summaryrefslogtreecommitdiffstats
path: root/Doc/library/typing.rst
blob: 8f6919322012257845da486a166c89eb6da7e767 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
========================================
:mod:`typing` --- Support for type hints
========================================

.. testsetup:: *

   import typing
   from dataclasses import dataclass
   from typing import *

.. module:: typing
   :synopsis: Support for type hints (see :pep:`484`).

.. versionadded:: 3.5

**Source code:** :source:`Lib/typing.py`

.. note::

   The Python runtime does not enforce function and variable type annotations.
   They can be used by third party tools such as type checkers, IDEs, linters,
   etc.

--------------

This module provides runtime support for type hints. For the original
specification of the typing system, see :pep:`484`. For a simplified
introduction to type hints, see :pep:`483`.


The function below takes and returns a string and is annotated as follows::

   def greeting(name: str) -> str:
       return 'Hello ' + name

In the function ``greeting``, the argument ``name`` is expected to be of type
:class:`str` and the return type :class:`str`. Subtypes are accepted as
arguments.

New features are frequently added to the ``typing`` module.
The `typing_extensions <https://pypi.org/project/typing-extensions/>`_ package
provides backports of these new features to older versions of Python.

For a summary of deprecated features and a deprecation timeline, please see
`Deprecation Timeline of Major Features`_.

.. seealso::

   `"Typing cheat sheet" <https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html>`_
       A quick overview of type hints (hosted at the mypy docs)

   "Type System Reference" section of `the mypy docs <https://mypy.readthedocs.io/en/stable/index.html>`_
      The Python typing system is standardised via PEPs, so this reference
      should broadly apply to most Python type checkers. (Some parts may still
      be specific to mypy.)

   `"Static Typing with Python" <https://typing.readthedocs.io/en/latest/>`_
      Type-checker-agnostic documentation written by the community detailing
      type system features, useful typing related tools and typing best
      practices.

.. _relevant-peps:

Relevant PEPs
=============

Since the initial introduction of type hints in :pep:`484` and :pep:`483`, a
number of PEPs have modified and enhanced Python's framework for type
annotations:

.. raw:: html

   <details>
   <summary><a style="cursor:pointer;">The full list of PEPs</a></summary>

* :pep:`526`: Syntax for Variable Annotations
     *Introducing* syntax for annotating variables outside of function
     definitions, and :data:`ClassVar`
* :pep:`544`: Protocols: Structural subtyping (static duck typing)
     *Introducing* :class:`Protocol` and the
     :func:`@runtime_checkable<runtime_checkable>` decorator
* :pep:`585`: Type Hinting Generics In Standard Collections
     *Introducing* :class:`types.GenericAlias` and the ability to use standard
     library classes as :ref:`generic types<types-genericalias>`
* :pep:`586`: Literal Types
     *Introducing* :data:`Literal`
* :pep:`589`: TypedDict: Type Hints for Dictionaries with a Fixed Set of Keys
     *Introducing* :class:`TypedDict`
* :pep:`591`: Adding a final qualifier to typing
     *Introducing* :data:`Final` and the :func:`@final<final>` decorator
* :pep:`593`: Flexible function and variable annotations
     *Introducing* :data:`Annotated`
* :pep:`604`: Allow writing union types as ``X | Y``
     *Introducing* :data:`types.UnionType` and the ability to use
     the binary-or operator ``|`` to signify a
     :ref:`union of types<types-union>`
* :pep:`612`: Parameter Specification Variables
     *Introducing* :class:`ParamSpec` and :data:`Concatenate`
* :pep:`613`: Explicit Type Aliases
     *Introducing* :data:`TypeAlias`
* :pep:`646`: Variadic Generics
     *Introducing* :data:`TypeVarTuple`
* :pep:`647`: User-Defined Type Guards
     *Introducing* :data:`TypeGuard`
* :pep:`655`: Marking individual TypedDict items as required or potentially missing
     *Introducing* :data:`Required` and :data:`NotRequired`
* :pep:`673`: Self type
    *Introducing* :data:`Self`
* :pep:`675`: Arbitrary Literal String Type
    *Introducing* :data:`LiteralString`
* :pep:`681`: Data Class Transforms
    *Introducing* the :func:`@dataclass_transform<dataclass_transform>` decorator
* :pep:`692`: Using ``TypedDict`` for more precise ``**kwargs`` typing
    *Introducing* a new way of typing ``**kwargs`` with :data:`Unpack` and
    :data:`TypedDict`
* :pep:`695`: Type Parameter Syntax
    *Introducing* builtin syntax for creating generic functions, classes, and type aliases.
* :pep:`698`: Adding an override decorator to typing
    *Introducing* the :func:`@override<override>` decorator

.. raw:: html

   </details>
   <br>

.. _type-aliases:

Type aliases
============

A type alias is defined using the :keyword:`type` statement, which creates
an instance of :class:`TypeAliasType`. In this example,
``Vector`` and ``list[float]`` will be treated equivalently by static type
checkers::

   type Vector = list[float]

   def scale(scalar: float, vector: Vector) -> Vector:
       return [scalar * num for num in vector]

   # passes type checking; a list of floats qualifies as a Vector.
   new_vector = scale(2.0, [1.0, -4.2, 5.4])

Type aliases are useful for simplifying complex type signatures. For example::

   from collections.abc import Sequence

   type ConnectionOptions = dict[str, str]
   type Address = tuple[str, int]
   type Server = tuple[Address, ConnectionOptions]

   def broadcast_message(message: str, servers: Sequence[Server]) -> None:
       ...

   # The static type checker will treat the previous type signature as
   # being exactly equivalent to this one.
   def broadcast_message(
           message: str,
           servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
       ...

The :keyword:`type` statement is new in Python 3.12. For backwards
compatibility, type aliases can also be created through simple assignment::

   Vector = list[float]

Or marked with :data:`TypeAlias` to make it explicit that this is a type alias,
not a normal variable assignment::

   from typing import TypeAlias

   Vector: TypeAlias = list[float]

.. _distinct:

NewType
=======

Use the :class:`NewType` helper to create distinct types::

   from typing import NewType

   UserId = NewType('UserId', int)
   some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass
of the original type. This is useful in helping catch logical errors::

   def get_user_name(user_id: UserId) -> str:
       ...

   # passes type checking
   user_a = get_user_name(UserId(42351))

   # fails type checking; an int is not a UserId
   user_b = get_user_name(-1)

You may still perform all ``int`` operations on a variable of type ``UserId``,
but the result will always be of type ``int``. This lets you pass in a
``UserId`` wherever an ``int`` might be expected, but will prevent you from
accidentally creating a ``UserId`` in an invalid way::

   # 'output' is of type 'int', not 'UserId'
   output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime,
the statement ``Derived = NewType('Derived', Base)`` will make ``Derived`` a
callable that immediately returns whatever parameter you pass it. That means
the expression ``Derived(some_value)`` does not create a new class or introduce
much overhead beyond that of a regular function call.

More precisely, the expression ``some_value is Derived(some_value)`` is always
true at runtime.

It is invalid to create a subtype of ``Derived``::

   from typing import NewType

   UserId = NewType('UserId', int)

   # Fails at runtime and does not pass type checking
   class AdminUserId(UserId): pass

However, it is possible to create a :class:`NewType` based on a 'derived' ``NewType``::

   from typing import NewType

   UserId = NewType('UserId', int)

   ProUserId = NewType('ProUserId', UserId)

and typechecking for ``ProUserId`` will work as expected.

See :pep:`484` for more details.

.. note::

   Recall that the use of a type alias declares two types to be *equivalent* to
   one another. Doing ``type Alias = Original`` will make the static type checker
   treat ``Alias`` as being *exactly equivalent* to ``Original`` in all cases.
   This is useful when you want to simplify complex type signatures.

   In contrast, ``NewType`` declares one type to be a *subtype* of another.
   Doing ``Derived = NewType('Derived', Original)`` will make the static type
   checker treat ``Derived`` as a *subclass* of ``Original``, which means a
   value of type ``Original`` cannot be used in places where a value of type
   ``Derived`` is expected. This is useful when you want to prevent logic
   errors with minimal runtime cost.

.. versionadded:: 3.5.2

.. versionchanged:: 3.10
   ``NewType`` is now a class rather than a function.  As a result, there is
   some additional runtime cost when calling ``NewType`` over a regular
   function.

.. versionchanged:: 3.11
   The performance of calling ``NewType`` has been restored to its level in
   Python 3.9.

.. _annotating-callables:

Annotating callable objects
===========================

Functions -- or other :term:`callable` objects -- can be annotated using
:class:`collections.abc.Callable` or :data:`typing.Callable`.
``Callable[[int], str]`` signifies a function that takes a single parameter
of type :class:`int` and returns a :class:`str`.

For example:

.. testcode::

   from collections.abc import Callable, Awaitable

   def feeder(get_next_item: Callable[[], str]) -> None:
       ...  # Body

   def async_query(on_success: Callable[[int], None],
                   on_error: Callable[[int, Exception], None]) -> None:
       ...  # Body

   async def on_update(value: str) -> None:
       ...  # Body

   callback: Callable[[str], Awaitable[None]] = on_update

The subscription syntax must always be used with exactly two values: the
argument list and the return type.  The argument list must be a list of types,
a :class:`ParamSpec`, :data:`Concatenate`, or an ellipsis. The return type must
be a single type.

If a literal ellipsis ``...`` is given as the argument list, it indicates that
a callable with any arbitrary parameter list would be acceptable:

.. testcode::

   def concat(x: str, y: str) -> str:
       return x + y

   x: Callable[..., str]
   x = str     # OK
   x = concat  # Also OK

``Callable`` cannot express complex signatures such as functions that take a
variadic number of arguments, :func:`overloaded functions <overload>`, or
functions that have keyword-only parameters. However, these signatures can be
expressed by defining a :class:`Protocol` class with a
:meth:`~object.__call__` method:

.. testcode::

   from collections.abc import Iterable
   from typing import Protocol

   class Combiner(Protocol):
       def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...

   def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
       for item in data:
           ...

   def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
       ...
   def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
       ...

   batch_proc([], good_cb)  # OK
   batch_proc([], bad_cb)   # Error! Argument 2 has incompatible type because of
                            # different name and kind in the callback

Callables which take other callables as arguments may indicate that their
parameter types are dependent on each other using :class:`ParamSpec`.
Additionally, if that callable adds or removes arguments from other
callables, the :data:`Concatenate` operator may be used.  They
take the form ``Callable[ParamSpecVariable, ReturnType]`` and
``Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]``
respectively.

