1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
:mod:`subprocess` --- Subprocess management
===========================================
.. module:: subprocess
:synopsis: Subprocess management.
.. moduleauthor:: Peter Åstrand <astrand@lysator.liu.se>
.. sectionauthor:: Peter Åstrand <astrand@lysator.liu.se>
The :mod:`subprocess` module allows you to spawn new processes, connect to their
input/output/error pipes, and obtain their return codes. This module intends to
replace several other, older modules and functions, such as::
os.system
os.spawn*
Information about how the :mod:`subprocess` module can be used to replace these
modules and functions can be found in the following sections.
.. seealso::
:pep:`324` -- PEP proposing the subprocess module
Using the subprocess Module
---------------------------
This module defines one class called :class:`Popen`:
.. class:: Popen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0, restore_signals=True, start_new_session=False, pass_fds=())
Arguments are:
*args* should be a string, or a sequence of program arguments. The program
to execute is normally the first item in the args sequence or the string if
a string is given, but can be explicitly set by using the *executable*
argument. When *executable* is given, the first item in the args sequence
is still treated by most programs as the command name, which can then be
different from the actual executable name. On Unix, it becomes the display
name for the executing program in utilities such as :program:`ps`.
On Unix, with *shell=False* (default): In this case, the Popen class uses
:meth:`os.execvp` like behavior to execute the child program.
*args* should normally be a
sequence. If a string is specified for *args*, it will be used as the name
or path of the program to execute; this will only work if the program is
being given no arguments.
.. note::
:meth:`shlex.split` can be useful when determining the correct
tokenization for *args*, especially in complex cases::
>>> import shlex, subprocess
>>> command_line = input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print(args)
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!
Note in particular that options (such as *-input*) and arguments (such
as *eggs.txt*) that are separated by whitespace in the shell go in separate
list elements, while arguments that need quoting or backslash escaping when
used in the shell (such as filenames containing spaces or the *echo* command
shown above) are single list elements.
On Unix, with *shell=True*: If args is a string, it specifies the command
string to execute through the shell. This means that the string must be
formatted exactly as it would be when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with spaces in
them. If *args* is a sequence, the first item specifies the command string, and
any additional items will be treated as additional arguments to the shell
itself. That is to say, *Popen* does the equivalent of::
Popen(['/bin/sh', '-c', args[0], args[1], ...])
.. warning::
Executing shell commands that incorporate unsanitized input from an
untrusted source makes a program vulnerable to `shell injection
<http://en.wikipedia.org/wiki/Shell_injection#Shell_injection>`_,
a serious security flaw which can result in arbitrary command execution.
For this reason, the use of *shell=True* is **strongly discouraged** in cases
where the command string is constructed from external input::
>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...
*shell=False* does not suffer from this vulnerability; the above Note may be
helpful in getting code using *shell=False* to work.
On Windows: the :class:`Popen` class uses CreateProcess() to execute the child
program, which operates on strings. If *args* is a sequence, it will be
converted to a string using the :meth:`list2cmdline` method. Please note that
not all MS Windows applications interpret the command line the same way:
:meth:`list2cmdline` is designed for applications using the same rules as the MS
C runtime.
*bufsize*, if given, has the same meaning as the corresponding argument to the
built-in open() function: :const:`0` means unbuffered, :const:`1` means line
buffered, any other positive value means use a buffer of (approximately) that
size. A negative *bufsize* means to use the system default, which usually means
fully buffered. The default value for *bufsize* is :const:`0` (unbuffered).
.. note::
If you experience performance issues, it is recommended that you try to
enable buffering by setting *bufsize* to either -1 or a large enough
positive value (such as 4096).
The *executable* argument specifies the program to execute. It is very seldom
needed: Usually, the program to execute is defined by the *args* argument. If
``shell=True``, the *executable* argument specifies which shell to use. On Unix,
the default shell is :file:`/bin/sh`. On Windows, the default shell is
specified by the :envvar:`COMSPEC` environment variable. The only reason you
would need to specify ``shell=True`` on Windows is where the command you
wish to execute is actually built in to the shell, eg ``dir``, ``copy``.
You don't need ``shell=True`` to run a batch file, nor to run a console-based
executable.
*stdin*, *stdout* and *stderr* specify the executed programs' standard input,
standard output and standard error file handles, respectively. Valid values
are :data:`PIPE`, an existing file descriptor (a positive integer), an
existing :term:`file object`, and ``None``. :data:`PIPE` indicates that a
new pipe to the child should be created. With ``None``, no redirection will
occur; the child's file handles will be inherited from the parent. Additionally,
*stderr* can be :data:`STDOUT`, which indicates that the stderr data from the
applications should be captured into the same file handle as for stdout.
