1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
|
========================================
:mod:`typing` --- Support for type hints
========================================
.. module:: typing
:synopsis: Support for type hints (see :pep:`484`).
.. versionadded:: 3.5
**Source code:** :source:`Lib/typing.py`
.. note::
The Python runtime does not enforce function and variable type annotations.
They can be used by third party tools such as type checkers, IDEs, linters,
etc.
--------------
This module provides runtime support for type hints as specified by
:pep:`484`, :pep:`526`, :pep:`544`, :pep:`586`, :pep:`589`, :pep:`591`,
:pep:`612` and :pep:`613`.
The most fundamental support consists of the types :data:`Any`, :data:`Union`,
:data:`Tuple`, :data:`Callable`, :class:`TypeVar`, and
:class:`Generic`. For full specification please see :pep:`484`. For
a simplified introduction to type hints see :pep:`483`.
The function below takes and returns a string and is annotated as follows::
def greeting(name: str) -> str:
return 'Hello ' + name
In the function ``greeting``, the argument ``name`` is expected to be of type
:class:`str` and the return type :class:`str`. Subtypes are accepted as
arguments.
.. _type-aliases:
Type aliases
============
A type alias is defined by assigning the type to the alias. In this example,
``Vector`` and ``list[float]`` will be treated as interchangeable synonyms::
Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
Type aliases are useful for simplifying complex type signatures. For example::
from collections.abc import Sequence
ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
...
Note that ``None`` as a type hint is a special case and is replaced by
``type(None)``.
.. _distinct:
NewType
=======
Use the :class:`NewType` helper class to create distinct types::
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
The static type checker will treat the new type as if it were a subclass
of the original type. This is useful in helping catch logical errors::
def get_user_name(user_id: UserId) -> str:
...
# typechecks
user_a = get_user_name(UserId(42351))
# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)
You may still perform all ``int`` operations on a variable of type ``UserId``,
but the result will always be of type ``int``. This lets you pass in a
``UserId`` wherever an ``int`` might be expected, but will prevent you from
accidentally creating a ``UserId`` in an invalid way::
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Note that these checks are enforced only by the static type checker. At runtime,
the statement ``Derived = NewType('Derived', Base)`` will make ``Derived`` a
class that immediately returns whatever parameter you pass it. That means
the expression ``Derived(some_value)`` does not create a new class or introduce
much overhead beyond that of a regular function call.
More precisely, the expression ``some_value is Derived(some_value)`` is always
true at runtime.
It is invalid to create a subtype of ``Derived``::
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass
However, it is possible to create a :class:`NewType` based on a 'derived' ``NewType``::
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
and typechecking for ``ProUserId`` will work as expected.
See :pep:`484` for more details.
.. note::
Recall that the use of a type alias declares two types to be *equivalent* to
one another. Doing ``Alias = Original`` will make the static type checker
treat ``Alias`` as being *exactly equivalent* to ``Original`` in all cases.
This is useful when you want to simplify complex type signatures.
In contrast, ``NewType`` declares one type to be a *subtype* of another.
Doing ``Derived = NewType('Derived', Original)`` will make the static type
checker treat ``Derived`` as a *subclass* of ``Original``, which means a
value of type ``Original`` cannot be used in places where a value of type
``Derived`` is expected. This is useful when you want to prevent logic
errors with minimal runtime cost.
.. versionadded:: 3.5.2
.. versionchanged:: 3.10
``NewType`` is now a class rather than a function. There is some additional
runtime cost when calling ``NewType`` over a regular function. However, this
cost will be reduced in 3.11.0.
Callable
========
Frameworks expecting callback functions of specific signatures might be
type hinted using ``Callable[[Arg1Type, Arg2Type], ReturnType]``.
For example::
from collections.abc import Callable
def feeder(get_next_item: Callable[[], str]) -> None:
# Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
# Body
It is possible to declare the return type of a callable without specifying
the call signature by substituting a literal ellipsis
for the list of arguments in the type hint: ``Callable[..., ReturnType]``.
Callables which take other callables as arguments may indicate that their
parameter types are dependent on each other using :class:`ParamSpec`.
Additionally, if that callable adds or removes arguments from other
callables, the :data:`Concatenate` operator may be used. They
take the form ``Callable[ParamSpecVariable, ReturnType]`` and
``Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]``
respectively.
.. versionchanged:: 3.10
``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
See :pep:`612` for more information.
.. seealso::
The documentation for :class:`ParamSpec` and :class:`Concatenate` provide
examples of usage in ``Callable``.
.. _generics:
Generics
========
Since type information about objects kept in containers cannot be statically
inferred in a generic way, abstract base classes have been extended to support
subscription to denote expected types for container elements.
::
from collections.abc import Mapping, Sequence
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parameterized by using a new factory available in typing
called :class:`TypeVar`.
::
from collections.abc import Sequence
from typing import TypeVar
T = TypeVar('T') # Declare type variable
def first(l: Sequence[T]) -> T: # Generic function
return l[0]
User-defined generic types
==========================
A user-defined class can be defined as a generic class.
::
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
``Generic[T]`` as a base class defines that the class ``LoggedVar`` takes a
single type parameter ``T`` . This also makes ``T`` valid as a type within the
class body.
The :class:`Generic` base class defines :meth:`__class_getitem__` so that
``LoggedVar[t]`` is valid as a type::
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
A generic type can have any number of type variables, and type variables may
be constrained::
from typing import TypeVar, Generic
...
T = TypeVar('T')
S = TypeVar('S', int, str)
class StrangePair(Generic[T, S]):
...
Each type variable argument to :class:`Generic` must be distinct.
This is thus invalid::
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
You can use multiple inheritance with :class:`Generic`::
from collections.abc import Sized
from typing import TypeVar, Generic
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type variables could be fixed::
from collections.abc import Mapping
from typing import TypeVar
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
In this case ``MyDict`` has a single parameter, ``T``.
Using a generic class without specifying type parameters assumes
:data:`Any` for each position. In the following example, ``MyIterable`` is
not generic but implicitly inherits from ``Iterable[Any]``::
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
User defined generic type aliases are also supported. Examples::
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
.. versionchanged:: 3.7
:class:`Generic` no longer has a custom metaclass.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form ``Generic[P]``. The behavior is consistent
with type variables' described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a :class:`ParamSpec`::
>>> from typing import Generic, ParamSpec, TypeVar
>>> T = TypeVar('T')
>>> P = ParamSpec('P')
>>> class Z(Generic[T, P]): ...
...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will accept
parameter lists in the forms ``X[[Type1, Type2, ...]]`` and also
``X[Type1, Type2, ...]`` for aesthetic reasons. Internally, the latter is converted
to the former and are thus equivalent::
>>> class X(Generic[P]): ...