.. versionchanged:: 3.10
   ``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
   See :pep:`612` for more details.

.. seealso::
   The documentation for :class:`ParamSpec` and :class:`Concatenate` provides
   examples of usage in ``Callable``.

.. _generics:

Generics
========

Since type information about objects kept in containers cannot be statically
inferred in a generic way, many container classes in the standard library support
subscription to denote the expected types of container elements.

.. testcode::

   from collections.abc import Mapping, Sequence

   class Employee: ...

   # Sequence[Employee] indicates that all elements in the sequence
   # must be instances of "Employee".
   # Mapping[str, str] indicates that all keys and all values in the mapping
   # must be strings.
   def notify_by_email(employees: Sequence[Employee],
                       overrides: Mapping[str, str]) -> None: ...

Generic functions and classes can be parameterized by using
:ref:`type parameter syntax <type-params>`::

   from collections.abc import Sequence

   def first[T](l: Sequence[T]) -> T:  # Function is generic over the TypeVar "T"
       return l[0]

Or by using the :class:`TypeVar` factory directly::

   from collections.abc import Sequence
   from typing import TypeVar

   U = TypeVar('U')                  # Declare type variable "U"

   def second(l: Sequence[U]) -> U:  # Function is generic over the TypeVar "U"
       return l[1]

.. versionchanged:: 3.12
   Syntactic support for generics is new in Python 3.12.

.. _annotating-tuples:

Annotating tuples
=================

For most containers in Python, the typing system assumes that all elements in
the container will be of the same type. For example::

   from collections.abc import Mapping

   # Type checker will infer that all elements in ``x`` are meant to be ints
   x: list[int] = []

   # Type checker error: ``list`` only accepts a single type argument:
   y: list[int, str] = [1, 'foo']

   # Type checker will infer that all keys in ``z`` are meant to be strings,
   # and that all values in ``z`` are meant to be either strings or ints
   z: Mapping[str, str | int] = {}

:class:`list` only accepts one type argument, so a type checker would emit an
error on the ``y`` assignment above. Similarly,
:class:`~collections.abc.Mapping` only accepts two type arguments: the first
indicates the type of the keys, and the second indicates the type of the
values.

Unlike most other Python containers, however, it is common in idiomatic Python
code for tuples to have elements which are not all of the same type. For this
reason, tuples are special-cased in Python's typing system. :class:`tuple`
accepts *any number* of type arguments::

   # OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
   x: tuple[int] = (5,)

   # OK: ``y`` is assigned to a tuple of length 2;
   # element 1 is an int, element 2 is a str
   y: tuple[int, str] = (5, "foo")

   # Error: the type annotation indicates a tuple of length 1,
   # but ``z`` has been assigned to a tuple of length 3
   z: tuple[int] = (1, 2, 3)

To denote a tuple which could be of *any* length, and in which all elements are
of the same type ``T``, use ``tuple[T, ...]``. To denote an empty tuple, use
``tuple[()]``. Using plain ``tuple`` as an annotation is equivalent to using
``tuple[Any, ...]``::

   x: tuple[int, ...] = (1, 2)
   # These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
   x = (1, 2, 3)
   x = ()
   # This reassignment is an error: all elements in ``x`` must be ints
   x = ("foo", "bar")

   # ``y`` can only ever be assigned to an empty tuple
   y: tuple[()] = ()

   z: tuple = ("foo", "bar")
   # These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
   z = (1, 2, 3)
   z = ()

.. _type-of-class-objects:

The type of class objects
=========================

A variable annotated with ``C`` may accept a value of type ``C``. In
contrast, a variable annotated with ``type[C]`` (or
:class:`typing.Type[C] <Type>`) may accept values that are classes
themselves -- specifically, it will accept the *class object* of ``C``. For
example::

   a = 3         # Has type ``int``
   b = int       # Has type ``type[int]``
   c = type(a)   # Also has type ``type[int]``

Note that ``type[C]`` is covariant::

   class User: ...
   class ProUser(User): ...
   class TeamUser(User): ...

   def make_new_user(user_class: type[User]) -> User:
       # ...
       return user_class()

   make_new_user(User)      # OK
   make_new_user(ProUser)   # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
   make_new_user(TeamUser)  # Still fine
   make_new_user(User())    # Error: expected ``type[User]`` but got ``User``
   make_new_user(int)       # Error: ``type[int]`` is not a subtype of ``type[User]``

The only legal parameters for :class:`type` are classes, :data:`Any`,
:ref:`type variables <generics>`, and unions of any of these types.
For example::

   def new_non_team_user(user_class: type[BasicUser | ProUser]): ...

   new_non_team_user(BasicUser)  # OK
   new_non_team_user(ProUser)    # OK
   new_non_team_user(TeamUser)   # Error: ``type[TeamUser]`` is not a subtype
                                 # of ``type[BasicUser | ProUser]``
   new_non_team_user(User)       # Also an error

``type[Any]`` is equivalent to :class:`type`, which is the root of Python's
:ref:`metaclass hierarchy <metaclasses>`.

.. _user-defined-generics:

User-defined generic types
==========================

A user-defined class can be defined as a generic class.

::

   from logging import Logger

   class LoggedVar[T]:
       def __init__(self, value: T, name: str, logger: Logger) -> None:
           self.name = name
           self.logger = logger
           self.value = value

       def set(self, new: T) -> None:
           self.log('Set ' + repr(self.value))
           self.value = new

       def get(self) -> T:
           self.log('Get ' + repr(self.value))
           return self.value

       def log(self, message: str) -> None:
           self.logger.info('%s: %s', self.name, message)

This syntax indicates that the class ``LoggedVar`` is parameterised around a
single :class:`type variable <TypeVar>` ``T`` . This also makes ``T`` valid as
a type within the class body.

Generic classes implicitly inherit from :class:`Generic`. For compatibility
with Python 3.11 and lower, it is also possible to inherit explicitly from
:class:`Generic` to indicate a generic class::

   from typing import TypeVar, Generic

   T = TypeVar('T')

   class LoggedVar(Generic[T]):
       ...

Generic classes have :meth:`~object.__class_getitem__` methods, meaning they
can be parameterised at runtime (e.g. ``LoggedVar[int]`` below)::

   from collections.abc import Iterable

   def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
       for var in vars:
           var.set(0)

A generic type can have any number of type variables. All varieties of
:class:`TypeVar` are permissible as parameters for a generic type::

   from typing import TypeVar, Generic, Sequence

   class WeirdTrio[T, B: Sequence[bytes], S: (int, str)]:
       ...

   OldT = TypeVar('OldT', contravariant=True)
   OldB = TypeVar('OldB', bound=Sequence[bytes], covariant=True)
   OldS = TypeVar('OldS', int, str)

   class OldWeirdTrio(Generic[OldT, OldB, OldS]):
       ...

Each type variable argument to :class:`Generic` must be distinct.
This is thus invalid::

   from typing import TypeVar, Generic
   ...

   class Pair[M, M]:  # SyntaxError
       ...

   T = TypeVar('T')

   class Pair(Generic[T, T]):   # INVALID
       ...

Generic classes can also inherit from other classes::

   from collections.abc import Sized

   class LinkedList[T](Sized):
       ...

When inheriting from generic classes, some type parameters could be fixed::

    from collections.abc import Mapping

    class MyDict[T](Mapping[str, T]):
        ...

In this case ``MyDict`` has a single parameter, ``T``.

Using a generic class without specifying type parameters assumes
:data:`Any` for each position. In the following example, ``MyIterable`` is
not generic but implicitly inherits from ``Iterable[Any]``:

.. testcode::

   from collections.abc import Iterable

   class MyIterable(Iterable): # Same as Iterable[Any]
       ...

User-defined generic type aliases are also supported. Examples::

   from collections.abc import Iterable

   type Response[S] = Iterable[S] | int

   # Return type here is same as Iterable[str] | int
   def response(query: str) -> Response[str]:
       ...

   type Vec[T] = Iterable[tuple[T, T]]

   def inproduct[T: (int, float, complex)](v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
       return sum(x*y for x, y in v)

For backward compatibility, generic type aliases can also be created
through a simple assignment::

   from collections.abc import Iterable
   from typing import TypeVar

   S = TypeVar("S")
   Response = Iterable[S] | int

.. versionchanged:: 3.7
    :class:`Generic` no longer has a custom metaclass.

.. versionchanged:: 3.12
   Syntactic support for generics and type aliases is new in version 3.12.
   Previously, generic classes had to explicitly inherit from :class:`Generic`
   or contain a type variable in one of their bases.

User-defined generics for parameter expressions are also supported via parameter
specification variables in the form ``[**P]``.  The behavior is consistent
with type variables' described above as parameter specification variables are
treated by the typing module as a specialized type variable.  The one exception
to this is that a list of types can be used to substitute a :class:`ParamSpec`::

   >>> class Z[T, **P]: ...  # T is a TypeVar; P is a ParamSpec
   ...
   >>> Z[int, [dict, float]]
   __main__.Z[int, [dict, float]]

Classes generic over a :class:`ParamSpec` can also be created using explicit
inheritance from :class:`Generic`. In this case, ``**`` is not used::

   from typing import ParamSpec, Generic

   P = ParamSpec('P')

   class Z(Generic[P]):
       ...

Another difference between :class:`TypeVar` and :class:`ParamSpec` is that a
generic with only one parameter specification variable will accept
parameter lists in the forms ``X[[Type1, Type2, ...]]`` and also
``X[Type1, Type2, ...]`` for aesthetic reasons.  Internally, the latter is converted
to the former, so the following are equivalent::

   >>> class X[**P]: ...
   ...
   >>> X[int, str]
   __main__.X[[int, str]]
   >>> X[[int, str]]
   __main__.X[[int, str]]

Note that generics with :class:`ParamSpec` may not have correct
``__parameters__`` after substitution in some cases because they
are intended primarily for static type checking.

