQLite type |
+===============================+=============+
| ``None`` | ``NULL`` |
+-------------------------------+-------------+
| :class:`int` | ``INTEGER`` |
+-------------------------------+-------------+
| :class:`float` | ``REAL`` |
+-------------------------------+-------------+
| :class:`str` | ``TEXT`` |
+-------------------------------+-------------+
| :class:`bytes` | ``BLOB`` |
+-------------------------------+-------------+
This is how SQLite types are converted to Python types by default:
+-------------+----------------------------------------------+
| SQLite type | Python type |
+=============+==============================================+
| ``NULL`` | ``None`` |
+-------------+----------------------------------------------+
| ``INTEGER`` | :class:`int` |
+-------------+----------------------------------------------+
| ``REAL`` | :class:`float` |
+-------------+----------------------------------------------+
| ``TEXT`` | depends on :attr:`~Connection.text_factory`, |
| | :class:`str` by default |
+-------------+----------------------------------------------+
| ``BLOB`` | :class:`bytes` |
+-------------+----------------------------------------------+
The type system of the :mod:`!sqlite3` module is extensible in two ways: you can
store additional Python types in an SQLite database via
:ref:`object adapters <sqlite3-adapters>`,
and you can let the :mod:`!sqlite3` module convert SQLite types to
Python types via :ref:`converters <sqlite3-converters>`.
.. _sqlite3-default-converters:
Default adapters and converters (deprecated)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
The default adapters and converters are deprecated as of Python 3.12.
Instead, use the :ref:`sqlite3-adapter-converter-recipes`
and tailor them to your needs.
The deprecated default adapters and converters consist of:
* An adapter for :class:`datetime.date` objects to :class:`strings <str>` in
`ISO 8601`_ format.
* An adapter for :class:`datetime.datetime` objects to strings in
ISO 8601 format.
* A converter for :ref:`declared <sqlite3-converters>` "date" types to
:class:`datetime.date` objects.
* A converter for declared "timestamp" types to
:class:`datetime.datetime` objects.
Fractional parts will be truncated to 6 digits (microsecond precision).
.. note::
The default "timestamp" converter ignores UTC offsets in the database and
always returns a naive :class:`datetime.datetime` object. To preserve UTC
offsets in timestamps, either leave converters disabled, or register an
offset-aware converter with :func:`register_converter`.
.. deprecated:: 3.12
.. _ISO 8601: https://en.wikipedia.org/wiki/ISO_8601
.. _sqlite3-cli:
Command-line interface
^^^^^^^^^^^^^^^^^^^^^^
The :mod:`!sqlite3` module can be invoked as a script,
using the interpreter's :option:`-m` switch,
in order to provide a simple SQLite shell.
The argument signature is as follows::
python -m sqlite3 [-h] [-v] [filename] [sql]
Type ``.quit`` or CTRL-D to exit the shell.
.. program:: python -m sqlite3 [-h] [-v] [filename] [sql]
.. option:: -h, --help
Print CLI help.
.. option:: -v, --version
Print underlying SQLite library version.
.. versionadded:: 3.12
.. _sqlite3-howtos:
How-to guides
-------------
.. _sqlite3-placeholders:
How to use placeholders to bind values in SQL queries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SQL operations usually need to use values from Python variables. However,
beware of using Python's string operations to assemble queries, as they
are vulnerable to `SQL injection attacks`_. For example, an attacker can simply
close the single quote and inject ``OR TRUE`` to select all rows::
>>> # Never do this -- insecure!