...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]
Do note that generics with :class:`ParamSpec` may not have correct
``__parameters__`` after substitution in some cases because they
are intended primarily for static type checking.
.. versionchanged:: 3.10
:class:`Generic` can now be parameterized over parameter expressions.
See :class:`ParamSpec` and :pep:`612` for more details.
A user-defined generic class can have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported. The outcome of parameterizing
generics is cached, and most types in the typing module are hashable and
comparable for equality.
The :data:`Any` type
====================
A special kind of type is :data:`Any`. A static type checker will treat
every type as being compatible with :data:`Any` and :data:`Any` as being
compatible with every type.
This means that it is possible to perform any operation or method call on a
value of type :data:`Any` and assign it to any variable::
from typing import Any
a = None # type: Any
a = [] # OK
a = 2 # OK
s = '' # type: str
s = a # OK
def foo(item: Any) -> int:
# Typechecks; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Notice that no typechecking is performed when assigning a value of type
:data:`Any` to a more precise type. For example, the static type checker did
not report an error when assigning ``a`` to ``s`` even though ``s`` was
declared to be of type :class:`str` and receives an :class:`int` value at
runtime!
Furthermore, all functions without a return type or parameter types will
implicitly default to using :data:`Any`::
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
This behavior allows :data:`Any` to be used as an *escape hatch* when you
need to mix dynamically and statically typed code.
Contrast the behavior of :data:`Any` with the behavior of :class:`object`.
Similar to :data:`Any`, every type is a subtype of :class:`object`. However,
unlike :data:`Any`, the reverse is not true: :class:`object` is *not* a
subtype of every other type.
That means when the type of a value is :class:`object`, a type checker will
reject almost all operations on it, and assigning it to a variable (or using
it as a return value) of a more specialized type is a type error. For example::
def hash_a(item: object) -> int:
# Fails; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Typechecks
item.magic()
...
# Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")
Use :class:`object` to indicate that a value could be any type in a typesafe
manner. Use :data:`Any` to indicate that a value is dynamically typed.
Nominal vs structural subtyping
===============================
Initially :pep:`484` defined Python static type system as using
*nominal subtyping*. This means that a class ``A`` is allowed where
a class ``B`` is expected if and only if ``A`` is a subclass of ``B``.
This requirement previously also applied to abstract base classes, such as
:class:`~collections.abc.Iterable`. The problem with this approach is that a class had
to be explicitly marked to support them, which is unpythonic and unlike
what one would normally do in idiomatic dynamically typed Python code.
For example, this conforms to :pep:`484`::
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
:pep:`544` allows to solve this problem by allowing users to write
the above code without explicit base classes in the class definition,
allowing ``Bucket`` to be implicitly considered a subtype of both ``Sized``
and ``Iterable[int]`` by static type checkers. This is known as
*structural subtyping* (or static duck-typing)::
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
Moreover, by subclassing a special class :class:`Protocol`, a user
can define new custom protocols to fully enjoy structural subtyping
(see examples below).
Module contents
===============
The module defines the following classes, functions and decorators.
.. note::
This module defines several types that are subclasses of pre-existing
standard library classes which also extend :class:`Generic`
to support type variables inside ``[]``.
These types became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support ``[]``.
The redundant types are deprecated as of Python 3.9 but no
deprecation warnings will be issued by the interpreter.
It is expected that type checkers will flag the deprecated types
when the checked program targets Python 3.9 or newer.
The deprecated types will be removed from the :mod:`typing` module
in the first Python version released 5 years after the release of Python 3.9.0.
See details in :pep:`585`—*Type Hinting Generics In Standard Collections*.
Special typing primitives
-------------------------
Special types
"""""""""""""
These can be used as types in annotations and do not support ``[]``.
.. data:: Any
Special type indicating an unconstrained type.
* Every type is compatible with :data:`Any`.
* :data:`Any` is compatible with every type.
.. data:: NoReturn
Special type indicating that a function never returns.
For example::
from typing import NoReturn
def stop() -> NoReturn:
raise RuntimeError('no way')
.. versionadded:: 3.5.4
.. versionadded:: 3.6.2
.. data:: TypeAlias
Special annotation for explicitly declaring a :ref:`type alias <type-aliases>`.
For example::
from typing import TypeAlias
Factors: TypeAlias = list[int]
See :pep:`613` for more details about explicit type aliases.
.. versionadded:: 3.10
Special forms
"""""""""""""
These can be used as types in annotations using ``[]``, each having a unique syntax.
.. data:: Tuple
Tuple type; ``Tuple[X, Y]`` is the type of a tuple of two items
with the first item of type X and the second of type Y. The type of
the empty tuple can be written as ``Tuple[()]``.
Example: ``Tuple[T1, T2]`` is a tuple of two elements corresponding
to type variables T1 and T2. ``Tuple[int, float, str]`` is a tuple
of an int, a float and a string.
To specify a variable-length tuple of homogeneous type,
use literal ellipsis, e.g. ``Tuple[int, ...]``. A plain :data:`Tuple`
is equivalent to ``Tuple[Any, ...]``, and in turn to :class:`tuple`.
.. deprecated:: 3.9
:class:`builtins.tuple <tuple>` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. data:: Union
Union type; ``Union[X, Y]`` is equivalent to ``X | Y`` and means either X or Y.
To define a union, use e.g. ``Union[int, str]`` or the shorthand ``int | str``. Details:
* The arguments must be types and there must be at least one.
* Unions of unions are flattened, e.g.::
Union[Union[int, str], float] == Union[int, str, float]
* Unions of a single argument vanish, e.g.::
Union[int] == int # The constructor actually returns int
* Redundant arguments are skipped, e.g.::
Union[int, str, int] == Union[int, str] == int | str
* When comparing unions, the argument order is ignored, e.g.::
Union[int, str] == Union[str, int]
* You cannot subclass or instantiate a ``Union``.
* You cannot write ``Union[X][Y]``.
.. versionchanged:: 3.7
Don't remove explicit subclasses from unions at runtime.
.. versionchanged:: 3.10
Unions can now be written as ``X | Y``. See
:ref:`union type expressions<types-union>`.
.. data:: Optional
Optional type.
``Optional[X]`` is equivalent to ``X | None`` (or ``Union[X, None]``).
Note that this is not the same concept as an optional argument,
which is one that has a default. An optional argument with a
default does not require the ``Optional`` qualifier on its type
annotation just because it is optional. For example::
def foo(arg: int = 0) -> None:
...