.. versionchanged:: 3.10
   :class:`Generic` can now be parameterized over parameter expressions.
   See :class:`ParamSpec` and :pep:`612` for more details.

A user-defined generic class can have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported. The outcome of parameterizing
generics is cached, and most types in the typing module are :term:`hashable` and
comparable for equality.


The :data:`Any` type
====================

A special kind of type is :data:`Any`. A static type checker will treat
every type as being compatible with :data:`Any` and :data:`Any` as being
compatible with every type.

This means that it is possible to perform any operation or method call on a
value of type :data:`Any` and assign it to any variable::

   from typing import Any

   a: Any = None
   a = []          # OK
   a = 2           # OK

   s: str = ''
   s = a           # OK

   def foo(item: Any) -> int:
       # Passes type checking; 'item' could be any type,
       # and that type might have a 'bar' method
       item.bar()
       ...

Notice that no type checking is performed when assigning a value of type
:data:`Any` to a more precise type. For example, the static type checker did
not report an error when assigning ``a`` to ``s`` even though ``s`` was
declared to be of type :class:`str` and receives an :class:`int` value at
runtime!

Furthermore, all functions without a return type or parameter types will
implicitly default to using :data:`Any`::

   def legacy_parser(text):
       ...
       return data

   # A static type checker will treat the above
   # as having the same signature as:
   def legacy_parser(text: Any) -> Any:
       ...
       return data

This behavior allows :data:`Any` to be used as an *escape hatch* when you
need to mix dynamically and statically typed code.

Contrast the behavior of :data:`Any` with the behavior of :class:`object`.
Similar to :data:`Any`, every type is a subtype of :class:`object`. However,
unlike :data:`Any`, the reverse is not true: :class:`object` is *not* a
subtype of every other type.

That means when the type of a value is :class:`object`, a type checker will
reject almost all operations on it, and assigning it to a variable (or using
it as a return value) of a more specialized type is a type error. For example::

   def hash_a(item: object) -> int:
       # Fails type checking; an object does not have a 'magic' method.
       item.magic()
       ...

   def hash_b(item: Any) -> int:
       # Passes type checking
       item.magic()
       ...

   # Passes type checking, since ints and strs are subclasses of object
   hash_a(42)
   hash_a("foo")

   # Passes type checking, since Any is compatible with all types
   hash_b(42)
   hash_b("foo")

Use :class:`object` to indicate that a value could be any type in a typesafe
manner. Use :data:`Any` to indicate that a value is dynamically typed.


Nominal vs structural subtyping
===============================

Initially :pep:`484` defined the Python static type system as using
*nominal subtyping*. This means that a class ``A`` is allowed where
a class ``B`` is expected if and only if ``A`` is a subclass of ``B``.

This requirement previously also applied to abstract base classes, such as
:class:`~collections.abc.Iterable`. The problem with this approach is that a class had
to be explicitly marked to support them, which is unpythonic and unlike
what one would normally do in idiomatic dynamically typed Python code.
For example, this conforms to :pep:`484`::

   from collections.abc import Sized, Iterable, Iterator

   class Bucket(Sized, Iterable[int]):
       ...
       def __len__(self) -> int: ...
       def __iter__(self) -> Iterator[int]: ...

:pep:`544` allows to solve this problem by allowing users to write
the above code without explicit base classes in the class definition,
allowing ``Bucket`` to be implicitly considered a subtype of both ``Sized``
and ``Iterable[int]`` by static type checkers. This is known as
*structural subtyping* (or static duck-typing)::

   from collections.abc import Iterator, Iterable

   class Bucket:  # Note: no base classes
       ...
       def __len__(self) -> int: ...
       def __iter__(self) -> Iterator[int]: ...

   def collect(items: Iterable[int]) -> int: ...
   result = collect(Bucket())  # Passes type check

Moreover, by subclassing a special class :class:`Protocol`, a user
can define new custom protocols to fully enjoy structural subtyping
(see examples below).

Module contents
===============

The ``typing`` module defines the following classes, functions and decorators.

Special typing primitives
-------------------------

Special types
"""""""""""""

These can be used as types in annotations. They do not support subscription
using ``[]``.

.. data:: Any

   Special type indicating an unconstrained type.

   * Every type is compatible with :data:`Any`.
   * :data:`Any` is compatible with every type.

   .. versionchanged:: 3.11
      :data:`Any` can now be used as a base class. This can be useful for
      avoiding type checker errors with classes that can duck type anywhere or
      are highly dynamic.

.. data:: AnyStr

   A :ref:`constrained type variable <typing-constrained-typevar>`.

   Definition::

      AnyStr = TypeVar('AnyStr', str, bytes)

   ``AnyStr`` is meant to be used for functions that may accept :class:`str` or
   :class:`bytes` arguments but cannot allow the two to mix.

   For example::

      def concat(a: AnyStr, b: AnyStr) -> AnyStr:
          return a + b

      concat("foo", "bar")    # OK, output has type 'str'
      concat(b"foo", b"bar")  # OK, output has type 'bytes'
      concat("foo", b"bar")   # Error, cannot mix str and bytes

   Note that, despite its name, ``AnyStr`` has nothing to do with the
   :class:`Any` type, nor does it mean "any string". In particular, ``AnyStr``
   and ``str | bytes`` are different from each other and have different use
   cases::

      # Invalid use of AnyStr:
      # The type variable is used only once in the function signature,
      # so cannot be "solved" by the type checker
      def greet_bad(cond: bool) -> AnyStr:
          return "hi there!" if cond else b"greetings!"

      # The better way of annotating this function:
      def greet_proper(cond: bool) -> str | bytes:
          return "hi there!" if cond else b"greetings!"

   .. deprecated-removed:: 3.13 3.18
      Deprecated in favor of the new :ref:`type parameter syntax <type-params>`.
      Use ``class A[T: (str, bytes)]: ...`` instead of importing ``AnyStr``. See
      :pep:`695` for more details.

      In Python 3.16, ``AnyStr`` will be removed from ``typing.__all__``, and
      deprecation warnings will be emitted at runtime when it is accessed or
      imported from ``typing``. ``AnyStr`` will be removed from ``typing``
      in Python 3.18.

.. data:: LiteralString

   Special type that includes only literal strings.

   Any string
   literal is compatible with ``LiteralString``, as is another
   ``LiteralString``. However, an object typed as just ``str`` is not.
   A string created by composing ``LiteralString``-typed objects
   is also acceptable as a ``LiteralString``.

   Example:

   .. testcode::

      def run_query(sql: LiteralString) -> None:
          ...

      def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
          run_query("SELECT * FROM students")  # OK
          run_query(literal_string)  # OK
          run_query("SELECT * FROM " + literal_string)  # OK
          run_query(arbitrary_string)  # type checker error
          run_query(  # type checker error
              f"SELECT * FROM students WHERE name = {arbitrary_string}"
          )

   ``LiteralString`` is useful for sensitive APIs where arbitrary user-generated
   strings could generate problems. For example, the two cases above
   that generate type checker errors could be vulnerable to an SQL
   injection attack.

   See :pep:`675` for more details.

   .. versionadded:: 3.11

.. data:: Never

   The `bottom type <https://en.wikipedia.org/wiki/Bottom_type>`_,
   a type that has no members.

   This can be used to define a function that should never be
   called, or a function that never returns::

      from typing import Never

      def never_call_me(arg: Never) -> None:
          pass

      def int_or_str(arg: int | str) -> None:
          never_call_me(arg)  # type checker error
          match arg:
              case int():
                  print("It's an int")
              case str():
                  print("It's a str")
              case _:
                  never_call_me(arg)  # OK, arg is of type Never

   .. versionadded:: 3.11

      On older Python versions, :data:`NoReturn` may be used to express the
      same concept. ``Never`` was added to make the intended meaning more explicit.

.. data:: NoReturn

   Special type indicating that a function never returns.

   For example::

      from typing import NoReturn

      def stop() -> NoReturn:
          raise RuntimeError('no way')

   ``NoReturn`` can also be used as a
   `bottom type <https://en.wikipedia.org/wiki/Bottom_type>`_, a type that
   has no values. Starting in Python 3.11, the :data:`Never` type should
   be used for this concept instead. Type checkers should treat the two
   equivalently.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.2

.. data:: Self

   Special type to represent the current enclosed class.

   For example::

      from typing import Self, reveal_type

      class Foo:
          def return_self(self) -> Self:
              ...
              return self

      class SubclassOfFoo(Foo): pass

      reveal_type(Foo().return_self())  # Revealed type is "Foo"
      reveal_type(SubclassOfFoo().return_self())  # Revealed type is "SubclassOfFoo"

   This annotation is semantically equivalent to the following,
   albeit in a more succinct fashion::

      from typing import TypeVar

      Self = TypeVar("Self", bound="Foo")

      class Foo:
          def return_self(self: Self) -> Self:
              ...
              return self

   In general, if something returns ``self``, as in the above examples, you
   should use ``Self`` as the return annotation. If ``Foo.return_self`` was
   annotated as returning ``"Foo"``, then the type checker would infer the
   object returned from ``SubclassOfFoo.return_self`` as being of type ``Foo``
   rather than ``SubclassOfFoo``.

   Other common use cases include:

   - :class:`classmethod`\s that are used as alternative constructors and return instances
     of the ``cls`` parameter.
   - Annotating an :meth:`~object.__enter__` method which returns self.

   You should not use ``Self`` as the return annotation if the method is not
   guaranteed to return an instance of a subclass when the class is
   subclassed::

      class Eggs:
          # Self would be an incorrect return annotation here,
          # as the object returned is always an instance of Eggs,
          # even in subclasses
          def returns_eggs(self) -> "Eggs":
              return Eggs()

   See :pep:`673` for more details.

   .. versionadded:: 3.11

.. data:: TypeAlias

   Special annotation for explicitly declaring a :ref:`type alias <type-aliases>`.

