summaryrefslogtreecommitdiffstats
path: root/Doc/library/typing.rst
blob: 9883d8bbe8659606e0224b79b33b0f73562c2dcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
:mod:`typing` --- Support for type hints
========================================

.. module:: typing
   :synopsis: Support for type hints (see PEP 484).

.. versionadded:: 3.5

**Source code:** :source:`Lib/typing.py`

.. note::

   The typing module has been included in the standard library on a
   :term:`provisional basis <provisional api>`. New features might
   be added and API may change even between minor releases if deemed
   necessary by the core developers.

--------------

This module supports type hints as specified by :pep:`484` and :pep:`526`.
The most fundamental support consists of the types :data:`Any`, :data:`Union`,
:data:`Tuple`, :data:`Callable`, :class:`TypeVar`, and
:class:`Generic`.  For full specification please see :pep:`484`.  For
a simplified introduction to type hints see :pep:`483`.


The function below takes and returns a string and is annotated as follows::

   def greeting(name: str) -> str:
       return 'Hello ' + name

In the function ``greeting``, the argument ``name`` is expected to be of type
:class:`str` and the return type :class:`str`. Subtypes are accepted as
arguments.

Type aliases
------------

A type alias is defined by assigning the type to the alias. In this example,
``Vector`` and ``List[float]`` will be treated as interchangeable synonyms::

   from typing import List
   Vector = List[float]

   def scale(scalar: float, vector: Vector) -> Vector:
       return [scalar * num for num in vector]

   # typechecks; a list of floats qualifies as a Vector.
   new_vector = scale(2.0, [1.0, -4.2, 5.4])

Type aliases are useful for simplifying complex type signatures. For example::

   from typing import Dict, Tuple, List

   ConnectionOptions = Dict[str, str]
   Address = Tuple[str, int]
   Server = Tuple[Address, ConnectionOptions]

   def broadcast_message(message: str, servers: List[Server]) -> None:
       ...

   # The static type checker will treat the previous type signature as
   # being exactly equivalent to this one.
   def broadcast_message(
           message: str,
           servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
       ...

Note that ``None`` as a type hint is a special case and is replaced by
``type(None)``.

.. _distinct:

NewType
-------

Use the :func:`NewType` helper function to create distinct types::

   from typing import NewType

   UserId = NewType('UserId', int)
   some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass
of the original type. This is useful in helping catch logical errors::

   def get_user_name(user_id: UserId) -> str:
       ...

   # typechecks
   user_a = get_user_name(UserId(42351))

   # does not typecheck; an int is not a UserId
   user_b = get_user_name(-1)

You may still perform all ``int`` operations on a variable of type ``UserId``,
but the result will always be of type ``int``. This lets you pass in a
``UserId`` wherever an ``int`` might be expected, but will prevent you from
accidentally creating a ``UserId`` in an invalid way::

   # 'output' is of type 'int', not 'UserId'
   output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime
the statement ``Derived = NewType('Derived', Base)`` will make ``Derived`` a
function that immediately returns whatever parameter you pass it. That means
the expression ``Derived(some_value)`` does not create a new class or introduce
any overhead beyond that of a regular function call.

More precisely, the expression ``some_value is Derived(some_value)`` is always
true at runtime.

This also means that it is not possible to create a subtype of ``Derived``
since it is an identity function at runtime, not an actual type::

   from typing import NewType

   UserId = NewType('UserId', int)

   # Fails at runtime and does not typecheck
   class AdminUserId(UserId): pass

However, it is possible to create a :func:`NewType` based on a 'derived' ``NewType``::

   from typing import NewType

   UserId = NewType('UserId', int)

   ProUserId = NewType('ProUserId', UserId)

and typechecking for ``ProUserId`` will work as expected.

See :pep:`484` for more details.

.. note::

   Recall that the use of a type alias declares two types to be *equivalent* to
   one another. Doing ``Alias = Original`` will make the static type checker
   treat ``Alias`` as being *exactly equivalent* to ``Original`` in all cases.
   This is useful when you want to simplify complex type signatures.

   In contrast, ``NewType`` declares one type to be a *subtype* of another.
   Doing ``Derived = NewType('Derived', Original)`` will make the static type
   checker treat ``Derived`` as a *subclass* of ``Original``, which means a
   value of type ``Original`` cannot be used in places where a value of type
   ``Derived`` is expected. This is useful when you want to prevent logic
   errors with minimal runtime cost.