On the other hand, if an explicit value of ``None`` is allowed, the
use of ``Optional`` is appropriate, whether the argument is optional
or not. For example::
def foo(arg: Optional[int] = None) -> None:
...
.. versionchanged:: 3.10
Optional can now be written as ``X | None``. See
:ref:`union type expressions<types-union>`.
.. data:: Callable
Callable type; ``Callable[[int], str]`` is a function of (int) -> str.
The subscription syntax must always be used with exactly two
values: the argument list and the return type. The argument list
must be a list of types or an ellipsis; the return type must be
a single type.
There is no syntax to indicate optional or keyword arguments;
such function types are rarely used as callback types.
``Callable[..., ReturnType]`` (literal ellipsis) can be used to
type hint a callable taking any number of arguments and returning
``ReturnType``. A plain :data:`Callable` is equivalent to
``Callable[..., Any]``, and in turn to
:class:`collections.abc.Callable`.
Callables which take other callables as arguments may indicate that their
parameter types are dependent on each other using :class:`ParamSpec`.
Additionally, if that callable adds or removes arguments from other
callables, the :data:`Concatenate` operator may be used. They
take the form ``Callable[ParamSpecVariable, ReturnType]`` and
``Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]``
respectively.
.. deprecated:: 3.9
:class:`collections.abc.Callable` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. versionchanged:: 3.10
``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
See :pep:`612` for more information.
.. seealso::
The documentation for :class:`ParamSpec` and :class:`Concatenate` provide
examples of usage with ``Callable``.
.. data:: Concatenate
Used with :data:`Callable` and :class:`ParamSpec` to type annotate a higher
order callable which adds, removes, or transforms parameters of another
callable. Usage is in the form
``Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]``. ``Concatenate``
is currently only valid when used as the first argument to a :data:`Callable`.
The last parameter to ``Concatenate`` must be a :class:`ParamSpec`.
For example, to annotate a decorator ``with_lock`` which provides a
:class:`threading.Lock` to the decorated function, ``Concatenate`` can be
used to indicate that ``with_lock`` expects a callable which takes in a
``Lock`` as the first argument, and returns a callable with a different type
signature. In this case, the :class:`ParamSpec` indicates that the returned
callable's parameter types are dependent on the parameter types of the
callable being passed in::
from collections.abc import Callable
from threading import Lock
from typing import Any, Concatenate, ParamSpec, TypeVar
P = ParamSpec('P')
R = TypeVar('R')
# Use this lock to ensure that only one thread is executing a function
# at any time.
my_lock = Lock()
def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]:
'''A type-safe decorator which provides a lock.'''
global my_lock
def inner(*args: P.args, **kwargs: P.kwargs) -> R:
# Provide the lock as the first argument.
return f(my_lock, *args, **kwargs)
return inner
@with_lock
def sum_threadsafe(lock: Lock, numbers: list[float]) -> float:
'''Add a list of numbers together in a thread-safe manner.'''
with lock:
return sum(numbers)
# We don't need to pass in the lock ourselves thanks to the decorator.
sum_threadsafe([1.1, 2.2, 3.3])
.. versionadded:: 3.10
.. seealso::
* :pep:`612` -- Parameter Specification Variables (the PEP which introduced
``ParamSpec`` and ``Concatenate``).
* :class:`ParamSpec` and :class:`Callable`.
.. class:: Type(Generic[CT_co])
A variable annotated with ``C`` may accept a value of type ``C``. In
contrast, a variable annotated with ``Type[C]`` may accept values that are
classes themselves -- specifically, it will accept the *class object* of
``C``. For example::
a = 3 # Has type 'int'
b = int # Has type 'Type[int]'
c = type(a) # Also has type 'Type[int]'
Note that ``Type[C]`` is covariant::
class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...
# Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:
# ...
return user_class()
The fact that ``Type[C]`` is covariant implies that all subclasses of
``C`` should implement the same constructor signature and class method
signatures as ``C``. The type checker should flag violations of this,
but should also allow constructor calls in subclasses that match the
constructor calls in the indicated base class. How the type checker is
required to handle this particular case may change in future revisions of
:pep:`484`.
The only legal parameters for :class:`Type` are classes, :data:`Any`,
:ref:`type variables <generics>`, and unions of any of these types.
For example::
def new_non_team_user(user_class: Type[BasicUser | ProUser]): ...
``Type[Any]`` is equivalent to ``Type`` which in turn is equivalent
to ``type``, which is the root of Python's metaclass hierarchy.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`builtins.type <type>` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. data:: Literal
A type that can be used to indicate to type checkers that the
corresponding variable or function parameter has a value equivalent to
the provided literal (or one of several literals). For example::
def validate_simple(data: Any) -> Literal[True]: # always returns True
...
MODE = Literal['r', 'rb', 'w', 'wb']
def open_helper(file: str, mode: MODE) -> str:
...
open_helper('/some/path', 'r') # Passes type check
open_helper('/other/path', 'typo') # Error in type checker
``Literal[...]`` cannot be subclassed. At runtime, an arbitrary value
is allowed as type argument to ``Literal[...]``, but type checkers may
impose restrictions. See :pep:`586` for more details about literal types.
.. versionadded:: 3.8
.. versionchanged:: 3.9.1
``Literal`` now de-duplicates parameters. Equality comparisons of
``Literal`` objects are no longer order dependent. ``Literal`` objects
will now raise a :exc:`TypeError` exception during equality comparisons
if one of their parameters are not :term:`hashable`.
.. data:: ClassVar
Special type construct to mark class variables.
As introduced in :pep:`526`, a variable annotation wrapped in ClassVar
indicates that a given attribute is intended to be used as a class variable
and should not be set on instances of that class. Usage::
class Starship:
stats: ClassVar[dict[str, int]] = {} # class variable
damage: int = 10 # instance variable
:data:`ClassVar` accepts only types and cannot be further subscribed.
:data:`ClassVar` is not a class itself, and should not
be used with :func:`isinstance` or :func:`issubclass`.
:data:`ClassVar` does not change Python runtime behavior, but
it can be used by third-party type checkers. For example, a type checker
might flag the following code as an error::
enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {} # This is OK
.. versionadded:: 3.5.3
.. data:: Final
A special typing construct to indicate to type checkers that a name
cannot be re-assigned or overridden in a subclass. For example::
MAX_SIZE: Final = 9000
MAX_SIZE += 1 # Error reported by type checker
class Connection:
TIMEOUT: Final[int] = 10
class FastConnector(Connection):
TIMEOUT = 1 # Error reported by type checker
There is no runtime checking of these properties. See :pep:`591` for
more details.