   For example::

      from typing import TypeAlias

      Factors: TypeAlias = list[int]

   ``TypeAlias`` is particularly useful on older Python versions for annotating
   aliases that make use of forward references, as it can be hard for type
   checkers to distinguish these from normal variable assignments:

   .. testcode::

      from typing import Generic, TypeAlias, TypeVar

      T = TypeVar("T")

      # "Box" does not exist yet,
      # so we have to use quotes for the forward reference on Python <3.12.
      # Using ``TypeAlias`` tells the type checker that this is a type alias declaration,
      # not a variable assignment to a string.
      BoxOfStrings: TypeAlias = "Box[str]"

      class Box(Generic[T]):
          @classmethod
          def make_box_of_strings(cls) -> BoxOfStrings: ...

   See :pep:`613` for more details.

   .. versionadded:: 3.10

   .. deprecated:: 3.12
      :data:`TypeAlias` is deprecated in favor of the :keyword:`type` statement,
      which creates instances of :class:`TypeAliasType`
      and which natively supports forward references.
      Note that while :data:`TypeAlias` and :class:`TypeAliasType` serve
      similar purposes and have similar names, they are distinct and the
      latter is not the type of the former.
      Removal of :data:`TypeAlias` is not currently planned, but users
      are encouraged to migrate to :keyword:`type` statements.

Special forms
"""""""""""""

These can be used as types in annotations. They all support subscription using
``[]``, but each has a unique syntax.

.. data:: Union

   Union type; ``Union[X, Y]`` is equivalent to ``X | Y`` and means either X or Y.

   To define a union, use e.g. ``Union[int, str]`` or the shorthand ``int | str``. Using that shorthand is recommended. Details:

   * The arguments must be types and there must be at least one.

   * Unions of unions are flattened, e.g.::

       Union[Union[int, str], float] == Union[int, str, float]

   * Unions of a single argument vanish, e.g.::

       Union[int] == int  # The constructor actually returns int

   * Redundant arguments are skipped, e.g.::

       Union[int, str, int] == Union[int, str] == int | str

   * When comparing unions, the argument order is ignored, e.g.::

       Union[int, str] == Union[str, int]

   * You cannot subclass or instantiate a ``Union``.

   * You cannot write ``Union[X][Y]``.

   .. versionchanged:: 3.7
      Don't remove explicit subclasses from unions at runtime.

   .. versionchanged:: 3.10
      Unions can now be written as ``X | Y``. See
      :ref:`union type expressions<types-union>`.

.. data:: Optional

   ``Optional[X]`` is equivalent to ``X | None`` (or ``Union[X, None]``).

   Note that this is not the same concept as an optional argument,
   which is one that has a default.  An optional argument with a
   default does not require the ``Optional`` qualifier on its type
   annotation just because it is optional. For example::

      def foo(arg: int = 0) -> None:
          ...

   On the other hand, if an explicit value of ``None`` is allowed, the
   use of ``Optional`` is appropriate, whether the argument is optional
   or not. For example::

      def foo(arg: Optional[int] = None) -> None:
          ...

   .. versionchanged:: 3.10
      Optional can now be written as ``X | None``. See
      :ref:`union type expressions<types-union>`.

.. data:: Concatenate

   Special form for annotating higher-order functions.

   ``Concatenate`` can be used in conjunction with :ref:`Callable <annotating-callables>` and
   :class:`ParamSpec` to annotate a higher-order callable which adds, removes,
   or transforms parameters of another
   callable.  Usage is in the form
   ``Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]``. ``Concatenate``
   is currently only valid when used as the first argument to a :ref:`Callable <annotating-callables>`.
   The last parameter to ``Concatenate`` must be a :class:`ParamSpec` or
   ellipsis (``...``).

   For example, to annotate a decorator ``with_lock`` which provides a
   :class:`threading.Lock` to the decorated function,  ``Concatenate`` can be
   used to indicate that ``with_lock`` expects a callable which takes in a
   ``Lock`` as the first argument, and returns a callable with a different type
   signature.  In this case, the :class:`ParamSpec` indicates that the returned
   callable's parameter types are dependent on the parameter types of the
   callable being passed in::

      from collections.abc import Callable
      from threading import Lock
      from typing import Concatenate, ParamSpec, TypeVar

      P = ParamSpec('P')
      R = TypeVar('R')

      # Use this lock to ensure that only one thread is executing a function
      # at any time.
      my_lock = Lock()

      def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]:
          '''A type-safe decorator which provides a lock.'''
          def inner(*args: P.args, **kwargs: P.kwargs) -> R:
              # Provide the lock as the first argument.
              return f(my_lock, *args, **kwargs)
          return inner

      @with_lock
      def sum_threadsafe(lock: Lock, numbers: list[float]) -> float:
          '''Add a list of numbers together in a thread-safe manner.'''
          with lock:
              return sum(numbers)

      # We don't need to pass in the lock ourselves thanks to the decorator.
      sum_threadsafe([1.1, 2.2, 3.3])

   .. versionadded:: 3.10

   .. seealso::

      * :pep:`612` -- Parameter Specification Variables (the PEP which introduced
        ``ParamSpec`` and ``Concatenate``)
      * :class:`ParamSpec`
      * :ref:`annotating-callables`

.. data:: Literal

   Special typing form to define "literal types".

   ``Literal`` can be used to indicate to type checkers that the
   annotated object has a value equivalent to one of the
   provided literals.

   For example::

      def validate_simple(data: Any) -> Literal[True]:  # always returns True
          ...

      type Mode = Literal['r', 'rb', 'w', 'wb']
      def open_helper(file: str, mode: Mode) -> str:
          ...

      open_helper('/some/path', 'r')      # Passes type check
      open_helper('/other/path', 'typo')  # Error in type checker

   ``Literal[...]`` cannot be subclassed. At runtime, an arbitrary value
   is allowed as type argument to ``Literal[...]``, but type checkers may
   impose restrictions. See :pep:`586` for more details about literal types.

   .. versionadded:: 3.8

   .. versionchanged:: 3.9.1
      ``Literal`` now de-duplicates parameters.  Equality comparisons of
      ``Literal`` objects are no longer order dependent. ``Literal`` objects
      will now raise a :exc:`TypeError` exception during equality comparisons
      if one of their parameters are not :term:`hashable`.

.. data:: ClassVar

   Special type construct to mark class variables.

   As introduced in :pep:`526`, a variable annotation wrapped in ClassVar
   indicates that a given attribute is intended to be used as a class variable
   and should not be set on instances of that class. Usage::

      class Starship:
          stats: ClassVar[dict[str, int]] = {} # class variable
          damage: int = 10                     # instance variable

   :data:`ClassVar` accepts only types and cannot be further subscribed.

   :data:`ClassVar` is not a class itself, and should not
   be used with :func:`isinstance` or :func:`issubclass`.
   :data:`ClassVar` does not change Python runtime behavior, but
   it can be used by third-party type checkers. For example, a type checker
   might flag the following code as an error::

      enterprise_d = Starship(3000)
      enterprise_d.stats = {} # Error, setting class variable on instance
      Starship.stats = {}     # This is OK

   .. versionadded:: 3.5.3

.. data:: Final

   Special typing construct to indicate final names to type checkers.

   Final names cannot be reassigned in any scope. Final names declared in class
   scopes cannot be overridden in subclasses.

   For example::

      MAX_SIZE: Final = 9000
      MAX_SIZE += 1  # Error reported by type checker

      class Connection:
          TIMEOUT: Final[int] = 10

      class FastConnector(Connection):
          TIMEOUT = 1  # Error reported by type checker

   There is no runtime checking of these properties. See :pep:`591` for
   more details.

   .. versionadded:: 3.8

.. data:: Required

   Special typing construct to mark a :class:`TypedDict` key as required.

   This is mainly useful for ``total=False`` TypedDicts. See :class:`TypedDict`
   and :pep:`655` for more details.

   .. versionadded:: 3.11

.. data:: NotRequired

   Special typing construct to mark a :class:`TypedDict` key as potentially
   missing.

   See :class:`TypedDict` and :pep:`655` for more details.

   .. versionadded:: 3.11

.. data:: Annotated

   Special typing form to add context-specific metadata to an annotation.

   Add metadata ``x`` to a given type ``T`` by using the annotation
   ``Annotated[T, x]``. Metadata added using ``Annotated`` can be used by
   static analysis tools or at runtime. At runtime, the metadata is stored
   in a :attr:`!__metadata__` attribute.

   If a library or tool encounters an annotation ``Annotated[T, x]`` and has
   no special logic for the metadata, it should ignore the metadata and simply
   treat the annotation as ``T``. As such, ``Annotated`` can be useful for code
   that wants to use annotations for purposes outside Python's static typing
   system.

   Using ``Annotated[T, x]`` as an annotation still allows for static
   typechecking of ``T``, as type checkers will simply ignore the metadata ``x``.
   In this way, ``Annotated`` differs from the
   :func:`@no_type_check <no_type_check>` decorator, which can also be used for
   adding annotations outside the scope of the typing system, but
   completely disables typechecking for a function or class.

   The responsibility of how to interpret the metadata
   lies with the tool or library encountering an
   ``Annotated`` annotation. A tool or library encountering an ``Annotated`` type
   can scan through the metadata elements to determine if they are of interest
   (e.g., using :func:`isinstance`).

   .. describe:: Annotated[<type>, <metadata>]

   Here is an example of how you might use ``Annotated`` to add metadata to
   type annotations if you were doing range analysis:

   .. testcode::

      @dataclass
      class ValueRange:
          lo: int
          hi: int

      T1 = Annotated[int, ValueRange(-10, 5)]
      T2 = Annotated[T1, ValueRange(-20, 3)]

   Details of the syntax:

   * The first argument to ``Annotated`` must be a valid type

   * Multiple metadata elements can be supplied (``Annotated`` supports variadic
     arguments)::

        @dataclass
        class ctype:
            kind: str

        Annotated[int, ValueRange(3, 10), ctype("char")]

     It is up to the tool consuming the annotations to decide whether the
     client is allowed to add multiple metadata elements to one annotation and how to
     merge those annotations.