Callable
--------

Frameworks expecting callback functions of specific signatures might be
type hinted using ``Callable[[Arg1Type, Arg2Type], ReturnType]``.

For example::

   from typing import Callable

   def feeder(get_next_item: Callable[[], str]) -> None:
       # Body

   def async_query(on_success: Callable[[int], None],
                   on_error: Callable[[int, Exception], None]) -> None:
       # Body

It is possible to declare the return type of a callable without specifying
the call signature by substituting a literal ellipsis
for the list of arguments in the type hint: ``Callable[..., ReturnType]``.

Generics
--------

Since type information about objects kept in containers cannot be statically
inferred in a generic way, abstract base classes have been extended to support
subscription to denote expected types for container elements.

::

   from typing import Mapping, Sequence

   def notify_by_email(employees: Sequence[Employee],
                       overrides: Mapping[str, str]) -> None: ...

Generics can be parametrized by using a new factory available in typing
called :class:`TypeVar`.

::

   from typing import Sequence, TypeVar

   T = TypeVar('T')      # Declare type variable

   def first(l: Sequence[T]) -> T:   # Generic function
       return l[0]


User-defined generic types
--------------------------

A user-defined class can be defined as a generic class.

::

   from typing import TypeVar, Generic
   from logging import Logger

   T = TypeVar('T')

   class LoggedVar(Generic[T]):
       def __init__(self, value: T, name: str, logger: Logger) -> None:
           self.name = name
           self.logger = logger
           self.value = value

       def set(self, new: T) -> None:
           self.log('Set ' + repr(self.value))
           self.value = new

       def get(self) -> T:
           self.log('Get ' + repr(self.value))
           return self.value

       def log(self, message: str) -> None:
           self.logger.info('%s: %s', self.name, message)

``Generic[T]`` as a base class defines that the class ``LoggedVar`` takes a
single type parameter ``T`` . This also makes ``T`` valid as a type within the
class body.

The :class:`Generic` base class uses a metaclass that defines
:meth:`__getitem__` so that ``LoggedVar[t]`` is valid as a type::

   from typing import Iterable

   def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
       for var in vars:
           var.set(0)

A generic type can have any number of type variables, and type variables may
be constrained::

   from typing import TypeVar, Generic
   ...

   T = TypeVar('T')
   S = TypeVar('S', int, str)

   class StrangePair(Generic[T, S]):
       ...

Each type variable argument to :class:`Generic` must be distinct.
This is thus invalid::

   from typing import TypeVar, Generic
   ...

   T = TypeVar('T')

   class Pair(Generic[T, T]):   # INVALID
       ...

You can use multiple inheritance with :class:`Generic`::

   from typing import TypeVar, Generic, Sized

   T = TypeVar('T')

   class LinkedList(Sized, Generic[T]):
       ...

When inheriting from generic classes, some type variables could be fixed::

    from typing import TypeVar, Mapping

    T = TypeVar('T')

    class MyDict(Mapping[str, T]):
        ...

In this case ``MyDict`` has a single parameter, ``T``.

Using a generic class without specifying type parameters assumes
:data:`Any` for each position. In the following example, ``MyIterable`` is
not generic but implicitly inherits from ``Iterable[Any]``::

   from typing import Iterable

   class MyIterable(Iterable): # Same as Iterable[Any]

User defined generic type aliases are also supported. Examples::

   from typing import TypeVar, Iterable, Tuple, Union
   S = TypeVar('S')
   Response = Union[Iterable[S], int]

   # Return type here is same as Union[Iterable[str], int]
   def response(query: str) -> Response[str]:
       ...

   T = TypeVar('T', int, float, complex)
   Vec = Iterable[Tuple[T, T]]

   def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
       return sum(x*y for x, y in v)

The metaclass used by :class:`Generic` is a subclass of :class:`abc.ABCMeta`.
A generic class can be an ABC by including abstract methods or properties,
and generic classes can also have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported. The outcome of parameterizing
generics is cached, and most types in the typing module are hashable and
comparable for equality.


The :data:`Any` type
--------------------

A special kind of type is :data:`Any`. A static type checker will treat
every type as being compatible with :data:`Any` and :data:`Any` as being
compatible with every type.