>>> symbol = input()
' OR TRUE; --
>>> sql = "SELECT * FROM stocks WHERE symbol = '%s'" % symbol
>>> print(sql)
SELECT * FROM stocks WHERE symbol = '' OR TRUE; --'
>>> cur.execute(sql)
Instead, use the DB-API's parameter substitution. To insert a variable into a
query string, use a placeholder in the string, and substitute the actual values
into the query by providing them as a :class:`tuple` of values to the second
argument of the cursor's :meth:`~Cursor.execute` method. An SQL statement may
use one of two kinds of placeholders: question marks (qmark style) or named
placeholders (named style). For the qmark style, ``parameters`` must be a
:term:`sequence <sequence>`. For the named style, it can be either a
:term:`sequence <sequence>` or :class:`dict` instance. The length of the
:term:`sequence <sequence>` must match the number of placeholders, or a
:exc:`ProgrammingError` is raised. If a :class:`dict` is given, it must contain
keys for all named parameters. Any extra items are ignored. Here's an example of
both styles:
.. testcode::
con = sqlite3.connect(":memory:")
cur = con.execute("CREATE TABLE lang(name, first_appeared)")
# This is the qmark style:
cur.execute("INSERT INTO lang VALUES(?, ?)", ("C", 1972))
# The qmark style used with executemany():
lang_list = [
("Fortran", 1957),
("Python", 1991),
("Go", 2009),
]
cur.executemany("INSERT INTO lang VALUES(?, ?)", lang_list)
# And this is the named style:
cur.execute("SELECT * FROM lang WHERE first_appeared = :year", {"year": 1972})
print(cur.fetchall())
.. testoutput::
:hide:
[('C', 1972)]
.. _sqlite3-adapters:
How to adapt custom Python types to SQLite values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SQLite supports only a limited set of data types natively.
To store custom Python types in SQLite databases, *adapt* them to one of the
:ref:`Python types SQLite natively understands <sqlite3-types>`.
There are two ways to adapt Python objects to SQLite types:
letting your object adapt itself, or using an *adapter callable*.
The latter will take precedence above the former.
For a library that exports a custom type,
it may make sense to enable that type to adapt itself.
As an application developer, it may make more sense to take direct control by
registering custom adapter functions.
.. _sqlite3-conform:
How to write adaptable objects
""""""""""""""""""""""""""""""
Suppose we have a :class:`!Point` class that represents a pair of coordinates,
``x`` and ``y``, in a Cartesian coordinate system.
The coordinate pair will be stored as a text string in the database,
using a semicolon to separate the coordinates.
This can be implemented by adding a ``__conform__(self, protocol)``
method which returns the adapted value.
The object passed to *protocol* will be of type :class:`PrepareProtocol`.
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:
return f"{self.x};{self.y}"
con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("SELECT ?", (Point(4.0, -3.2),))
print(cur.fetchone()[0])
.. testoutput::
:hide:
4.0;-3.2
How to register adapter callables
"""""""""""""""""""""""""""""""""
The other possibility is to create a function that converts the Python object
to an SQLite-compatible type.
This function can then be registered using :func:`register_adapter`.
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def adapt_point(point):
return f"{point.x};{point.y}"
sqlite3.register_adapter(Point, adapt_point)
con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("SELECT ?", (Point(1.0, 2.5),))
print(cur.fetchone()[0])
.. testoutput::
:hide:
1.0;2.5
.. _sqlite3-converters:
How to convert SQLite values to custom Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Writing an adapter lets you convert *from* custom Python types *to* SQLite
values.
To be able to convert *from* SQLite values *to* custom Python types,
we use *converters*.
Let's go back to the :class:`!Point` class. We stored the x and y coordinates
separated via semicolons as strings in SQLite.
First, we'll define a converter function that accepts the string as a parameter
and constructs a :class:`!Point` object from it.
.. note::
Converter functions are **always** passed a :class:`bytes` object,
no matter the underlying SQLite data type.
.. testcode::
def convert_point(s):
x, y = map(float, s.split(b";"))
return Point(x, y)
We now need to tell :mod:`!sqlite3` when it should convert a given SQLite value.
This is done when connecting to a database, using the *detect_types* parameter
of :func:`connect`. There are three options:
* Implicit: set *detect_types* to :const:`PARSE_DECLTYPES`
* Explicit: set *detect_types* to :const:`PARSE_COLNAMES`
* Both: set *detect_types* to
``sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES``.
Column names take precedence over declared types.
The following example illustrates the implicit and explicit approaches:
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return f"Point({self.x}, {self.y})"
def adapt_point(point):
return f"{point.x};{point.y}"
def convert_point(s):
x, y = list(map(float, s.split(b";")))
return Point(x, y)
# Register the adapter and converter
sqlite3.register_adapter(Point, adapt_point)
sqlite3.register_converter("point", convert_point)
# 1) Parse using declared types
p = Point(4.0, -3.2)
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.execute("CREATE TABLE test(p point)")
cur.execute("INSERT INTO test(p) VALUES(?)", (p,))
cur.execute("SELECT p FROM test")
print("with declared types:", cur.fetchone()[0])
cur.close()
con.close()
# 2) Parse using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.execute("CREATE TABLE test(p)")
cur.execute("INSERT INTO test(p) VALUES(?)", (p,))
cur.execute('SELECT p AS "p [point]" FROM test')
print("with column names:", cur.fetchone()[0])
.. testoutput::
:hide:
with declared types: Point(4.0, -3.2)
with column names: Point(4.0, -3.2)
.. _sqlite3-adapter-converter-recipes:
Adapter and converter recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This section shows recipes for common adapters and converters.