   * ``Annotated`` must be subscripted with at least two arguments (
     ``Annotated[int]`` is not valid)

   * The order of the metadata elements is preserved and matters for equality
     checks::

        assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[
            int, ctype("char"), ValueRange(3, 10)
        ]

   * Nested ``Annotated`` types are flattened. The order of the metadata elements
     starts with the innermost annotation::

        assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[
            int, ValueRange(3, 10), ctype("char")
        ]

   * Duplicated metadata elements are not removed::

        assert Annotated[int, ValueRange(3, 10)] != Annotated[
            int, ValueRange(3, 10), ValueRange(3, 10)
        ]

   * ``Annotated`` can be used with nested and generic aliases:

     .. testcode::

        @dataclass
        class MaxLen:
            value: int

        type Vec[T] = Annotated[list[tuple[T, T]], MaxLen(10)]

        # When used in a type annotation, a type checker will treat "V" the same as
        # ``Annotated[list[tuple[int, int]], MaxLen(10)]``:
        type V = Vec[int]

   * ``Annotated`` cannot be used with an unpacked :class:`TypeVarTuple`::

        type Variadic[*Ts] = Annotated[*Ts, Ann1]  # NOT valid

     This would be equivalent to::

        Annotated[T1, T2, T3, ..., Ann1]

     where ``T1``, ``T2``, etc. are :class:`TypeVars <TypeVar>`. This would be
     invalid: only one type should be passed to Annotated.

   * By default, :func:`get_type_hints` strips the metadata from annotations.
     Pass ``include_extras=True`` to have the metadata preserved:

     .. doctest::

        >>> from typing import Annotated, get_type_hints
        >>> def func(x: Annotated[int, "metadata"]) -> None: pass
        ...
        >>> get_type_hints(func)
        {'x': <class 'int'>, 'return': <class 'NoneType'>}
        >>> get_type_hints(func, include_extras=True)
        {'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}

   * At runtime, the metadata associated with an ``Annotated`` type can be
     retrieved via the :attr:`!__metadata__` attribute:

     .. doctest::

        >>> from typing import Annotated
        >>> X = Annotated[int, "very", "important", "metadata"]
        >>> X
        typing.Annotated[int, 'very', 'important', 'metadata']
        >>> X.__metadata__
        ('very', 'important', 'metadata')

   .. seealso::

      :pep:`593` - Flexible function and variable annotations
         The PEP introducing ``Annotated`` to the standard library.

   .. versionadded:: 3.9


.. data:: TypeGuard

   Special typing construct for marking user-defined type guard functions.

   ``TypeGuard`` can be used to annotate the return type of a user-defined
   type guard function.  ``TypeGuard`` only accepts a single type argument.
   At runtime, functions marked this way should return a boolean.

   ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
   type checkers to determine a more precise type of an expression within a
   program's code flow.  Usually type narrowing is done by analyzing
   conditional code flow and applying the narrowing to a block of code.  The
   conditional expression here is sometimes referred to as a "type guard"::

      def is_str(val: str | float):
          # "isinstance" type guard
          if isinstance(val, str):
              # Type of ``val`` is narrowed to ``str``
              ...
          else:
              # Else, type of ``val`` is narrowed to ``float``.
              ...

   Sometimes it would be convenient to use a user-defined boolean function
   as a type guard.  Such a function should use ``TypeGuard[...]`` as its
   return type to alert static type checkers to this intention.

   Using  ``-> TypeGuard`` tells the static type checker that for a given
   function:

   1. The return value is a boolean.
   2. If the return value is ``True``, the type of its argument
      is the type inside ``TypeGuard``.

   For example::

         def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
             '''Determines whether all objects in the list are strings'''
             return all(isinstance(x, str) for x in val)

         def func1(val: list[object]):
             if is_str_list(val):
                 # Type of ``val`` is narrowed to ``list[str]``.
                 print(" ".join(val))
             else:
                 # Type of ``val`` remains as ``list[object]``.
                 print("Not a list of strings!")

   If ``is_str_list`` is a class or instance method, then the type in
   ``TypeGuard`` maps to the type of the second parameter after ``cls`` or
   ``self``.

   In short, the form ``def foo(arg: TypeA) -> TypeGuard[TypeB]: ...``,
   means that if ``foo(arg)`` returns ``True``, then ``arg`` narrows from
   ``TypeA`` to ``TypeB``.

   .. note::

      ``TypeB`` need not be a narrower form of ``TypeA`` -- it can even be a
      wider form. The main reason is to allow for things like
      narrowing ``list[object]`` to ``list[str]`` even though the latter
      is not a subtype of the former, since ``list`` is invariant.
      The responsibility of writing type-safe type guards is left to the user.

   ``TypeGuard`` also works with type variables.  See :pep:`647` for more details.

   .. versionadded:: 3.10


.. data:: Unpack

   Typing operator to conceptually mark an object as having been unpacked.

   For example, using the unpack operator ``*`` on a
   :class:`type variable tuple <TypeVarTuple>` is equivalent to using ``Unpack``
   to mark the type variable tuple as having been unpacked::

      Ts = TypeVarTuple('Ts')
      tup: tuple[*Ts]
      # Effectively does:
      tup: tuple[Unpack[Ts]]

   In fact, ``Unpack`` can be used interchangeably with ``*`` in the context
   of :class:`typing.TypeVarTuple <TypeVarTuple>` and
   :class:`builtins.tuple <tuple>` types. You might see ``Unpack`` being used
   explicitly in older versions of Python, where ``*`` couldn't be used in
   certain places::

      # In older versions of Python, TypeVarTuple and Unpack
      # are located in the `typing_extensions` backports package.
      from typing_extensions import TypeVarTuple, Unpack

      Ts = TypeVarTuple('Ts')
      tup: tuple[*Ts]         # Syntax error on Python <= 3.10!
      tup: tuple[Unpack[Ts]]  # Semantically equivalent, and backwards-compatible

   ``Unpack`` can also be used along with :class:`typing.TypedDict` for typing
   ``**kwargs`` in a function signature::

      from typing import TypedDict, Unpack

      class Movie(TypedDict):
          name: str
          year: int

      # This function expects two keyword arguments - `name` of type `str`
      # and `year` of type `int`.
      def foo(**kwargs: Unpack[Movie]): ...

   See :pep:`692` for more details on using ``Unpack`` for ``**kwargs`` typing.

   .. versionadded:: 3.11

Building generic types and type aliases
"""""""""""""""""""""""""""""""""""""""

The following classes should not be used directly as annotations.
Their intended purpose is to be building blocks
for creating generic types and type aliases.

These objects can be created through special syntax
(:ref:`type parameter lists <type-params>` and the :keyword:`type` statement).
For compatibility with Python 3.11 and earlier, they can also be created
without the dedicated syntax, as documented below.

.. class:: Generic

   Abstract base class for generic types.

   A generic type is typically declared by adding a list of type parameters
   after the class name::

      class Mapping[KT, VT]:
          def __getitem__(self, key: KT) -> VT:
              ...
              # Etc.

   Such a class implicitly inherits from ``Generic``.
   The runtime semantics of this syntax are discussed in the
   :ref:`Language Reference <generic-classes>`.

   This class can then be used as follows::

      def lookup_name[X, Y](mapping: Mapping[X, Y], key: X, default: Y) -> Y:
          try:
              return mapping[key]
          except KeyError:
              return default

   Here the brackets after the function name indicate a
   :ref:`generic function <generic-functions>`.

   For backwards compatibility, generic classes can also be
   declared by explicitly inheriting from
   ``Generic``. In this case, the type parameters must be declared
   separately::

      KT = TypeVar('KT')
      VT = TypeVar('VT')

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
              # Etc.

.. class:: TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False, infer_variance=False)

   Type variable.

   The preferred way to construct a type variable is via the dedicated syntax
   for :ref:`generic functions <generic-functions>`,
   :ref:`generic classes <generic-classes>`, and
   :ref:`generic type aliases <generic-type-aliases>`::

      class Sequence[T]:  # T is a TypeVar
          ...

   This syntax can also be used to create bound and constrained type
   variables::

      class StrSequence[S: str]:  # S is a TypeVar bound to str
          ...


      class StrOrBytesSequence[A: (str, bytes)]:  # A is a TypeVar constrained to str or bytes
          ...

   However, if desired, reusable type variables can also be constructed manually, like so::

      T = TypeVar('T')  # Can be anything
      S = TypeVar('S', bound=str)  # Can be any subtype of str
      A = TypeVar('A', str, bytes)  # Must be exactly str or bytes

   Type variables exist primarily for the benefit of static type
   checkers.  They serve as the parameters for generic types as well
   as for generic function and type alias definitions.
   See :class:`Generic` for more
   information on generic types.  Generic functions work as follows::

      def repeat[T](x: T, n: int) -> Sequence[T]:
          """Return a list containing n references to x."""
          return [x]*n


      def print_capitalized[S: str](x: S) -> S:
          """Print x capitalized, and return x."""
          print(x.capitalize())
          return x


      def concatenate[A: (str, bytes)](x: A, y: A) -> A:
          """Add two strings or bytes objects together."""
          return x + y

   Note that type variables can be *bound*, *constrained*, or neither, but
   cannot be both bound *and* constrained.

   The variance of type variables is inferred by type checkers when they are created
   through the :ref:`type parameter syntax <type-params>` or when
   ``infer_variance=True`` is passed.
   Manually created type variables may be explicitly marked covariant or contravariant by passing
   ``covariant=True`` or ``contravariant=True``.
   By default, manually created type variables are invariant.
   See :pep:`484` and :pep:`695` for more details.