This means that it is possible to perform any operation or method call on a
value of type on :data:`Any` and assign it to any variable::

   from typing import Any

   a = None    # type: Any
   a = []      # OK
   a = 2       # OK

   s = ''      # type: str
   s = a       # OK

   def foo(item: Any) -> int:
       # Typechecks; 'item' could be any type,
       # and that type might have a 'bar' method
       item.bar()
       ...

Notice that no typechecking is performed when assigning a value of type
:data:`Any` to a more precise type. For example, the static type checker did
not report an error when assigning ``a`` to ``s`` even though ``s`` was
declared to be of type :class:`str` and receives an :class:`int` value at
runtime!

Furthermore, all functions without a return type or parameter types will
implicitly default to using :data:`Any`::

   def legacy_parser(text):
       ...
       return data

   # A static type checker will treat the above
   # as having the same signature as:
   def legacy_parser(text: Any) -> Any:
       ...
       return data

This behavior allows :data:`Any` to be used as an *escape hatch* when you
need to mix dynamically and statically typed code.

Contrast the behavior of :data:`Any` with the behavior of :class:`object`.
Similar to :data:`Any`, every type is a subtype of :class:`object`. However,
unlike :data:`Any`, the reverse is not true: :class:`object` is *not* a
subtype of every other type.

That means when the type of a value is :class:`object`, a type checker will
reject almost all operations on it, and assigning it to a variable (or using
it as a return value) of a more specialized type is a type error. For example::

   def hash_a(item: object) -> int:
       # Fails; an object does not have a 'magic' method.
       item.magic()
       ...

   def hash_b(item: Any) -> int:
       # Typechecks
       item.magic()
       ...

   # Typechecks, since ints and strs are subclasses of object
   hash_a(42)
   hash_a("foo")

   # Typechecks, since Any is compatible with all types
   hash_b(42)
   hash_b("foo")

Use :class:`object` to indicate that a value could be any type in a typesafe
manner. Use :data:`Any` to indicate that a value is dynamically typed.

Classes, functions, and decorators
----------------------------------

The module defines the following classes, functions and decorators:

.. class:: TypeVar

    Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows::

       def repeat(x: T, n: int) -> Sequence[T]:
           """Return a list containing n references to x."""
           return [x]*n

       def longest(x: A, y: A) -> A:
           """Return the longest of two strings."""
           return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``.  Also note
    that if the arguments are instances of some subclass of :class:`str`,
    the return type is still plain :class:`str`.

    At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`.  In general,
    :func:`isinstance` and :func:`issubclass` should not be used with types.

    Type variables may be marked covariant or contravariant by passing
    ``covariant=True`` or ``contravariant=True``.  See :pep:`484` for more
    details.  By default type variables are invariant.  Alternatively,
    a type variable may specify an upper bound using ``bound=<type>``.
    This means that an actual type substituted (explicitly or implicitly)
    for the type variable must be a subclass of the boundary type,
    see :pep:`484`.

.. class:: Generic

   Abstract base class for generic types.

   A generic type is typically declared by inheriting from an
   instantiation of this class with one or more type variables.
   For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
              # Etc.

   This class can then be used as follows::

      X = TypeVar('X')
      Y = TypeVar('Y')

      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
          try:
              return mapping[key]
          except KeyError:
              return default

.. class:: Type(Generic[CT_co])

   A variable annotated with ``C`` may accept a value of type ``C``. In
   contrast, a variable annotated with ``Type[C]`` may accept values that are
   classes themselves -- specifically, it will accept the *class object* of
   ``C``. For example::

      a = 3         # Has type 'int'
      b = int       # Has type 'Type[int]'
      c = type(a)   # Also has type 'Type[int]'

   Note that ``Type[C]`` is covariant::

      class User: ...
      class BasicUser(User): ...
      class ProUser(User): ...
      class TeamUser(User): ...

      # Accepts User, BasicUser, ProUser, TeamUser, ...
      def make_new_user(user_class: Type[User]) -> User:
          # ...
          return user_class()

   The fact that ``Type[C]`` is covariant implies that all subclasses of
   ``C`` should implement the same constructor signature and class method
   signatures as ``C``. The type checker should flag violations of this,
   but should also allow constructor calls in subclasses that match the
   constructor calls in the indicated base class. How the type checker is
   required to handle this particular case may change in future revisions of
   :pep:`484`.