.. testcode::
import datetime
import sqlite3
def adapt_date_iso(val):
"""Adapt datetime.date to ISO 8601 date."""
return val.isoformat()
def adapt_datetime_iso(val):
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
return val.isoformat()
def adapt_datetime_epoch(val):
"""Adapt datetime.datetime to Unix timestamp."""
return int(val.timestamp())
sqlite3.register_adapter(datetime.date, adapt_date_iso)
sqlite3.register_adapter(datetime.datetime, adapt_datetime_iso)
sqlite3.register_adapter(datetime.datetime, adapt_datetime_epoch)
def convert_date(val):
"""Convert ISO 8601 date to datetime.date object."""
return datetime.date.fromisoformat(val.decode())
def convert_datetime(val):
"""Convert ISO 8601 datetime to datetime.datetime object."""
return datetime.datetime.fromisoformat(val.decode())
def convert_timestamp(val):
"""Convert Unix epoch timestamp to datetime.datetime object."""
return datetime.datetime.fromtimestamp(int(val))
sqlite3.register_converter("date", convert_date)
sqlite3.register_converter("datetime", convert_datetime)
sqlite3.register_converter("timestamp", convert_timestamp)
.. testcode::
:hide:
dt = datetime.datetime(2019, 5, 18, 15, 17, 8, 123456)
assert adapt_date_iso(dt.date()) == "2019-05-18"
assert convert_date(b"2019-05-18") == dt.date()
assert adapt_datetime_iso(dt) == "2019-05-18T15:17:08.123456"
assert convert_datetime(b"2019-05-18T15:17:08.123456") == dt
# Using current time as fromtimestamp() returns local date/time.
# Droping microseconds as adapt_datetime_epoch truncates fractional second part.
now = datetime.datetime.now().replace(microsecond=0)
current_timestamp = int(now.timestamp())
assert adapt_datetime_epoch(now) == current_timestamp
assert convert_timestamp(str(current_timestamp).encode()) == now
.. _sqlite3-connection-shortcuts:
How to use connection shortcut methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :meth:`~Connection.execute`,
:meth:`~Connection.executemany`, and :meth:`~Connection.executescript`
methods of the :class:`Connection` class, your code can
be written more concisely because you don't have to create the (often
superfluous) :class:`Cursor` objects explicitly. Instead, the :class:`Cursor`
objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a ``SELECT`` statement and iterate over it
directly using only a single call on the :class:`Connection` object.
.. testcode::
# Create and fill the table.
con = sqlite3.connect(":memory:")
con.execute("CREATE TABLE lang(name, first_appeared)")
data = [
("C++", 1985),
("Objective-C", 1984),
]
con.executemany("INSERT INTO lang(name, first_appeared) VALUES(?, ?)", data)
# Print the table contents
for row in con.execute("SELECT name, first_appeared FROM lang"):
print(row)
print("I just deleted", con.execute("DELETE FROM lang").rowcount, "rows")
# close() is not a shortcut method and it's not called automatically;
# the connection object should be closed manually
con.close()
.. testoutput::
:hide:
('C++', 1985)
('Objective-C', 1984)
I just deleted 2 rows
.. _sqlite3-connection-context-manager:
How to use the connection context manager
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A :class:`Connection` object can be used as a context manager that
automatically commits or rolls back open transactions when leaving the body of
the context manager.
If the body of the :keyword:`with` statement finishes without exceptions,
the transaction is committed.
If this commit fails,
or if the body of the ``with`` statement raises an uncaught exception,
the transaction is rolled back.
If :attr:`~Connection.autocommit` is ``False``,
a new transaction is implicitly opened after committing or rolling back.
If there is no open transaction upon leaving the body of the ``with`` statement,
or if :attr:`~Connection.autocommit` is ``True``,
the context manager does nothing.