.. versionadded:: 3.8
.. data:: Annotated
A type, introduced in :pep:`593` (``Flexible function and variable
annotations``), to decorate existing types with context-specific metadata
(possibly multiple pieces of it, as ``Annotated`` is variadic).
Specifically, a type ``T`` can be annotated with metadata ``x`` via the
typehint ``Annotated[T, x]``. This metadata can be used for either static
analysis or at runtime. If a library (or tool) encounters a typehint
``Annotated[T, x]`` and has no special logic for metadata ``x``, it
should ignore it and simply treat the type as ``T``. Unlike the
``no_type_check`` functionality that currently exists in the ``typing``
module which completely disables typechecking annotations on a function
or a class, the ``Annotated`` type allows for both static typechecking
of ``T`` (e.g., via mypy or Pyre, which can safely ignore ``x``)
together with runtime access to ``x`` within a specific application.
Ultimately, the responsibility of how to interpret the annotations (if
at all) is the responsibility of the tool or library encountering the
``Annotated`` type. A tool or library encountering an ``Annotated`` type
can scan through the annotations to determine if they are of interest
(e.g., using ``isinstance()``).
When a tool or a library does not support annotations or encounters an
unknown annotation it should just ignore it and treat annotated type as
the underlying type.
It's up to the tool consuming the annotations to decide whether the
client is allowed to have several annotations on one type and how to
merge those annotations.
Since the ``Annotated`` type allows you to put several annotations of
the same (or different) type(s) on any node, the tools or libraries
consuming those annotations are in charge of dealing with potential
duplicates. For example, if you are doing value range analysis you might
allow this::
T1 = Annotated[int, ValueRange(-10, 5)]
T2 = Annotated[T1, ValueRange(-20, 3)]
Passing ``include_extras=True`` to :func:`get_type_hints` lets one
access the extra annotations at runtime.
The details of the syntax:
* The first argument to ``Annotated`` must be a valid type
* Multiple type annotations are supported (``Annotated`` supports variadic
arguments)::
Annotated[int, ValueRange(3, 10), ctype("char")]
* ``Annotated`` must be called with at least two arguments (
``Annotated[int]`` is not valid)
* The order of the annotations is preserved and matters for equality
checks::
Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[
int, ctype("char"), ValueRange(3, 10)
]
* Nested ``Annotated`` types are flattened, with metadata ordered
starting with the innermost annotation::
Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[
int, ValueRange(3, 10), ctype("char")
]
* Duplicated annotations are not removed::
Annotated[int, ValueRange(3, 10)] != Annotated[
int, ValueRange(3, 10), ValueRange(3, 10)
]
* ``Annotated`` can be used with nested and generic aliases::
T = TypeVar('T')
Vec = Annotated[list[tuple[T, T]], MaxLen(10)]
V = Vec[int]
V == Annotated[list[tuple[int, int]], MaxLen(10)]
.. versionadded:: 3.9
.. data:: TypeGuard
Special typing form used to annotate the return type of a user-defined
type guard function. ``TypeGuard`` only accepts a single type argument.
At runtime, functions marked this way should return a boolean.
``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
type checkers to determine a more precise type of an expression within a
program's code flow. Usually type narrowing is done by analyzing
conditional code flow and applying the narrowing to a block of code. The
conditional expression here is sometimes referred to as a "type guard"::
def is_str(val: str | float):
# "isinstance" type guard
if isinstance(val, str):
# Type of ``val`` is narrowed to ``str``
...
else:
# Else, type of ``val`` is narrowed to ``float``.
...
Sometimes it would be convenient to use a user-defined boolean function
as a type guard. Such a function should use ``TypeGuard[...]`` as its
return type to alert static type checkers to this intention.
Using ``-> TypeGuard`` tells the static type checker that for a given
function:
1. The return value is a boolean.
2. If the return value is ``True``, the type of its argument
is the type inside ``TypeGuard``.
For example::
def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
'''Determines whether all objects in the list are strings'''
return all(isinstance(x, str) for x in val)
def func1(val: list[object]):
if is_str_list(val):
# Type of ``val`` is narrowed to ``list[str]``.
print(" ".join(val))
else:
# Type of ``val`` remains as ``list[object]``.
print("Not a list of strings!")
If ``is_str_list`` is a class or instance method, then the type in
``TypeGuard`` maps to the type of the second parameter after ``cls`` or
``self``.
In short, the form ``def foo(arg: TypeA) -> TypeGuard[TypeB]: ...``,
means that if ``foo(arg)`` returns ``True``, then ``arg`` narrows from
``TypeA`` to ``TypeB``.
.. note::
``TypeB`` need not be a narrower form of ``TypeA`` -- it can even be a
wider form. The main reason is to allow for things like
narrowing ``list[object]`` to ``list[str]`` even though the latter
is not a subtype of the former, since ``list`` is invariant.
The responsibility of writing type-safe type guards is left to the user.
``TypeGuard`` also works with type variables. For more information, see
:pep:`647` (User-Defined Type Guards).
.. versionadded:: 3.10
Building generic types
""""""""""""""""""""""
These are not used in annotations. They are building blocks for creating generic types.
.. class:: Generic
Abstract base class for generic types.
A generic type is typically declared by inheriting from an
instantiation of this class with one or more type variables.
For example, a generic mapping type might be defined as::
class Mapping(Generic[KT, VT]):
def __getitem__(self, key: KT) -> VT:
...
# Etc.
This class can then be used as follows::
X = TypeVar('X')
Y = TypeVar('Y')
def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
try:
return mapping[key]
except KeyError:
return default
.. class:: TypeVar
Type variable.
Usage::
T = TypeVar('T') # Can be anything
A = TypeVar('A', str, bytes) # Must be str or bytes
Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
as for generic function definitions. See :class:`Generic` for more
information on generic types. Generic functions work as follows::
def repeat(x: T, n: int) -> Sequence[T]:
"""Return a list containing n references to x."""
return [x]*n
def longest(x: A, y: A) -> A:
"""Return the longest of two strings."""
return x if len(x) >= len(y) else y
The latter example's signature is essentially the overloading
of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``. Also note
that if the arguments are instances of some subclass of :class:`str`,
the return type is still plain :class:`str`.
At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`. In general,
:func:`isinstance` and :func:`issubclass` should not be used with types.
Type variables may be marked covariant or contravariant by passing
``covariant=True`` or ``contravariant=True``. See :pep:`484` for more
details. By default type variables are invariant. Alternatively,
a type variable may specify an upper bound using ``bound=<type>``.
This means that an actual type substituted (explicitly or implicitly)
for the type variable must be a subclass of the boundary type,
see :pep:`484`.