   Bound type variables and constrained type variables have different
   semantics in several important ways. Using a *bound* type variable means
   that the ``TypeVar`` will be solved using the most specific type possible::

      x = print_capitalized('a string')
      reveal_type(x)  # revealed type is str

      class StringSubclass(str):
          pass

      y = print_capitalized(StringSubclass('another string'))
      reveal_type(y)  # revealed type is StringSubclass

      z = print_capitalized(45)  # error: int is not a subtype of str

   Type variables can be bound to concrete types, abstract types (ABCs or
   protocols), and even unions of types::

      # Can be anything with an __abs__ method
      def print_abs[T: SupportsAbs](arg: T) -> None:
          print("Absolute value:", abs(arg))

      U = TypeVar('U', bound=str|bytes)  # Can be any subtype of the union str|bytes
      V = TypeVar('V', bound=SupportsAbs)  # Can be anything with an __abs__ method

   .. _typing-constrained-typevar:

   Using a *constrained* type variable, however, means that the ``TypeVar``
   can only ever be solved as being exactly one of the constraints given::

      a = concatenate('one', 'two')
      reveal_type(a)  # revealed type is str

      b = concatenate(StringSubclass('one'), StringSubclass('two'))
      reveal_type(b)  # revealed type is str, despite StringSubclass being passed in

      c = concatenate('one', b'two')  # error: type variable 'A' can be either str or bytes in a function call, but not both

   At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`.

   .. attribute:: __name__

      The name of the type variable.

   .. attribute:: __covariant__

      Whether the type var has been explicitly marked as covariant.

   .. attribute:: __contravariant__

      Whether the type var has been explicitly marked as contravariant.

   .. attribute:: __infer_variance__

      Whether the type variable's variance should be inferred by type checkers.

      .. versionadded:: 3.12

   .. attribute:: __bound__

      The bound of the type variable, if any.

      .. versionchanged:: 3.12

         For type variables created through :ref:`type parameter syntax <type-params>`,
         the bound is evaluated only when the attribute is accessed, not when
         the type variable is created (see :ref:`lazy-evaluation`).

   .. attribute:: __constraints__

      A tuple containing the constraints of the type variable, if any.

      .. versionchanged:: 3.12

         For type variables created through :ref:`type parameter syntax <type-params>`,
         the constraints are evaluated only when the attribute is accessed, not when
         the type variable is created (see :ref:`lazy-evaluation`).

   .. versionchanged:: 3.12

      Type variables can now be declared using the
      :ref:`type parameter <type-params>` syntax introduced by :pep:`695`.
      The ``infer_variance`` parameter was added.

.. class:: TypeVarTuple(name)

   Type variable tuple. A specialized form of :class:`type variable <TypeVar>`
   that enables *variadic* generics.

   Type variable tuples can be declared in :ref:`type parameter lists <type-params>`
   using a single asterisk (``*``) before the name::

      def move_first_element_to_last[T, *Ts](tup: tuple[T, *Ts]) -> tuple[*Ts, T]:
          return (*tup[1:], tup[0])

   Or by explicitly invoking the ``TypeVarTuple`` constructor::

      T = TypeVar("T")
      Ts = TypeVarTuple("Ts")

      def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]:
          return (*tup[1:], tup[0])

   A normal type variable enables parameterization with a single type. A type
   variable tuple, in contrast, allows parameterization with an
   *arbitrary* number of types by acting like an *arbitrary* number of type
   variables wrapped in a tuple. For example::

      # T is bound to int, Ts is bound to ()
      # Return value is (1,), which has type tuple[int]
      move_first_element_to_last(tup=(1,))

      # T is bound to int, Ts is bound to (str,)
      # Return value is ('spam', 1), which has type tuple[str, int]
      move_first_element_to_last(tup=(1, 'spam'))

      # T is bound to int, Ts is bound to (str, float)
      # Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]
      move_first_element_to_last(tup=(1, 'spam', 3.0))

      # This fails to type check (and fails at runtime)
      # because tuple[()] is not compatible with tuple[T, *Ts]
      # (at least one element is required)
      move_first_element_to_last(tup=())

   Note the use of the unpacking operator ``*`` in ``tuple[T, *Ts]``.
   Conceptually, you can think of ``Ts`` as a tuple of type variables
   ``(T1, T2, ...)``. ``tuple[T, *Ts]`` would then become
   ``tuple[T, *(T1, T2, ...)]``, which is equivalent to
   ``tuple[T, T1, T2, ...]``. (Note that in older versions of Python, you might
   see this written using :data:`Unpack <Unpack>` instead, as
   ``Unpack[Ts]``.)

   Type variable tuples must *always* be unpacked. This helps distinguish type
   variable tuples from normal type variables::

      x: Ts          # Not valid
      x: tuple[Ts]   # Not valid
      x: tuple[*Ts]  # The correct way to do it

   Type variable tuples can be used in the same contexts as normal type
   variables. For example, in class definitions, arguments, and return types::

      class Array[*Shape]:
          def __getitem__(self, key: tuple[*Shape]) -> float: ...
          def __abs__(self) -> "Array[*Shape]": ...
          def get_shape(self) -> tuple[*Shape]: ...

   Type variable tuples can be happily combined with normal type variables:

   .. testcode::

      class Array[DType, *Shape]:  # This is fine
          pass

      class Array2[*Shape, DType]:  # This would also be fine
          pass

      class Height: ...
      class Width: ...

      float_array_1d: Array[float, Height] = Array()     # Totally fine
      int_array_2d: Array[int, Height, Width] = Array()  # Yup, fine too

   However, note that at most one type variable tuple may appear in a single
   list of type arguments or type parameters::

      x: tuple[*Ts, *Ts]            # Not valid
      class Array[*Shape, *Shape]:  # Not valid
          pass

   Finally, an unpacked type variable tuple can be used as the type annotation
   of ``*args``::

      def call_soon[*Ts](
               callback: Callable[[*Ts], None],
               *args: *Ts
      ) -> None:
          ...
          callback(*args)

   In contrast to non-unpacked annotations of ``*args`` - e.g. ``*args: int``,
   which would specify that *all* arguments are ``int`` - ``*args: *Ts``
   enables reference to the types of the *individual* arguments in ``*args``.
   Here, this allows us to ensure the types of the ``*args`` passed
   to ``call_soon`` match the types of the (positional) arguments of
   ``callback``.

   See :pep:`646` for more details on type variable tuples.

   .. attribute:: __name__

      The name of the type variable tuple.

   .. versionadded:: 3.11

   .. versionchanged:: 3.12

      Type variable tuples can now be declared using the
      :ref:`type parameter <type-params>` syntax introduced by :pep:`695`.

.. class:: ParamSpec(name, *, bound=None, covariant=False, contravariant=False)

   Parameter specification variable.  A specialized version of
   :class:`type variables <TypeVar>`.

   In :ref:`type parameter lists <type-params>`, parameter specifications
   can be declared with two asterisks (``**``)::

      type IntFunc[**P] = Callable[P, int]

   For compatibility with Python 3.11 and earlier, ``ParamSpec`` objects
   can also be created as follows::

      P = ParamSpec('P')

   Parameter specification variables exist primarily for the benefit of static
   type checkers.  They are used to forward the parameter types of one
   callable to another callable -- a pattern commonly found in higher order
   functions and decorators.  They are only valid when used in ``Concatenate``,
   or as the first argument to ``Callable``, or as parameters for user-defined
   Generics.  See :class:`Generic` for more information on generic types.

   For example, to add basic logging to a function, one can create a decorator
   ``add_logging`` to log function calls.  The parameter specification variable
   tells the type checker that the callable passed into the decorator and the
   new callable returned by it have inter-dependent type parameters::

      from collections.abc import Callable
      import logging

      def add_logging[T, **P](f: Callable[P, T]) -> Callable[P, T]:
          '''A type-safe decorator to add logging to a function.'''
          def inner(*args: P.args, **kwargs: P.kwargs) -> T:
              logging.info(f'{f.__name__} was called')
              return f(*args, **kwargs)
          return inner

      @add_logging
      def add_two(x: float, y: float) -> float:
          '''Add two numbers together.'''
          return x + y

   Without ``ParamSpec``, the simplest way to annotate this previously was to
   use a :class:`TypeVar` with bound ``Callable[..., Any]``.  However this
   causes two problems:

   1. The type checker can't type check the ``inner`` function because
      ``*args`` and ``**kwargs`` have to be typed :data:`Any`.
   2. :func:`~cast` may be required in the body of the ``add_logging``
      decorator when returning the ``inner`` function, or the static type
      checker must be told to ignore the ``return inner``.

   .. attribute:: args
   .. attribute:: kwargs

      Since ``ParamSpec`` captures both positional and keyword parameters,
      ``P.args`` and ``P.kwargs`` can be used to split a ``ParamSpec`` into its
      components.  ``P.args`` represents the tuple of positional parameters in a
      given call and should only be used to annotate ``*args``.  ``P.kwargs``
      represents the mapping of keyword parameters to their values in a given call,
      and should be only be used to annotate ``**kwargs``.  Both
      attributes require the annotated parameter to be in scope. At runtime,
      ``P.args`` and ``P.kwargs`` are instances respectively of
      :class:`ParamSpecArgs` and :class:`ParamSpecKwargs`.

   .. attribute:: __name__

      The name of the parameter specification.

   Parameter specification variables created with ``covariant=True`` or
   ``contravariant=True`` can be used to declare covariant or contravariant
   generic types.  The ``bound`` argument is also accepted, similar to
   :class:`TypeVar`.  However the actual semantics of these keywords are yet to
   be decided.

   .. versionadded:: 3.10

   .. versionchanged:: 3.12

      Parameter specifications can now be declared using the
      :ref:`type parameter <type-params>` syntax introduced by :pep:`695`.

   .. note::
      Only parameter specification variables defined in global scope can
      be pickled.

   .. seealso::
      * :pep:`612` -- Parameter Specification Variables (the PEP which introduced
        ``ParamSpec`` and ``Concatenate``)
      * :data:`Concatenate`
      * :ref:`annotating-callables`

.. data:: ParamSpecArgs
.. data:: ParamSpecKwargs

   Arguments and keyword arguments attributes of a :class:`ParamSpec`. The
   ``P.args`` attribute of a ``ParamSpec`` is an instance of ``ParamSpecArgs``,
   and ``P.kwargs`` is an instance of ``ParamSpecKwargs``. They are intended
   for runtime introspection and have no special meaning to static type checkers.