   The only legal parameters for :class:`Type` are classes, unions of classes, and
   :data:`Any`. For example::

      def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...

   ``Type[Any]`` is equivalent to ``Type`` which in turn is equivalent
   to ``type``, which is the root of Python's metaclass hierarchy.

.. class:: Iterable(Generic[T_co])

    A generic version of :class:`collections.abc.Iterable`.

.. class:: Iterator(Iterable[T_co])

    A generic version of :class:`collections.abc.Iterator`.

.. class:: Reversible(Iterable[T_co])

    A generic version of :class:`collections.abc.Reversible`.

.. class:: SupportsInt

    An ABC with one abstract method ``__int__``.

.. class:: SupportsFloat

    An ABC with one abstract method ``__float__``.

.. class:: SupportsComplex

    An ABC with one abstract method ``__complex__``.

.. class:: SupportsBytes

    An ABC with one abstract method ``__bytes__``.

.. class:: SupportsAbs

    An ABC with one abstract method ``__abs__`` that is covariant
    in its return type.

.. class:: SupportsRound

    An ABC with one abstract method ``__round__``
    that is covariant in its return type.

.. class:: Container(Generic[T_co])

    A generic version of :class:`collections.abc.Container`.

.. class:: Hashable

   An alias to :class:`collections.abc.Hashable`

.. class:: Sized

   An alias to :class:`collections.abc.Sized`

.. class:: Collection(Sized, Iterable[T_co], Container[T_co])

   A generic version of :class:`collections.abc.Collection`

   .. versionadded:: 3.6

.. class:: AbstractSet(Sized, Collection[T_co])

    A generic version of :class:`collections.abc.Set`.

.. class:: MutableSet(AbstractSet[T])

    A generic version of :class:`collections.abc.MutableSet`.

.. class:: Mapping(Sized, Collection[KT], Generic[VT_co])

    A generic version of :class:`collections.abc.Mapping`.

.. class:: MutableMapping(Mapping[KT, VT])

    A generic version of :class:`collections.abc.MutableMapping`.

.. class:: Sequence(Reversible[T_co], Collection[T_co])

    A generic version of :class:`collections.abc.Sequence`.

.. class:: MutableSequence(Sequence[T])

   A generic version of :class:`collections.abc.MutableSequence`.

.. class:: ByteString(Sequence[int])

   A generic version of :class:`collections.abc.ByteString`.

   This type represents the types :class:`bytes`, :class:`bytearray`,
   and :class:`memoryview`.

   As a shorthand for this type, :class:`bytes` can be used to
   annotate arguments of any of the types mentioned above.

.. class:: Deque(deque, MutableSequence[T])

   A generic version of :class:`collections.deque`.

   .. versionadded:: 3.6.1

.. class:: List(list, MutableSequence[T])

   Generic version of :class:`list`.
   Useful for annotating return types. To annotate arguments it is preferred
   to use abstract collection types such as :class:`Mapping`, :class:`Sequence`,
   or :class:`AbstractSet`.

   This type may be used as follows::

      T = TypeVar('T', int, float)

      def vec2(x: T, y: T) -> List[T]:
          return [x, y]

      def keep_positives(vector: Sequence[T]) -> List[T]:
          return [item for item in vector if item > 0]

.. class:: Set(set, MutableSet[T])

   A generic version of :class:`builtins.set <set>`.

.. class:: FrozenSet(frozenset, AbstractSet[T_co])

   A generic version of :class:`builtins.frozenset <frozenset>`.

.. class:: MappingView(Sized, Iterable[T_co])

   A generic version of :class:`collections.abc.MappingView`.

.. class:: KeysView(MappingView[KT_co], AbstractSet[KT_co])

   A generic version of :class:`collections.abc.KeysView`.

.. class:: ItemsView(MappingView, Generic[KT_co, VT_co])

   A generic version of :class:`collections.abc.ItemsView`.

.. class:: ValuesView(MappingView[VT_co])

   A generic version of :class:`collections.abc.ValuesView`.

.. class:: Awaitable(Generic[T_co])

   A generic version of :class:`collections.abc.Awaitable`.