.. class:: ParamSpec(name, *, bound=None, covariant=False, contravariant=False)
Parameter specification variable. A specialized version of
:class:`type variables <TypeVar>`.
Usage::
P = ParamSpec('P')
Parameter specification variables exist primarily for the benefit of static
type checkers. They are used to forward the parameter types of one
callable to another callable -- a pattern commonly found in higher order
functions and decorators. They are only valid when used in ``Concatenate``,
or as the first argument to ``Callable``, or as parameters for user-defined
Generics. See :class:`Generic` for more information on generic types.
For example, to add basic logging to a function, one can create a decorator
``add_logging`` to log function calls. The parameter specification variable
tells the type checker that the callable passed into the decorator and the
new callable returned by it have inter-dependent type parameters::
from collections.abc import Callable
from typing import TypeVar, ParamSpec
import logging
T = TypeVar('T')
P = ParamSpec('P')
def add_logging(f: Callable[P, T]) -> Callable[P, T]:
'''A type-safe decorator to add logging to a function.'''
def inner(*args: P.args, **kwargs: P.kwargs) -> T:
logging.info(f'{f.__name__} was called')
return f(*args, **kwargs)
return inner
@add_logging
def add_two(x: float, y: float) -> float:
'''Add two numbers together.'''
return x + y
Without ``ParamSpec``, the simplest way to annotate this previously was to
use a :class:`TypeVar` with bound ``Callable[..., Any]``. However this
causes two problems:
1. The type checker can't type check the ``inner`` function because
``*args`` and ``**kwargs`` have to be typed :data:`Any`.
2. :func:`~cast` may be required in the body of the ``add_logging``
decorator when returning the ``inner`` function, or the static type
checker must be told to ignore the ``return inner``.
.. attribute:: args
.. attribute:: kwargs
Since ``ParamSpec`` captures both positional and keyword parameters,
``P.args`` and ``P.kwargs`` can be used to split a ``ParamSpec`` into its
components. ``P.args`` represents the tuple of positional parameters in a
given call and should only be used to annotate ``*args``. ``P.kwargs``
represents the mapping of keyword parameters to their values in a given call,
and should be only be used to annotate ``**kwargs``. Both
attributes require the annotated parameter to be in scope. At runtime,
``P.args`` and ``P.kwargs`` are instances respectively of
:class:`ParamSpecArgs` and :class:`ParamSpecKwargs`.
Parameter specification variables created with ``covariant=True`` or
``contravariant=True`` can be used to declare covariant or contravariant
generic types. The ``bound`` argument is also accepted, similar to
:class:`TypeVar`. However the actual semantics of these keywords are yet to
be decided.
.. versionadded:: 3.10
.. note::
Only parameter specification variables defined in global scope can
be pickled.
.. seealso::
* :pep:`612` -- Parameter Specification Variables (the PEP which introduced
``ParamSpec`` and ``Concatenate``).
* :class:`Callable` and :class:`Concatenate`.
.. data:: ParamSpecArgs
.. data:: ParamSpecKwargs
Arguments and keyword arguments attributes of a :class:`ParamSpec`. The
``P.args`` attribute of a ``ParamSpec`` is an instance of ``ParamSpecArgs``,
and ``P.kwargs`` is an instance of ``ParamSpecKwargs``. They are intended
for runtime introspection and have no special meaning to static type checkers.
Calling :func:`get_origin` on either of these objects will return the
original ``ParamSpec``::
P = ParamSpec("P")
get_origin(P.args) # returns P
get_origin(P.kwargs) # returns P
.. versionadded:: 3.10
.. data:: AnyStr
``AnyStr`` is a type variable defined as
``AnyStr = TypeVar('AnyStr', str, bytes)``.
It is meant to be used for functions that may accept any kind of string
without allowing different kinds of strings to mix. For example::
def concat(a: AnyStr, b: AnyStr) -> AnyStr:
return a + b
concat(u"foo", u"bar") # Ok, output has type 'unicode'
concat(b"foo", b"bar") # Ok, output has type 'bytes'
concat(u"foo", b"bar") # Error, cannot mix unicode and bytes
.. class:: Protocol(Generic)
Base class for protocol classes. Protocol classes are defined like this::
class Proto(Protocol):
def meth(self) -> int:
...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing), for example::
class C:
def meth(self) -> int:
return 0
def func(x: Proto) -> int:
return x.meth()
func(C()) # Passes static type check
See :pep:`544` for details. Protocol classes decorated with
:func:`runtime_checkable` (described later) act as simple-minded runtime
protocols that check only the presence of given attributes, ignoring their
type signatures.
Protocol classes can be generic, for example::
class GenProto(Protocol[T]):
def meth(self) -> T:
...
.. versionadded:: 3.8
.. decorator:: runtime_checkable
Mark a protocol class as a runtime protocol.
Such a protocol can be used with :func:`isinstance` and :func:`issubclass`.
This raises :exc:`TypeError` when applied to a non-protocol class. This
allows a simple-minded structural check, very similar to "one trick ponies"
in :mod:`collections.abc` such as :class:`~collections.abc.Iterable`. For example::
@runtime_checkable
class Closable(Protocol):
def close(self): ...
assert isinstance(open('/some/file'), Closable)
.. note::
:func:`runtime_checkable` will check only the presence of the required
methods, not their type signatures. For example, :class:`ssl.SSLObject`
is a class, therefore it passes an :func:`issubclass`
check against :data:`Callable`. However, the
:meth:`ssl.SSLObject.__init__` method exists only to raise a
:exc:`TypeError` with a more informative message, therefore making
it impossible to call (instantiate) :class:`ssl.SSLObject`.
.. versionadded:: 3.8
Other special directives
""""""""""""""""""""""""
These are not used in annotations. They are building blocks for declaring types.
.. class:: NamedTuple
Typed version of :func:`collections.namedtuple`.
Usage::
class Employee(NamedTuple):
name: str
id: int
This is equivalent to::
Employee = collections.namedtuple('Employee', ['name', 'id'])
To give a field a default value, you can assign to it in the class body::
class Employee(NamedTuple):
name: str
id: int = 3
employee = Employee('Guido')
assert employee.id == 3
Fields with a default value must come after any fields without a default.
The resulting class has an extra attribute ``__annotations__`` giving a
dict that maps the field names to the field types. (The field names are in
the ``_fields`` attribute and the default values are in the
``_field_defaults`` attribute both of which are part of the namedtuple
API.)