If *preexec_fn* is set to a callable object, this object will be called in the
child process just before the child is executed.
(Unix only)
.. warning::
The *preexec_fn* parameter is not safe to use in the presence of threads
in your application. The child process could deadlock before exec is
called.
If you must use it, keep it trivial! Minimize the number of libraries
you call into.
.. note::
If you need to modify the environment for the child use the *env*
parameter rather than doing it in a *preexec_fn*.
The *start_new_session* parameter can take the place of a previously
common use of *preexec_fn* to call os.setsid() in the child.
If *close_fds* is true, all file descriptors except :const:`0`, :const:`1` and
:const:`2` will be closed before the child process is executed. (Unix only).
The default varies by platform: Always true on Unix. On Windows it is
true when *stdin*/*stdout*/*stderr* are :const:`None`, false otherwise.
On Windows, if *close_fds* is true then no handles will be inherited by the
child process. Note that on Windows, you cannot set *close_fds* to true and
also redirect the standard handles by setting *stdin*, *stdout* or *stderr*.
.. versionchanged:: 3.2
The default for *close_fds* was changed from :const:`False` to
what is described above.
*pass_fds* is an optional sequence of file descriptors to keep open
between the parent and child. Providing any *pass_fds* forces
*close_fds* to be :const:`True`. (Unix only)
.. versionadded:: 3.2
The *pass_fds* parameter was added.
If *cwd* is not ``None``, the child's current directory will be changed to *cwd*
before it is executed. Note that this directory is not considered when
searching the executable, so you can't specify the program's path relative to
*cwd*.
If *restore_signals* is True (the default) all signals that Python has set to
SIG_IGN are restored to SIG_DFL in the child process before the exec.
Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(Unix only)
.. versionchanged:: 3.2
*restore_signals* was added.
If *start_new_session* is True the setsid() system call will be made in the
child process prior to the execution of the subprocess. (Unix only)
.. versionchanged:: 3.2
*start_new_session* was added.
If *env* is not ``None``, it must be a mapping that defines the environment
variables for the new process; these are used instead of the default
behavior of inheriting the current process' environment.
.. note::
If specified, *env* must provide any variables required for the program to
execute. On Windows, in order to run a `side-by-side assembly`_ the
specified *env* **must** include a valid :envvar:`SystemRoot`.
.. _side-by-side assembly: http://en.wikipedia.org/wiki/Side-by-Side_Assembly
If *universal_newlines* is :const:`True`, the file objects stdout and stderr are
opened as text files, but lines may be terminated by any of ``'\n'``, the Unix
end-of-line convention, ``'\r'``, the old Macintosh convention or ``'\r\n'``, the
Windows convention. All of these external representations are seen as ``'\n'``
by the Python program.
.. note::
This feature is only available if Python is built with universal newline
support (the default). Also, the newlines attribute of the file objects
:attr:`stdout`, :attr:`stdin` and :attr:`stderr` are not updated by the
:meth:`communicate` method.
The *startupinfo* and *creationflags*, if given, will be passed to the
underlying CreateProcess() function. They can specify things such as appearance
of the main window and priority for the new process. (Windows only)
Popen objects are supported as context managers via the :keyword:`with` statement,
closing any open file descriptors on exit.
::
with Popen(["ifconfig"], stdout=PIPE) as proc:
log.write(proc.stdout.read())
.. versionchanged:: 3.2
Added context manager support.
.. data:: PIPE
Special value that can be used as the *stdin*, *stdout* or *stderr* argument
to :class:`Popen` and indicates that a pipe to the standard stream should be
opened.
.. data:: STDOUT
Special value that can be used as the *stderr* argument to :class:`Popen` and
indicates that standard error should go into the same handle as standard
output.
Convenience Functions
^^^^^^^^^^^^^^^^^^^^^
This module also defines four shortcut functions:
.. function:: call(*popenargs, timeout=None, **kwargs)
Run command with arguments. Wait for command to complete, then return the
:attr:`returncode` attribute.
The arguments are the same as for the :class:`Popen` constructor, with the
exception of the *timeout* argument, which is given to :meth:`Popen.wait`.
Example::
>>> retcode = subprocess.call(["ls", "-l"])
If the timeout expires, the child process will be killed and then waited for
again. The :exc:`TimeoutExpired` exception will be re-raised after the child
process has terminated.