.. class:: Coroutine(Awaitable[V_co], Generic[T_co T_contra, V_co])

   A generic version of :class:`collections.abc.Coroutine`.
   The variance and order of type variables
   correspond to those of :class:`Generator`, for example::

      from typing import List, Coroutine
      c = None # type: Coroutine[List[str], str, int]
      ...
      x = c.send('hi') # type: List[str]
      async def bar() -> None:
          x = await c # type: int

.. class:: AsyncIterable(Generic[T_co])

   A generic version of :class:`collections.abc.AsyncIterable`.

.. class:: AsyncIterator(AsyncIterable[T_co])

   A generic version of :class:`collections.abc.AsyncIterator`.

.. class:: ContextManager(Generic[T_co])

   A generic version of :class:`contextlib.AbstractContextManager`.

   .. versionadded:: 3.6

.. class:: Dict(dict, MutableMapping[KT, VT])

   A generic version of :class:`dict`.
   The usage of this type is as follows::

      def get_position_in_index(word_list: Dict[str, int], word: str) -> int:
          return word_list[word]

.. class:: DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

   A generic version of :class:`collections.defaultdict`.

.. class:: Counter(collections.Counter, Dict[T, int])

   A generic version of :class:`collections.Counter`.

   .. versionadded:: 3.6.1

.. class:: ChainMap(collections.ChainMap, MutableMapping[KT, VT])

   A generic version of :class:`collections.ChainMap`.

   .. versionadded:: 3.6.1

.. class:: Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

   A generator can be annotated by the generic type
   ``Generator[YieldType, SendType, ReturnType]``. For example::

      def echo_round() -> Generator[int, float, str]:
          sent = yield 0
          while sent >= 0:
              sent = yield round(sent)
          return 'Done'

   Note that unlike many other generics in the typing module, the ``SendType``
   of :class:`Generator` behaves contravariantly, not covariantly or
   invariantly.

   If your generator will only yield values, set the ``SendType`` and
   ``ReturnType`` to ``None``::

      def infinite_stream(start: int) -> Generator[int, None, None]:
          while True:
              yield start
              start += 1

   Alternatively, annotate your generator as having a return type of
   either ``Iterable[YieldType]`` or ``Iterator[YieldType]``::

      def infinite_stream(start: int) -> Iterator[int]:
          while True:
              yield start
              start += 1

.. class:: AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])

   An async generator can be annotated by the generic type
   ``AsyncGenerator[YieldType, SendType]``. For example::

      async def echo_round() -> AsyncGenerator[int, float]:
          sent = yield 0
          while sent >= 0.0:
              rounded = await round(sent)
              sent = yield rounded

   Unlike normal generators, async generators cannot return a value, so there
   is no ``ReturnType`` type parameter. As with :class:`Generator`, the
   ``SendType`` behaves contravariantly.

   If your generator will only yield values, set the ``SendType`` to
   ``None``::

      async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
          while True:
              yield start
              start = await increment(start)

   Alternatively, annotate your generator as having a return type of
   either ``AsyncIterable[YieldType]`` or ``AsyncIterator[YieldType]``::

      async def infinite_stream(start: int) -> AsyncIterator[int]:
          while True:
              yield start
              start = await increment(start)

   .. versionadded:: 3.5.4

.. class:: Text

   ``Text`` is an alias for ``str``. It is provided to supply a forward
   compatible path for Python 2 code: in Python 2, ``Text`` is an alias for
   ``unicode``.

   Use ``Text`` to indicate that a value must contain a unicode string in
   a manner that is compatible with both Python 2 and Python 3::

       def add_unicode_checkmark(text: Text) -> Text:
           return text + u' \u2713'

.. class:: io

   Wrapper namespace for I/O stream types.

   This defines the generic type ``IO[AnyStr]`` and aliases ``TextIO``
   and ``BinaryIO`` for respectively ``IO[str]`` and ``IO[bytes]``.
   These represent the types of I/O streams such as returned by
   :func:`open`.

   These types are also accessible directly as ``typing.IO``,
   ``typing.TextIO``, and ``typing.BinaryIO``.

.. class:: re

   Wrapper namespace for regular expression matching types.

   This defines the type aliases ``Pattern`` and ``Match`` which
   correspond to the return types from :func:`re.compile` and
   :func:`re.match`.  These types (and the corresponding functions)
   are generic in ``AnyStr`` and can be made specific by writing
   ``Pattern[str]``, ``Pattern[bytes]``, ``Match[str]``, or
   ``Match[bytes]``.