``NamedTuple`` subclasses can also have docstrings and methods::
class Employee(NamedTuple):
"""Represents an employee."""
name: str
id: int = 3
def __repr__(self) -> str:
return f'<Employee {self.name}, id={self.id}>'
Backward-compatible usage::
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
.. versionchanged:: 3.6
Added support for :pep:`526` variable annotation syntax.
.. versionchanged:: 3.6.1
Added support for default values, methods, and docstrings.
.. versionchanged:: 3.8
The ``_field_types`` and ``__annotations__`` attributes are
now regular dictionaries instead of instances of ``OrderedDict``.
.. versionchanged:: 3.9
Removed the ``_field_types`` attribute in favor of the more
standard ``__annotations__`` attribute which has the same information.
.. class:: NewType(name, tp)
A helper class to indicate a distinct type to a typechecker,
see :ref:`distinct`. At runtime it returns an object that returns
its argument when called.
Usage::
UserId = NewType('UserId', int)
first_user = UserId(1)
.. versionadded:: 3.5.2
.. versionchanged:: 3.10
``NewType`` is now a class rather than a function.
.. class:: TypedDict(dict)
Special construct to add type hints to a dictionary.
At runtime it is a plain :class:`dict`.
``TypedDict`` declares a dictionary type that expects all of its
instances to have a certain set of keys, where each key is
associated with a value of a consistent type. This expectation
is not checked at runtime but is only enforced by type checkers.
Usage::
class Point2D(TypedDict):
x: int
y: int
label: str
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
The type info for introspection can be accessed via ``Point2D.__annotations__``,
``Point2D.__total__``, ``Point2D.__required_keys__``, and
``Point2D.__optional_keys__``.
To allow using this feature with older versions of Python that do not
support :pep:`526`, ``TypedDict`` supports two additional equivalent
syntactic forms::
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
By default, all keys must be present in a ``TypedDict``. It is possible to
override this by specifying totality.
Usage::
class Point2D(TypedDict, total=False):
x: int
y: int
This means that a ``Point2D`` ``TypedDict`` can have any of the keys
omitted. A type checker is only expected to support a literal ``False`` or
``True`` as the value of the ``total`` argument. ``True`` is the default,
and makes all items defined in the class body required.
See :pep:`589` for more examples and detailed rules of using ``TypedDict``.
.. versionadded:: 3.8
Generic concrete collections
----------------------------
Corresponding to built-in types
"""""""""""""""""""""""""""""""
.. class:: Dict(dict, MutableMapping[KT, VT])
A generic version of :class:`dict`.
Useful for annotating return types. To annotate arguments it is preferred
to use an abstract collection type such as :class:`Mapping`.
This type can be used as follows::
def count_words(text: str) -> Dict[str, int]:
...
.. deprecated:: 3.9
:class:`builtins.dict <dict>` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: List(list, MutableSequence[T])
Generic version of :class:`list`.
Useful for annotating return types. To annotate arguments it is preferred
to use an abstract collection type such as :class:`Sequence` or
:class:`Iterable`.
This type may be used as follows::
T = TypeVar('T', int, float)
def vec2(x: T, y: T) -> List[T]:
return [x, y]
def keep_positives(vector: Sequence[T]) -> List[T]:
return [item for item in vector if item > 0]
.. deprecated:: 3.9
:class:`builtins.list <list>` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: Set(set, MutableSet[T])
A generic version of :class:`builtins.set <set>`.
Useful for annotating return types. To annotate arguments it is preferred
to use an abstract collection type such as :class:`AbstractSet`.
.. deprecated:: 3.9
:class:`builtins.set <set>` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: FrozenSet(frozenset, AbstractSet[T_co])
A generic version of :class:`builtins.frozenset <frozenset>`.
.. deprecated:: 3.9
:class:`builtins.frozenset <frozenset>` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
.. note:: :data:`Tuple` is a special form.
Corresponding to types in :mod:`collections`
""""""""""""""""""""""""""""""""""""""""""""
.. class:: DefaultDict(collections.defaultdict, MutableMapping[KT, VT])
A generic version of :class:`collections.defaultdict`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.defaultdict` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])
A generic version of :class:`collections.OrderedDict`.
.. versionadded:: 3.7.2
.. deprecated:: 3.9
:class:`collections.OrderedDict` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: ChainMap(collections.ChainMap, MutableMapping[KT, VT])
A generic version of :class:`collections.ChainMap`.
.. versionadded:: 3.5.4
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.ChainMap` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: Counter(collections.Counter, Dict[T, int])
A generic version of :class:`collections.Counter`.
.. versionadded:: 3.5.4
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.Counter` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: Deque(deque, MutableSequence[T])
A generic version of :class:`collections.deque`.
.. versionadded:: 3.5.4
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.deque` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
Other concrete types
""""""""""""""""""""
.. class:: IO
TextIO
BinaryIO
Generic type ``IO[AnyStr]`` and its subclasses ``TextIO(IO[str])``
and ``BinaryIO(IO[bytes])``
represent the types of I/O streams such as returned by
:func:`open`.
.. deprecated-removed:: 3.8 3.12
The ``typing.io`` namespace is deprecated and will be removed.
These types should be directly imported from ``typing`` instead.
.. class:: Pattern
Match
These type aliases
correspond to the return types from :func:`re.compile` and
:func:`re.match`. These types (and the corresponding functions)
are generic in ``AnyStr`` and can be made specific by writing
``Pattern[str]``, ``Pattern[bytes]``, ``Match[str]``, or
``Match[bytes]``.
.. deprecated-removed:: 3.8 3.12
The ``typing.re`` namespace is deprecated and will be removed.
These types should be directly imported from ``typing`` instead.
.. deprecated:: 3.9
Classes ``Pattern`` and ``Match`` from :mod:`re` now support ``[]``.
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Text
``Text`` is an alias for ``str``. It is provided to supply a forward
compatible path for Python 2 code: in Python 2, ``Text`` is an alias for
``unicode``.
Use ``Text`` to indicate that a value must contain a unicode string in
a manner that is compatible with both Python 2 and Python 3::
def add_unicode_checkmark(text: Text) -> Text:
return text + u' \u2713'
.. versionadded:: 3.5.2
Abstract Base Classes
---------------------
Corresponding to collections in :mod:`collections.abc`
""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. class:: AbstractSet(Sized, Collection[T_co])
A generic version of :class:`collections.abc.Set`.
.. deprecated:: 3.9
:class:`collections.abc.Set` now supports ``[]``. See :pep:`585` and
:ref:`types-genericalias`.
.. class:: ByteString(Sequence[int])
A generic version of :class:`collections.abc.ByteString`.
This type represents the types :class:`bytes`, :class:`bytearray`,
and :class:`memoryview` of byte sequences.