.. note::
The context manager neither implicitly opens a new transaction
nor closes the connection.
.. testcode::
con = sqlite3.connect(":memory:")
con.execute("CREATE TABLE lang(id INTEGER PRIMARY KEY, name VARCHAR UNIQUE)")
# Successful, con.commit() is called automatically afterwards
with con:
con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))
# con.rollback() is called after the with block finishes with an exception,
# the exception is still raised and must be caught
try:
with con:
con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))
except sqlite3.IntegrityError:
print("couldn't add Python twice")
# Connection object used as context manager only commits or rollbacks transactions,
# so the connection object should be closed manually
con.close()
.. testoutput::
:hide:
couldn't add Python twice
.. _sqlite3-uri-tricks:
How to work with SQLite URIs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some useful URI tricks include:
* Open a database in read-only mode:
.. doctest::
>>> con = sqlite3.connect("file:tutorial.db?mode=ro", uri=True)
>>> con.execute("CREATE TABLE readonly(data)")
Traceback (most recent call last):
OperationalError: attempt to write a readonly database
* Do not implicitly create a new database file if it does not already exist;
will raise :exc:`~sqlite3.OperationalError` if unable to create a new file:
.. doctest::
>>> con = sqlite3.connect("file:nosuchdb.db?mode=rw", uri=True)
Traceback (most recent call last):
OperationalError: unable to open database file
* Create a shared named in-memory database:
.. testcode::
db = "file:mem1?mode=memory&cache=shared"
con1 = sqlite3.connect(db, uri=True)
con2 = sqlite3.connect(db, uri=True)
with con1:
con1.execute("CREATE TABLE shared(data)")
con1.execute("INSERT INTO shared VALUES(28)")
res = con2.execute("SELECT data FROM shared")
assert res.fetchone() == (28,)
More information about this feature, including a list of parameters,
can be found in the `SQLite URI documentation`_.
.. _SQLite URI documentation: https://www.sqlite.org/uri.html
.. _sqlite3-howto-row-factory:
How to create and use row factories
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By default, :mod:`!sqlite3` represents each row as a :class:`tuple`.
If a :class:`!tuple` does not suit your needs,
you can use the :class:`sqlite3.Row` class
or a custom :attr:`~Cursor.row_factory`.
While :attr:`!row_factory` exists as an attribute both on the
:class:`Cursor` and the :class:`Connection`,
it is recommended to set :class:`Connection.row_factory`,
so all cursors created from the connection will use the same row factory.
:class:`!Row` provides indexed and case-insensitive named access to columns,
with minimal memory overhead and performance impact over a :class:`!tuple`.
To use :class:`!Row` as a row factory,
assign it to the :attr:`!row_factory` attribute:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = sqlite3.Row
Queries now return :class:`!Row` objects:
.. doctest::
>>> res = con.execute("SELECT 'Earth' AS name, 6378 AS radius")
>>> row = res.fetchone()
>>> row.keys()
['name', 'radius']
>>> row[0] # Access by index.
'Earth'
>>> row["name"] # Access by name.
'Earth'
>>> row["RADIUS"] # Column names are case-insensitive.
6378
You can create a custom :attr:`~Cursor.row_factory`
that returns each row as a :class:`dict`, with column names mapped to values:
.. testcode::
def dict_factory(cursor, row):
fields = [column[0] for column in cursor.description]
return {key: value for key, value in zip(fields, row)}
Using it, queries now return a :class:`!dict` instead of a :class:`!tuple`:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = dict_factory
>>> for row in con.execute("SELECT 1 AS a, 2 AS b"):
... print(row)
{'a': 1, 'b': 2}
The following row factory returns a :term:`named tuple`:
.. testcode::
from collections import namedtuple
def namedtuple_factory(cursor, row):
fields = [column[0] for column in cursor.description]
cls = namedtuple("Row", fields)
return cls._make(row)
:func:`!namedtuple_factory` can be used as follows:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = namedtuple_factory
>>> cur = con.execute("SELECT 1 AS a, 2 AS b")
>>> row = cur.fetchone()
>>> row
Row(a=1, b=2)
>>> row[0] # Indexed access.
1
>>> row.b # Attribute access.
2
With some adjustments, the above recipe can be adapted to use a
:class:`~dataclasses.dataclass`, or any other custom class,
instead of a :class:`~collections.namedtuple`.