   These types are also accessible directly as ``typing.Pattern``
   and ``typing.Match``.

.. class:: NamedTuple

   Typed version of namedtuple.

   Usage::

       class Employee(NamedTuple):
           name: str
           id: int

   This is equivalent to::

       Employee = collections.namedtuple('Employee', ['name', 'id'])

   To give a field a default value, you can assign to it in the class body::

      class Employee(NamedTuple):
          name: str
          id: int = 3

      employee = Employee('Guido')
      assert employee.id == 3

   Fields with a default value must come after any fields without a default.

   The resulting class has two extra attributes: ``_field_types``,
   giving a dict mapping field names to types, and ``_field_defaults``, a dict
   mapping field names to default values.  (The field names are in the
   ``_fields`` attribute, which is part of the namedtuple API.)

   ``NamedTuple`` subclasses can also have docstrings and methods::

      class Employee(NamedTuple):
          """Represents an employee."""
          name: str
          id: int = 3

          def __repr__(self) -> str:
              return f'<Employee {self.name}, id={self.id}>'

   Backward-compatible usage::

       Employee = NamedTuple('Employee', [('name', str), ('id', int)])

   .. versionchanged:: 3.6
      Added support for :pep:`526` variable annotation syntax.

   .. versionchanged:: 3.6.1
      Added support for default values, methods, and docstrings.

.. function:: NewType(typ)

   A helper function to indicate a distinct types to a typechecker,
   see :ref:`distinct`. At runtime it returns a function that returns
   its argument. Usage::

      UserId = NewType('UserId', int)
      first_user = UserId(1)

.. function:: cast(typ, val)

   Cast a value to a type.

   This returns the value unchanged.  To the type checker this
   signals that the return value has the designated type, but at
   runtime we intentionally don't check anything (we want this
   to be as fast as possible).

.. function:: get_type_hints(obj[, globals[, locals]])

   Return a dictionary containing type hints for a function, method, module
   or class object.

   This is often the same as ``obj.__annotations__``. In addition,
   forward references encoded as string literals are handled by evaluating
   them in ``globals`` and ``locals`` namespaces. If necessary,
   ``Optional[t]`` is added for function and method annotations if a default
   value equal to ``None`` is set. For a class ``C``, return
   a dictionary constructed by merging all the ``__annotations__`` along
   ``C.__mro__`` in reverse order.

.. decorator:: overload

   The ``@overload`` decorator allows describing functions and methods
   that support multiple different combinations of argument types. A series
   of ``@overload``-decorated definitions must be followed by exactly one
   non-``@overload``-decorated definition (for the same function/method).
   The ``@overload``-decorated definitions are for the benefit of the
   type checker only, since they will be overwritten by the
   non-``@overload``-decorated definition, while the latter is used at
   runtime but should be ignored by a type checker.  At runtime, calling
   a ``@overload``-decorated function directly will raise
   ``NotImplementedError``. An example of overload that gives a more
   precise type than can be expressed using a union or a type variable::

      @overload
      def process(response: None) -> None:
          ...
      @overload
      def process(response: int) -> Tuple[int, str]:
          ...
      @overload
      def process(response: bytes) -> str:
          ...
      def process(response):
          <actual implementation>

   See :pep:`484` for details and comparison with other typing semantics.

.. decorator:: no_type_check

   Decorator to indicate that annotations are not type hints.

   This works as class or function :term:`decorator`.  With a class, it
   applies recursively to all methods defined in that class (but not
   to methods defined in its superclasses or subclasses).

   This mutates the function(s) in place.

.. decorator:: no_type_check_decorator

   Decorator to give another decorator the :func:`no_type_check` effect.

   This wraps the decorator with something that wraps the decorated
   function in :func:`no_type_check`.

.. data:: Any

   Special type indicating an unconstrained type.

   * Every type is compatible with :data:`Any`.
   * :data:`Any` is compatible with every type.

.. data:: Union

   Union type; ``Union[X, Y]`` means either X or Y.

   To define a union, use e.g. ``Union[int, str]``.  Details:

   * The arguments must be types and there must be at least one.