As a shorthand for this type, :class:`bytes` can be used to
annotate arguments of any of the types mentioned above.
.. deprecated:: 3.9
:class:`collections.abc.ByteString` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Collection(Sized, Iterable[T_co], Container[T_co])
A generic version of :class:`collections.abc.Collection`
.. versionadded:: 3.6.0
.. deprecated:: 3.9
:class:`collections.abc.Collection` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Container(Generic[T_co])
A generic version of :class:`collections.abc.Container`.
.. deprecated:: 3.9
:class:`collections.abc.Container` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: ItemsView(MappingView, Generic[KT_co, VT_co])
A generic version of :class:`collections.abc.ItemsView`.
.. deprecated:: 3.9
:class:`collections.abc.ItemsView` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: KeysView(MappingView[KT_co], AbstractSet[KT_co])
A generic version of :class:`collections.abc.KeysView`.
.. deprecated:: 3.9
:class:`collections.abc.KeysView` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Mapping(Sized, Collection[KT], Generic[VT_co])
A generic version of :class:`collections.abc.Mapping`.
This type can be used as follows::
def get_position_in_index(word_list: Mapping[str, int], word: str) -> int:
return word_list[word]
.. deprecated:: 3.9
:class:`collections.abc.Mapping` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: MappingView(Sized, Iterable[T_co])
A generic version of :class:`collections.abc.MappingView`.
.. deprecated:: 3.9
:class:`collections.abc.MappingView` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: MutableMapping(Mapping[KT, VT])
A generic version of :class:`collections.abc.MutableMapping`.
.. deprecated:: 3.9
:class:`collections.abc.MutableMapping` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
.. class:: MutableSequence(Sequence[T])
A generic version of :class:`collections.abc.MutableSequence`.
.. deprecated:: 3.9
:class:`collections.abc.MutableSequence` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
.. class:: MutableSet(AbstractSet[T])
A generic version of :class:`collections.abc.MutableSet`.
.. deprecated:: 3.9
:class:`collections.abc.MutableSet` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Sequence(Reversible[T_co], Collection[T_co])
A generic version of :class:`collections.abc.Sequence`.
.. deprecated:: 3.9
:class:`collections.abc.Sequence` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: ValuesView(MappingView[VT_co])
A generic version of :class:`collections.abc.ValuesView`.
.. deprecated:: 3.9
:class:`collections.abc.ValuesView` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
Corresponding to other types in :mod:`collections.abc`
""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. class:: Iterable(Generic[T_co])
A generic version of :class:`collections.abc.Iterable`.
.. deprecated:: 3.9
:class:`collections.abc.Iterable` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Iterator(Iterable[T_co])
A generic version of :class:`collections.abc.Iterator`.
.. deprecated:: 3.9
:class:`collections.abc.Iterator` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])
A generator can be annotated by the generic type
``Generator[YieldType, SendType, ReturnType]``. For example::
def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:
sent = yield round(sent)
return 'Done'
Note that unlike many other generics in the typing module, the ``SendType``
of :class:`Generator` behaves contravariantly, not covariantly or
invariantly.
If your generator will only yield values, set the ``SendType`` and
``ReturnType`` to ``None``::
def infinite_stream(start: int) -> Generator[int, None, None]:
while True:
yield start
start += 1
Alternatively, annotate your generator as having a return type of
either ``Iterable[YieldType]`` or ``Iterator[YieldType]``::
def infinite_stream(start: int) -> Iterator[int]:
while True:
yield start
start += 1
.. deprecated:: 3.9
:class:`collections.abc.Generator` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Hashable
An alias to :class:`collections.abc.Hashable`
.. class:: Reversible(Iterable[T_co])
A generic version of :class:`collections.abc.Reversible`.
.. deprecated:: 3.9
:class:`collections.abc.Reversible` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Sized
An alias to :class:`collections.abc.Sized`
Asynchronous programming
""""""""""""""""""""""""
.. class:: Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co])
A generic version of :class:`collections.abc.Coroutine`.
The variance and order of type variables
correspond to those of :class:`Generator`, for example::
from collections.abc import Coroutine
c = None # type: Coroutine[list[str], str, int]
...
x = c.send('hi') # type: list[str]
async def bar() -> None:
x = await c # type: int
.. versionadded:: 3.5.3
.. deprecated:: 3.9
:class:`collections.abc.Coroutine` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])
An async generator can be annotated by the generic type
``AsyncGenerator[YieldType, SendType]``. For example::
async def echo_round() -> AsyncGenerator[int, float]:
sent = yield 0
while sent >= 0.0:
rounded = await round(sent)
sent = yield rounded
Unlike normal generators, async generators cannot return a value, so there
is no ``ReturnType`` type parameter. As with :class:`Generator`, the
``SendType`` behaves contravariantly.
If your generator will only yield values, set the ``SendType`` to
``None``::
async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
while True:
yield start
start = await increment(start)
Alternatively, annotate your generator as having a return type of
either ``AsyncIterable[YieldType]`` or ``AsyncIterator[YieldType]``::
async def infinite_stream(start: int) -> AsyncIterator[int]:
while True:
yield start
start = await increment(start)
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.abc.AsyncGenerator` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
.. class:: AsyncIterable(Generic[T_co])
A generic version of :class:`collections.abc.AsyncIterable`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.AsyncIterable` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: AsyncIterator(AsyncIterable[T_co])
A generic version of :class:`collections.abc.AsyncIterator`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.AsyncIterator` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
.. class:: Awaitable(Generic[T_co])
A generic version of :class:`collections.abc.Awaitable`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.Awaitable` now supports ``[]``. See :pep:`585`
and :ref:`types-genericalias`.
Context manager types
"""""""""""""""""""""
.. class:: ContextManager(Generic[T_co])
A generic version of :class:`contextlib.AbstractContextManager`.
.. versionadded:: 3.5.4
.. versionadded:: 3.6.0
.. deprecated:: 3.9
:class:`contextlib.AbstractContextManager` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
.. class:: AsyncContextManager(Generic[T_co])
A generic version of :class:`contextlib.AbstractAsyncContextManager`.
.. versionadded:: 3.5.4
.. versionadded:: 3.6.2
.. deprecated:: 3.9
:class:`contextlib.AbstractAsyncContextManager` now supports ``[]``. See
:pep:`585` and :ref:`types-genericalias`.
Protocols
---------
These protocols are decorated with :func:`runtime_checkable`.
.. class:: SupportsAbs
An ABC with one abstract method ``__abs__`` that is covariant
in its return type.
.. class:: SupportsBytes
An ABC with one abstract method ``__bytes__``.
.. class:: SupportsComplex
An ABC with one abstract method ``__complex__``.