.. _sqlite3-explanation:
Explanation
-----------
.. _sqlite3-transaction-control:
.. _sqlite3-controlling-transactions:
Transaction control
^^^^^^^^^^^^^^^^^^^
:mod:`!sqlite3` offers multiple methods of controlling whether,
when and how database transactions are opened and closed.
:ref:`sqlite3-transaction-control-autocommit` is recommended,
while :ref:`sqlite3-transaction-control-isolation-level`
retains the pre-Python 3.12 behaviour.
.. _sqlite3-transaction-control-autocommit:
Transaction control via the ``autocommit`` attribute
""""""""""""""""""""""""""""""""""""""""""""""""""""
The recommended way of controlling transaction behaviour is through
the :attr:`Connection.autocommit` attribute,
which should preferably be set using the *autocommit* parameter
of :func:`connect`.
It is suggested to set *autocommit* to ``False``,
which implies :pep:`249`-compliant transaction control.
This means:
* :mod:`!sqlite3` ensures that a transaction is always open,
so :func:`connect`, :meth:`Connection.commit`, and :meth:`Connection.rollback`
will implicitly open a new transaction
(immediately after closing the pending one, for the latter two).
:mod:`!sqlite3` uses ``BEGIN DEFERRED`` statements when opening transactions.
* Transactions should be committed explicitly using :meth:`!commit`.
* Transactions should be rolled back explicitly using :meth:`!rollback`.
* An implicit rollback is performed if the database is
:meth:`~Connection.close`-ed with pending changes.
Set *autocommit* to ``True`` to enable SQLite's `autocommit mode`_.
In this mode, :meth:`Connection.commit` and :meth:`Connection.rollback`
have no effect.
Note that SQLite's autocommit mode is distinct from
the :pep:`249`-compliant :attr:`Connection.autocommit` attribute;
use :attr:`Connection.in_transaction` to query
the low-level SQLite autocommit mode.
Set *autocommit* to :data:`LEGACY_TRANSACTION_CONTROL`
to leave transaction control behaviour to the
:attr:`Connection.isolation_level` attribute.
See :ref:`sqlite3-transaction-control-isolation-level` for more information.
.. _sqlite3-transaction-control-isolation-level:
Transaction control via the ``isolation_level`` attribute
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. note::
The recommended way of controlling transactions is via the
:attr:`~Connection.autocommit` attribute.
See :ref:`sqlite3-transaction-control-autocommit`.
If :attr:`Connection.autocommit` is set to
:data:`LEGACY_TRANSACTION_CONTROL` (the default),
transaction behaviour is controlled using
the :attr:`Connection.isolation_level` attribute.
Otherwise, :attr:`!isolation_level` has no effect.
If the connection attribute :attr:`~Connection.isolation_level`
is not ``None``,
new transactions are implicitly opened before
:meth:`~Cursor.execute` and :meth:`~Cursor.executemany` executes
``INSERT``, ``UPDATE``, ``DELETE``, or ``REPLACE`` statements;
for other statements, no implicit transaction handling is performed.
Use the :meth:`~Connection.commit` and :meth:`~Connection.rollback` methods
to respectively commit and roll back pending transactions.
You can choose the underlying `SQLite transaction behaviour`_ —
that is, whether and what type of ``BEGIN`` statements :mod:`!sqlite3`
implicitly executes –
via the :attr:`~Connection.isolation_level` attribute.
If :attr:`~Connection.isolation_level` is set to ``None``,
no transactions are implicitly opened at all.
This leaves the underlying SQLite library in `autocommit mode`_,
but also allows the user to perform their own transaction handling
using explicit SQL statements.
The underlying SQLite library autocommit mode can be queried using the
:attr:`~Connection.in_transaction` attribute.
The :meth:`~Cursor.executescript` method implicitly commits
any pending transaction before execution of the given SQL script,
regardless of the value of :attr:`~Connection.isolation_level`.
.. versionchanged:: 3.6
:mod:`!sqlite3` used to implicitly commit an open transaction before DDL
statements. This is no longer the case.
.. versionchanged:: 3.12
The recommended way of controlling transactions is now via the
:attr:`~Connection.autocommit` attribute.
.. _autocommit mode:
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions
.. _SQLite transaction behaviour:
https://www.sqlite.org/lang_transaction.html#deferred_immediate_and_exclusive_transactions
|