.. warning::
Like :meth:`Popen.wait`, this will deadlock when using
``stdout=PIPE`` and/or ``stderr=PIPE`` and the child process
generates enough output to a pipe such that it blocks waiting
for the OS pipe buffer to accept more data.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_call(*popenargs, timeout=None, **kwargs)
Run command with arguments. Wait for command to complete. If the exit code was
zero then return, otherwise raise :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute.
The arguments are the same as for the :func:`call` function. Example::
>>> subprocess.check_call(["ls", "-l"])
0
As in the :func:`call` function, if the timeout expires, the child process
will be killed and the wait retried. The :exc:`TimeoutExpired` exception
will be re-raised after the child process has terminated.
.. warning::
See the warning for :func:`call`.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_output(*popenargs, timeout=None, **kwargs)
Run command with arguments and return its output as a byte string.
If the exit code was non-zero it raises a :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute and output in the :attr:`output` attribute.
The arguments are the same as for the :func:`call` function. Example::
>>> subprocess.check_output(["ls", "-l", "/dev/null"])
b'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n'
The stdout argument is not allowed as it is used internally.
To capture standard error in the result, use ``stderr=subprocess.STDOUT``::
>>> subprocess.check_output(
... ["/bin/sh", "-c", "ls non_existent_file; exit 0"],
... stderr=subprocess.STDOUT)
b'ls: non_existent_file: No such file or directory\n'
As in the :func:`call` function, if the timeout expires, the child process
will be killed and the wait retried. The :exc:`TimeoutExpired` exception
will be re-raised after the child process has terminated. The output from
the child process so far will be in the :attr:`output` attribute of the
exception.
.. versionadded:: 3.1
.. versionchanged:: 3.3
*timeout* was added.
.. function:: getstatusoutput(cmd)
Return ``(status, output)`` of executing *cmd* in a shell.
Execute the string *cmd* in a shell with :func:`os.popen` and return a 2-tuple
``(status, output)``. *cmd* is actually run as ``{ cmd ; } 2>&1``, so that the
returned output will contain output or error messages. A trailing newline is
stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function :c:func:`wait`. Example::
>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> subprocess.getstatusoutput('cat /bin/junk')
(256, 'cat: /bin/junk: No such file or directory')
>>> subprocess.getstatusoutput('/bin/junk')
(256, 'sh: /bin/junk: not found')
Availability: UNIX.
.. function:: getoutput(cmd)
Return output (stdout and stderr) of executing *cmd* in a shell.
Like :func:`getstatusoutput`, except the exit status is ignored and the return
value is a string containing the command's output. Example::
>>> subprocess.getoutput('ls /bin/ls')
'/bin/ls'
Availability: UNIX.
Exceptions
^^^^^^^^^^
Exceptions raised in the child process, before the new program has started to
execute, will be re-raised in the parent. Additionally, the exception object
will have one extra attribute called :attr:`child_traceback`, which is a string
containing traceback information from the child's point of view.
The most common exception raised is :exc:`OSError`. This occurs, for example,
when trying to execute a non-existent file. Applications should prepare for
:exc:`OSError` exceptions.
A :exc:`ValueError` will be raised if :class:`Popen` is called with invalid
arguments.
check_call() will raise :exc:`CalledProcessError`, if the called process returns
a non-zero return code.
All of the functions and methods that accept a *timeout* parameter, such as
:func:`call` and :meth:`Popen.communicate` will raise :exc:`TimeoutExpired` if
the timeout expires before the process exits.
Exceptions defined in this module all inherit from :exc:`SubprocessError`.
.. versionadded:: 3.3
The :exc:`SubprocessError` base class was added.
Security
^^^^^^^^
Unlike some other popen functions, this implementation will never call /bin/sh
implicitly. This means that all characters, including shell metacharacters, can
safely be passed to child processes.
Popen Objects
-------------
Instances of the :class:`Popen` class have the following methods:
.. method:: Popen.poll()
Check if child process has terminated. Set and return :attr:`returncode`
attribute.
.. method:: Popen.wait(timeout=None)
Wait for child process to terminate. Set and return :attr:`returncode`
attribute.
If the process does not terminate after *timeout* seconds, raise a
:exc:`TimeoutExpired` exception. It is safe to catch this exception and
retry the wait.
.. warning::
This will deadlock when using ``stdout=PIPE`` and/or
``stderr=PIPE`` and the child process generates enough output to
a pipe such that it blocks waiting for the OS pipe buffer to
accept more data. Use :meth:`communicate` to avoid that.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr,
until end-of-file is reached. Wait for process to terminate. The optional
*input* argument should be a byte string to be sent to the child process, or
``None``, if no data should be sent to the child.