.. class:: SupportsFloat
An ABC with one abstract method ``__float__``.
.. class:: SupportsIndex
An ABC with one abstract method ``__index__``.
.. versionadded:: 3.8
.. class:: SupportsInt
An ABC with one abstract method ``__int__``.
.. class:: SupportsRound
An ABC with one abstract method ``__round__``
that is covariant in its return type.
Functions and decorators
------------------------
.. function:: cast(typ, val)
Cast a value to a type.
This returns the value unchanged. To the type checker this
signals that the return value has the designated type, but at
runtime we intentionally don't check anything (we want this
to be as fast as possible).
.. decorator:: overload
The ``@overload`` decorator allows describing functions and methods
that support multiple different combinations of argument types. A series
of ``@overload``-decorated definitions must be followed by exactly one
non-``@overload``-decorated definition (for the same function/method).
The ``@overload``-decorated definitions are for the benefit of the
type checker only, since they will be overwritten by the
non-``@overload``-decorated definition, while the latter is used at
runtime but should be ignored by a type checker. At runtime, calling
a ``@overload``-decorated function directly will raise
:exc:`NotImplementedError`. An example of overload that gives a more
precise type than can be expressed using a union or a type variable::
@overload
def process(response: None) -> None:
...
@overload
def process(response: int) -> tuple[int, str]:
...
@overload
def process(response: bytes) -> str:
...
def process(response):
<actual implementation>
See :pep:`484` for details and comparison with other typing semantics.
.. decorator:: final
A decorator to indicate to type checkers that the decorated method
cannot be overridden, and the decorated class cannot be subclassed.
For example::
class Base:
@final
def done(self) -> None:
...
class Sub(Base):
def done(self) -> None: # Error reported by type checker
...
@final
class Leaf:
...
class Other(Leaf): # Error reported by type checker
...
There is no runtime checking of these properties. See :pep:`591` for
more details.
.. versionadded:: 3.8
.. decorator:: no_type_check
Decorator to indicate that annotations are not type hints.
This works as class or function :term:`decorator`. With a class, it
applies recursively to all methods defined in that class (but not
to methods defined in its superclasses or subclasses).
This mutates the function(s) in place.
.. decorator:: no_type_check_decorator
Decorator to give another decorator the :func:`no_type_check` effect.
This wraps the decorator with something that wraps the decorated
function in :func:`no_type_check`.
.. decorator:: type_check_only
Decorator to mark a class or function to be unavailable at runtime.
This decorator is itself not available at runtime. It is mainly
intended to mark classes that are defined in type stub files if
an implementation returns an instance of a private class::
@type_check_only
class Response: # private or not available at runtime
code: int
def get_header(self, name: str) -> str: ...
def fetch_response() -> Response: ...
Note that returning instances of private classes is not recommended.
It is usually preferable to make such classes public.
Introspection helpers
---------------------
.. function:: get_type_hints(obj, globalns=None, localns=None, include_extras=False)
Return a dictionary containing type hints for a function, method, module
or class object.
This is often the same as ``obj.__annotations__``. In addition,
forward references encoded as string literals are handled by evaluating
them in ``globals`` and ``locals`` namespaces. If necessary,
``Optional[t]`` is added for function and method annotations if a default
value equal to ``None`` is set. For a class ``C``, return
a dictionary constructed by merging all the ``__annotations__`` along
``C.__mro__`` in reverse order.
The function recursively replaces all ``Annotated[T, ...]`` with ``T``,
unless ``include_extras`` is set to ``True`` (see :class:`Annotated` for
more information). For example::
class Student(NamedTuple):
name: Annotated[str, 'some marker']
get_type_hints(Student) == {'name': str}
get_type_hints(Student, include_extras=False) == {'name': str}
get_type_hints(Student, include_extras=True) == {
'name': Annotated[str, 'some marker']
}
.. note::
:func:`get_type_hints` does not work with imported
:ref:`type aliases <type-aliases>` that include forward references.
Enabling postponed evaluation of annotations (:pep:`563`) may remove
the need for most forward references.
.. versionchanged:: 3.9
Added ``include_extras`` parameter as part of :pep:`593`.
.. function:: get_args(tp)
.. function:: get_origin(tp)
Provide basic introspection for generic types and special typing forms.
For a typing object of the form ``X[Y, Z, ...]`` these functions return
``X`` and ``(Y, Z, ...)``. If ``X`` is a generic alias for a builtin or
:mod:`collections` class, it gets normalized to the original class.
If ``X`` is a union or :class:`Literal` contained in another
generic type, the order of ``(Y, Z, ...)`` may be different from the order
of the original arguments ``[Y, Z, ...]`` due to type caching.
For unsupported objects return ``None`` and ``()`` correspondingly.
Examples::
assert get_origin(Dict[str, int]) is dict
assert get_args(Dict[int, str]) == (int, str)
assert get_origin(Union[int, str]) is Union
assert get_args(Union[int, str]) == (int, str)
.. versionadded:: 3.8
.. function:: is_typeddict(tp)
Check if a type is a :class:`TypedDict`.
For example::
class Film(TypedDict):
title: str
year: int
is_typeddict(Film) # => True
is_typeddict(list | str) # => False
.. versionadded:: 3.10
.. class:: ForwardRef
A class used for internal typing representation of string forward references.
For example, ``list["SomeClass"]`` is implicitly transformed into
``list[ForwardRef("SomeClass")]``. This class should not be instantiated by
a user, but may be used by introspection tools.
.. note::
:pep:`585` generic types such as ``list["SomeClass"]`` will not be
implicitly transformed into ``list[ForwardRef("SomeClass")]`` and thus
will not automatically resolve to ``list[SomeClass]``.
.. versionadded:: 3.7.4
Constant
--------
.. data:: TYPE_CHECKING
A special constant that is assumed to be ``True`` by 3rd party static
type checkers. It is ``False`` at runtime. Usage::
if TYPE_CHECKING:
import expensive_mod
def fun(arg: 'expensive_mod.SomeType') -> None:
local_var: expensive_mod.AnotherType = other_fun()
The first type annotation must be enclosed in quotes, making it a
"forward reference", to hide the ``expensive_mod`` reference from the
interpreter runtime. Type annotations for local variables are not
evaluated, so the second annotation does not need to be enclosed in quotes.
.. note::
If ``from __future__ import annotations`` is used in Python 3.7 or later,
annotations are not evaluated at function definition time.
Instead, they are stored as strings in ``__annotations__``,
This makes it unnecessary to use quotes around the annotation.
(see :pep:`563`).
.. versionadded:: 3.5.2
|