   * Unions of unions are flattened, e.g.::

       Union[Union[int, str], float] == Union[int, str, float]

   * Unions of a single argument vanish, e.g.::

       Union[int] == int  # The constructor actually returns int

   * Redundant arguments are skipped, e.g.::

       Union[int, str, int] == Union[int, str]

   * When comparing unions, the argument order is ignored, e.g.::

       Union[int, str] == Union[str, int]

   * When a class and its subclass are present, the latter is skipped, e.g.::

       Union[int, object] == object

   * You cannot subclass or instantiate a union.

   * You cannot write ``Union[X][Y]``.

   * You can use ``Optional[X]`` as a shorthand for ``Union[X, None]``.

.. data:: Optional

   Optional type.

   ``Optional[X]`` is equivalent to ``Union[X, None]``.

   Note that this is not the same concept as an optional argument,
   which is one that has a default.  An optional argument with a
   default needn't use the ``Optional`` qualifier on its type
   annotation (although it is inferred if the default is ``None``).
   A mandatory argument may still have an ``Optional`` type if an
   explicit value of ``None`` is allowed.

.. data:: Tuple

   Tuple type; ``Tuple[X, Y]`` is the type of a tuple of two items
   with the first item of type X and the second of type Y.

   Example: ``Tuple[T1, T2]`` is a tuple of two elements corresponding
   to type variables T1 and T2.  ``Tuple[int, float, str]`` is a tuple
   of an int, a float and a string.

   To specify a variable-length tuple of homogeneous type,
   use literal ellipsis, e.g. ``Tuple[int, ...]``. A plain :data:`Tuple`
   is equivalent to ``Tuple[Any, ...]``, and in turn to :class:`tuple`.

.. data:: Callable

   Callable type; ``Callable[[int], str]`` is a function of (int) -> str.

   The subscription syntax must always be used with exactly two
   values: the argument list and the return type.  The argument list
   must be a list of types or an ellipsis; the return type must be
   a single type.

   There is no syntax to indicate optional or keyword arguments;
   such function types are rarely used as callback types.
   ``Callable[..., ReturnType]`` (literal ellipsis) can be used to
   type hint a callable taking any number of arguments and returning
   ``ReturnType``.  A plain :data:`Callable` is equivalent to
   ``Callable[..., Any]``, and in turn to
   :class:`collections.abc.Callable`.

.. data:: ClassVar

   Special type construct to mark class variables.

   As introduced in :pep:`526`, a variable annotation wrapped in ClassVar
   indicates that a given attribute is intended to be used as a class variable
   and should not be set on instances of that class. Usage::

      class Starship:
          stats: ClassVar[Dict[str, int]] = {} # class variable
          damage: int = 10                     # instance variable

   :data:`ClassVar` accepts only types and cannot be further subscribed.

   :data:`ClassVar` is not a class itself, and should not
   be used with :func:`isinstance` or :func:`issubclass`.
   :data:`ClassVar` does not change Python runtime behavior, but
   it can be used by third-party type checkers. For example, a type checker
   might flag the following code as an error::

      enterprise_d = Starship(3000)
      enterprise_d.stats = {} # Error, setting class variable on instance
      Starship.stats = {}     # This is OK

   .. versionadded:: 3.5.3

.. data:: AnyStr

   ``AnyStr`` is a type variable defined as
   ``AnyStr = TypeVar('AnyStr', str, bytes)``.

   It is meant to be used for functions that may accept any kind of string
   without allowing different kinds of strings to mix. For example::

      def concat(a: AnyStr, b: AnyStr) -> AnyStr:
          return a + b

      concat(u"foo", u"bar")  # Ok, output has type 'unicode'
      concat(b"foo", b"bar")  # Ok, output has type 'bytes'
      concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes

.. data:: TYPE_CHECKING

   A special constant that is assumed to be ``True`` by 3rd party static
   type checkers. It is ``False`` at runtime. Usage::

      if TYPE_CHECKING:
          import expensive_mod

      def fun(arg: 'expensive_mod.SomeType') -> None:
          local_var: expensive_mod.AnotherType = other_fun()

   Note that the first type annotation must be enclosed in quotes, making it a
   "forward reference", to hide the ``expensive_mod`` reference from the
   interpreter runtime.  Type annotations for local variables are not
   evaluated, so the second annotation does not need to be enclosed in quotes.