:meth:`communicate` returns a tuple ``(stdoutdata, stderrdata)``.
Note that if you want to send data to the process's stdin, you need to create
the Popen object with ``stdin=PIPE``. Similarly, to get anything other than
``None`` in the result tuple, you need to give ``stdout=PIPE`` and/or
``stderr=PIPE`` too.
If the process does not terminate after *timeout* seconds, a
:exc:`TimeoutExpired` exception will be raised. Catching this exception and
retrying communication will not lose any output.
The child process is not killed if the timeout expires, so in order to
cleanup properly a well-behaved application should kill the child process and
finish communication::
proc = subprocess.Popen(...)
try:
outs, errs = proc.communicate(timeout=15)
except TimeoutExpired:
proc.kill()
outs, errs = proc.communicate()
.. note::
The data read is buffered in memory, so do not use this method if the data
size is large or unlimited.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.send_signal(signal)
Sends the signal *signal* to the child.
.. note::
On Windows, SIGTERM is an alias for :meth:`terminate`. CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a *creationflags*
parameter which includes `CREATE_NEW_PROCESS_GROUP`.
.. method:: Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the
child. On Windows the Win32 API function :c:func:`TerminateProcess` is called
to stop the child.
.. method:: Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child.
On Windows :meth:`kill` is an alias for :meth:`terminate`.
The following attributes are also available:
.. warning::
Use :meth:`communicate` rather than :attr:`.stdin.write <stdin>`,
:attr:`.stdout.read <stdout>` or :attr:`.stderr.read <stderr>` to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the
child process.
.. attribute:: Popen.stdin
If the *stdin* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides input to the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stdout
If the *stdout* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides output from the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stderr
If the *stderr* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides error output from the child process. Otherwise, it is
``None``.
.. attribute:: Popen.pid
The process ID of the child process.
Note that if you set the *shell* argument to ``True``, this is the process ID
of the spawned shell.
.. attribute:: Popen.returncode
The child return code, set by :meth:`poll` and :meth:`wait` (and indirectly
by :meth:`communicate`). A ``None`` value indicates that the process
hasn't terminated yet.
A negative value ``-N`` indicates that the child was terminated by signal
``N`` (Unix only).
.. _subprocess-replacements:
Replacing Older Functions with the subprocess Module
----------------------------------------------------
In this section, "a ==> b" means that b can be used as a replacement for a.
.. note::
All functions in this section fail (more or less) silently if the executed
program cannot be found; this module raises an :exc:`OSError` exception.
In the following examples, we assume that the subprocess module is imported with
"from subprocess import \*".
Replacing /bin/sh shell backquote
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`mycmd myarg`
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]
Replacing shell pipeline
^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`dmesg | grep hda`
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]
The p1.stdout.close() call after starting the p2 is important in order for p1
to receive a SIGPIPE if p2 exits before p1.
Replacing :func:`os.system`
^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)[1]
Notes:
* Calling the program through the shell is usually not required.
* It's easier to look at the :attr:`returncode` attribute than the exit status.
A more realistic example would look like this::
try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:
print("Child was terminated by signal", -retcode, file=sys.stderr)
else:
print("Child returned", retcode, file=sys.stderr)
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
Replacing the :func:`os.spawn <os.spawnl>` family
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
P_NOWAIT example::
pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid
P_WAIT example::
retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])
Vector example::
os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])
Environment example::
os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})
Replacing :func:`os.popen`, :func:`os.popen2`, :func:`os.popen3`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)
::
(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)
::
(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)
Return code handling translates as follows::
pipe = os.popen(cmd, 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:
print("There were some errors")
==>
process = Popen(cmd, 'w', stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
print("There were some errors")
Replacing functions from the :mod:`popen2` module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
If the cmd argument to popen2 functions is a string, the command is executed
through /bin/sh. If it is a list, the command is directly executed.
::
(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
::
(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
:class:`popen2.Popen3` and :class:`popen2.Popen4` basically work as
:class:`subprocess.Popen`, except that:
* :class:`Popen` raises an exception if the execution fails.
* the *capturestderr* argument is replaced with the *stderr* argument.
* ``stdin=PIPE`` and ``stdout=PIPE`` must be specified.
* popen2 closes all file descriptors by default, but you have to specify
``close_fds=True`` with :class:`Popen` to guarantee this behavior on
all platforms or past Python versions.
|