   Calling :func:`get_origin` on either of these objects will return the
   original ``ParamSpec``:

   .. doctest::

      >>> from typing import ParamSpec
      >>> P = ParamSpec("P")
      >>> get_origin(P.args) is P
      True
      >>> get_origin(P.kwargs) is P
      True

   .. versionadded:: 3.10


.. class:: TypeAliasType(name, value, *, type_params=())

   The type of type aliases created through the :keyword:`type` statement.

   Example:

   .. doctest::

      >>> type Alias = int
      >>> type(Alias)
      <class 'typing.TypeAliasType'>

   .. versionadded:: 3.12

   .. attribute:: __name__

      The name of the type alias:

      .. doctest::

         >>> type Alias = int
         >>> Alias.__name__
         'Alias'

   .. attribute:: __module__

      The module in which the type alias was defined::

         >>> type Alias = int
         >>> Alias.__module__
         '__main__'

   .. attribute:: __type_params__

      The type parameters of the type alias, or an empty tuple if the alias is
      not generic:

      .. doctest::

         >>> type ListOrSet[T] = list[T] | set[T]
         >>> ListOrSet.__type_params__
         (T,)
         >>> type NotGeneric = int
         >>> NotGeneric.__type_params__
         ()

   .. attribute:: __value__

      The type alias's value. This is :ref:`lazily evaluated <lazy-evaluation>`,
      so names used in the definition of the alias are not resolved until the
      ``__value__`` attribute is accessed:

      .. doctest::

         >>> type Mutually = Recursive
         >>> type Recursive = Mutually
         >>> Mutually
         Mutually
         >>> Recursive
         Recursive
         >>> Mutually.__value__
         Recursive
         >>> Recursive.__value__
         Mutually

Other special directives
""""""""""""""""""""""""

These functions and classes should not be used directly as annotations.
Their intended purpose is to be building blocks for creating and declaring
types.

.. class:: NamedTuple

   Typed version of :func:`collections.namedtuple`.

   Usage::

       class Employee(NamedTuple):
           name: str
           id: int

   This is equivalent to::

       Employee = collections.namedtuple('Employee', ['name', 'id'])

   To give a field a default value, you can assign to it in the class body::

      class Employee(NamedTuple):
          name: str
          id: int = 3

      employee = Employee('Guido')
      assert employee.id == 3

   Fields with a default value must come after any fields without a default.

   The resulting class has an extra attribute ``__annotations__`` giving a
   dict that maps the field names to the field types.  (The field names are in
   the ``_fields`` attribute and the default values are in the
   ``_field_defaults`` attribute, both of which are part of the :func:`~collections.namedtuple`
   API.)

   ``NamedTuple`` subclasses can also have docstrings and methods::

      class Employee(NamedTuple):
          """Represents an employee."""
          name: str
          id: int = 3

          def __repr__(self) -> str:
              return f'<Employee {self.name}, id={self.id}>'

   ``NamedTuple`` subclasses can be generic::

      class Group[T](NamedTuple):
          key: T
          group: list[T]

   Backward-compatible usage::

       # For creating a generic NamedTuple on Python 3.11 or lower
       class Group(NamedTuple, Generic[T]):
           key: T
           group: list[T]

       # A functional syntax is also supported
       Employee = NamedTuple('Employee', [('name', str), ('id', int)])

   .. versionchanged:: 3.6
      Added support for :pep:`526` variable annotation syntax.

   .. versionchanged:: 3.6.1
      Added support for default values, methods, and docstrings.

   .. versionchanged:: 3.8
      The ``_field_types`` and ``__annotations__`` attributes are
      now regular dictionaries instead of instances of ``OrderedDict``.

   .. versionchanged:: 3.9
      Removed the ``_field_types`` attribute in favor of the more
      standard ``__annotations__`` attribute which has the same information.

   .. versionchanged:: 3.11
      Added support for generic namedtuples.

   .. deprecated-removed:: 3.13 3.15
      The undocumented keyword argument syntax for creating NamedTuple classes
      (``NT = NamedTuple("NT", x=int)``) is deprecated, and will be disallowed
      in 3.15. Use the class-based syntax or the functional syntax instead.

   .. deprecated-removed:: 3.13 3.15
      When using the functional syntax to create a NamedTuple class, failing to
      pass a value to the 'fields' parameter (``NT = NamedTuple("NT")``) is
      deprecated. Passing ``None`` to the 'fields' parameter
      (``NT = NamedTuple("NT", None)``) is also deprecated. Both will be
      disallowed in Python 3.15. To create a NamedTuple class with 0 fields,
      use ``class NT(NamedTuple): pass`` or ``NT = NamedTuple("NT", [])``.

.. class:: NewType(name, tp)

   Helper class to create low-overhead :ref:`distinct types <distinct>`.

   A ``NewType`` is considered a distinct type by a typechecker. At runtime,
   however, calling a ``NewType`` returns its argument unchanged.

   Usage::

      UserId = NewType('UserId', int)  # Declare the NewType "UserId"
      first_user = UserId(1)  # "UserId" returns the argument unchanged at runtime

   .. attribute:: __module__

      The module in which the new type is defined.

   .. attribute:: __name__

      The name of the new type.

   .. attribute:: __supertype__

      The type that the new type is based on.

   .. versionadded:: 3.5.2

   .. versionchanged:: 3.10
      ``NewType`` is now a class rather than a function.

.. class:: Protocol(Generic)

   Base class for protocol classes.

   Protocol classes are defined like this::

      class Proto(Protocol):
          def meth(self) -> int:
              ...

   Such classes are primarily used with static type checkers that recognize
   structural subtyping (static duck-typing), for example::

      class C:
          def meth(self) -> int:
              return 0

      def func(x: Proto) -> int:
          return x.meth()

      func(C())  # Passes static type check

   See :pep:`544` for more details. Protocol classes decorated with
   :func:`runtime_checkable` (described later) act as simple-minded runtime
   protocols that check only the presence of given attributes, ignoring their
   type signatures.

   Protocol classes can be generic, for example::

      class GenProto[T](Protocol):
          def meth(self) -> T:
              ...

   In code that needs to be compatible with Python 3.11 or older, generic
   Protocols can be written as follows::

      T = TypeVar("T")

      class GenProto(Protocol[T]):
          def meth(self) -> T:
              ...

   .. versionadded:: 3.8

.. decorator:: runtime_checkable

   Mark a protocol class as a runtime protocol.

   Such a protocol can be used with :func:`isinstance` and :func:`issubclass`.
   This raises :exc:`TypeError` when applied to a non-protocol class.  This
   allows a simple-minded structural check, very similar to "one trick ponies"
   in :mod:`collections.abc` such as :class:`~collections.abc.Iterable`.  For example::

      @runtime_checkable
      class Closable(Protocol):
          def close(self): ...

      assert isinstance(open('/some/file'), Closable)

      @runtime_checkable
      class Named(Protocol):
          name: str

      import threading
      assert isinstance(threading.Thread(name='Bob'), Named)

   .. note::

        :func:`!runtime_checkable` will check only the presence of the required
        methods or attributes, not their type signatures or types.
        For example, :class:`ssl.SSLObject`
        is a class, therefore it passes an :func:`issubclass`
        check against :ref:`Callable <annotating-callables>`. However, the
        ``ssl.SSLObject.__init__`` method exists only to raise a
        :exc:`TypeError` with a more informative message, therefore making
        it impossible to call (instantiate) :class:`ssl.SSLObject`.

   .. note::

        An :func:`isinstance` check against a runtime-checkable protocol can be
        surprisingly slow compared to an ``isinstance()`` check against
        a non-protocol class. Consider using alternative idioms such as
        :func:`hasattr` calls for structural checks in performance-sensitive
        code.

   .. versionadded:: 3.8

   .. versionchanged:: 3.12
      The internal implementation of :func:`isinstance` checks against
      runtime-checkable protocols now uses :func:`inspect.getattr_static`
      to look up attributes (previously, :func:`hasattr` was used).
      As a result, some objects which used to be considered instances
      of a runtime-checkable protocol may no longer be considered instances
      of that protocol on Python 3.12+, and vice versa.
      Most users are unlikely to be affected by this change.

   .. versionchanged:: 3.12
      The members of a runtime-checkable protocol are now considered "frozen"
      at runtime as soon as the class has been created. Monkey-patching
      attributes onto a runtime-checkable protocol will still work, but will
      have no impact on :func:`isinstance` checks comparing objects to the
      protocol. See :ref:`"What's new in Python 3.12" <whatsnew-typing-py312>`
      for more details.


.. class:: TypedDict(dict)

   Special construct to add type hints to a dictionary.
   At runtime it is a plain :class:`dict`.

   ``TypedDict`` declares a dictionary type that expects all of its
   instances to have a certain set of keys, where each key is
   associated with a value of a consistent type. This expectation
   is not checked at runtime but is only enforced by type checkers.
   Usage::

      class Point2D(TypedDict):
          x: int
          y: int
          label: str

      a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
      b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check

      assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

   An alternative way to create a ``TypedDict`` is by using
   function-call syntax. The second argument must be a literal :class:`dict`::

      Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

   This functional syntax allows defining keys which are not valid
   :ref:`identifiers <identifiers>`, for example because they are
   keywords or contain hyphens::

      # raises SyntaxError
      class Point2D(TypedDict):
          in: int  # 'in' is a keyword
          x-y: int  # name with hyphens

      # OK, functional syntax
      Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})

   By default, all keys must be present in a ``TypedDict``. It is possible to
   mark individual keys as non-required using :data:`NotRequired`::

      class Point2D(TypedDict):
          x: int
          y: int
          label: NotRequired[str]

      # Alternative syntax
      Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})

   This means that a ``Point2D`` ``TypedDict`` can have the ``label``
   key omitted.

   It is also possible to mark all keys as non-required by default
   by specifying a totality of ``False``::

      class Point2D(TypedDict, total=False):
          x: int
          y: int

      # Alternative syntax
      Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)

   This means that a ``Point2D`` ``TypedDict`` can have any of the keys
   omitted. A type checker is only expected to support a literal ``False`` or
   ``True`` as the value of the ``total`` argument. ``True`` is the default,
   and makes all items defined in the class body required.

   Individual keys of a ``total=False`` ``TypedDict`` can be marked as
   required using :data:`Required`::

      class Point2D(TypedDict, total=False):
          x: Required[int]
          y: Required[int]
          label: str

      # Alternative syntax
      Point2D = TypedDict('Point2D', {
          'x': Required[int],
          'y': Required[int],
          'label': str
      }, total=False)

   It is possible for a ``TypedDict`` type to inherit from one or more other ``TypedDict`` types
   using the class-based syntax.
   Usage::

      class Point3D(Point2D):
          z: int

   ``Point3D`` has three items: ``x``, ``y`` and ``z``. It is equivalent to this
   definition::

      class Point3D(TypedDict):
          x: int
          y: int
          z: int

   A ``TypedDict`` cannot inherit from a non-\ ``TypedDict`` class,
   except for :class:`Generic`. For example::

      class X(TypedDict):
          x: int

      class Y(TypedDict):
          y: int

      class Z(object): pass  # A non-TypedDict class

      class XY(X, Y): pass  # OK

      class XZ(X, Z): pass  # raises TypeError

   A ``TypedDict`` can be generic::

      class Group[T](TypedDict):
          key: T
          group: list[T]

   To create a generic ``TypedDict`` that is compatible with Python 3.11
   or lower, inherit from :class:`Generic` explicitly:

   .. testcode::

      T = TypeVar("T")

      class Group(TypedDict, Generic[T]):
          key: T
          group: list[T]

   A ``TypedDict`` can be introspected via annotations dicts
   (see :ref:`annotations-howto` for more information on annotations best practices),
   :attr:`__total__`, :attr:`__required_keys__`, and :attr:`__optional_keys__`.

   .. attribute:: __total__

      ``Point2D.__total__`` gives the value of the ``total`` argument.
      Example:

      .. doctest::

         >>> from typing import TypedDict
         >>> class Point2D(TypedDict): pass
         >>> Point2D.__total__
         True
         >>> class Point2D(TypedDict, total=False): pass
         >>> Point2D.__total__
         False
         >>> class Point3D(Point2D): pass
         >>> Point3D.__total__
         True

      This attribute reflects *only* the value of the ``total`` argument
      to the current ``TypedDict`` class, not whether the class is semantically
      total. For example, a ``TypedDict`` with ``__total__`` set to True may
      have keys marked with :data:`NotRequired`, or it may inherit from another
      ``TypedDict`` with ``total=False``. Therefore, it is generally better to use
      :attr:`__required_keys__` and :attr:`__optional_keys__` for introspection.

   .. attribute:: __required_keys__

      .. versionadded:: 3.9

   .. attribute:: __optional_keys__

      ``Point2D.__required_keys__`` and ``Point2D.__optional_keys__`` return
      :class:`frozenset` objects containing required and non-required keys, respectively.

      Keys marked with :data:`Required` will always appear in ``__required_keys__``
      and keys marked with :data:`NotRequired` will always appear in ``__optional_keys__``.

      For backwards compatibility with Python 3.10 and below,
      it is also possible to use inheritance to declare both required and
      non-required keys in the same ``TypedDict`` . This is done by declaring a
      ``TypedDict`` with one value for the ``total`` argument and then
      inheriting from it in another ``TypedDict`` with a different value for
      ``total``:

      .. doctest::

         >>> class Point2D(TypedDict, total=False):
         ...     x: int
         ...     y: int
         ...
         >>> class Point3D(Point2D):
         ...     z: int
         ...
         >>> Point3D.__required_keys__ == frozenset({'z'})
         True
         >>> Point3D.__optional_keys__ == frozenset({'x', 'y'})
         True

      .. versionadded:: 3.9

      .. note::

         If ``from __future__ import annotations`` is used or if annotations
         are given as strings, annotations are not evaluated when the
         ``TypedDict`` is defined. Therefore, the runtime introspection that
         ``__required_keys__`` and ``__optional_keys__`` rely on may not work
         properly, and the values of the attributes may be incorrect.

   See :pep:`589` for more examples and detailed rules of using ``TypedDict``.

   .. versionadded:: 3.8

   .. versionchanged:: 3.11
      Added support for marking individual keys as :data:`Required` or :data:`NotRequired`.
      See :pep:`655`.

   .. versionchanged:: 3.11
      Added support for generic ``TypedDict``\ s.

   .. versionchanged:: 3.13
      Removed support for the keyword-argument method of creating ``TypedDict``\ s.

   .. deprecated-removed:: 3.13 3.15
      When using the functional syntax to create a TypedDict class, failing to
      pass a value to the 'fields' parameter (``TD = TypedDict("TD")``) is
      deprecated. Passing ``None`` to the 'fields' parameter
      (``TD = TypedDict("TD", None)``) is also deprecated. Both will be
      disallowed in Python 3.15. To create a TypedDict class with 0 fields,
      use ``class TD(TypedDict): pass`` or ``TD = TypedDict("TD", {})``.

Protocols
---------

The following protocols are provided by the typing module. All are decorated
with :func:`@runtime_checkable <runtime_checkable>`.

.. class:: SupportsAbs

    An ABC with one abstract method ``__abs__`` that is covariant
    in its return type.

.. class:: SupportsBytes

    An ABC with one abstract method ``__bytes__``.

.. class:: SupportsComplex

    An ABC with one abstract method ``__complex__``.

.. class:: SupportsFloat

    An ABC with one abstract method ``__float__``.

.. class:: SupportsIndex

    An ABC with one abstract method ``__index__``.

    .. versionadded:: 3.8

.. class:: SupportsInt

    An ABC with one abstract method ``__int__``.

.. class:: SupportsRound

    An ABC with one abstract method ``__round__``
    that is covariant in its return type.

ABCs for working with IO
------------------------

.. class:: IO
           TextIO
           BinaryIO

   Generic type ``IO[AnyStr]`` and its subclasses ``TextIO(IO[str])``
   and ``BinaryIO(IO[bytes])``
   represent the types of I/O streams such as returned by
   :func:`open`.

Functions and decorators
------------------------

.. function:: cast(typ, val)

   Cast a value to a type.

   This returns the value unchanged.  To the type checker this
   signals that the return value has the designated type, but at
   runtime we intentionally don't check anything (we want this
   to be as fast as possible).

.. function:: assert_type(val, typ, /)

   Ask a static type checker to confirm that *val* has an inferred type of *typ*.

   At runtime this does nothing: it returns the first argument unchanged with no
   checks or side effects, no matter the actual type of the argument.

   When a static type checker encounters a call to ``assert_type()``, it
   emits an error if the value is not of the specified type::

       def greet(name: str) -> None:
           assert_type(name, str)  # OK, inferred type of `name` is `str`
           assert_type(name, int)  # type checker error

   This function is useful for ensuring the type checker's understanding of a
   script is in line with the developer's intentions::

       def complex_function(arg: object):
           # Do some complex type-narrowing logic,
           # after which we hope the inferred type will be `int`
           ...
           # Test whether the type checker correctly understands our function
           assert_type(arg, int)

   .. versionadded:: 3.11

.. function:: assert_never(arg, /)

   Ask a static type checker to confirm that a line of code is unreachable.

   Example::

       def int_or_str(arg: int | str) -> None:
           match arg:
               case int():
                   print("It's an int")
               case str():
                   print("It's a str")
               case _ as unreachable:
                   assert_never(unreachable)

   Here, the annotations allow the type checker to infer that the
   last case can never execute, because ``arg`` is either
   an :class:`int` or a :class:`str`, and both options are covered by
   earlier cases.

   If a type checker finds that a call to ``assert_never()`` is
   reachable, it will emit an error. For example, if the type annotation
   for ``arg`` was instead ``int | str | float``, the type checker would
   emit an error pointing out that ``unreachable`` is of type :class:`float`.
   For a call to ``assert_never`` to pass type checking, the inferred type of
   the argument passed in must be the bottom type, :data:`Never`, and nothing
   else.

   At runtime, this throws an exception when called.

   .. seealso::
      `Unreachable Code and Exhaustiveness Checking
      <https://typing.readthedocs.io/en/latest/source/unreachable.html>`__ has more
      information about exhaustiveness checking with static typing.

   .. versionadded:: 3.11

.. function:: reveal_type(obj, /)

   Reveal the inferred static type of an expression.

   When a static type checker encounters a call to this function,
   it emits a diagnostic with the type of the argument. For example::

      x: int = 1
      reveal_type(x)  # Revealed type is "builtins.int"

   This can be useful when you want to debug how your type checker
   handles a particular piece of code.

   The function returns its argument unchanged, which allows using
   it within an expression::

      x = reveal_type(1)  # Revealed type is "builtins.int"

   Most type checkers support ``reveal_type()`` anywhere, even if the
   name is not imported from ``typing``. Importing the name from
   ``typing`` allows your code to run without runtime errors and
   communicates intent more clearly.

   At runtime, this function prints the runtime type of its argument to stderr
   and returns it unchanged::

      x = reveal_type(1)  # prints "Runtime type is int"
      print(x)  # prints "1"

   .. versionadded:: 3.11

.. decorator:: dataclass_transform(*, eq_default=True, order_default=False, \
                                   kw_only_default=False, frozen_default=False, \
                                   field_specifiers=(), **kwargs)

   Decorator to mark an object as providing
   :func:`dataclass <dataclasses.dataclass>`-like behavior.

   ``dataclass_transform`` may be used to
   decorate a class, metaclass, or a function that is itself a decorator.
   The presence of ``@dataclass_transform()`` tells a static type checker that the
   decorated object performs runtime "magic" that
   transforms a class in a similar way to
   :func:`@dataclasses.dataclass <dataclasses.dataclass>`.

   Example usage with a decorator function:

   .. testcode::

      @dataclass_transform()
      def create_model[T](cls: type[T]) -> type[T]:
          ...
          return cls

      @create_model
      class CustomerModel:
          id: int
          name: str

   On a base class::

      @dataclass_transform()
      class ModelBase: ...

      class CustomerModel(ModelBase):
          id: int
          name: str

   On a metaclass::

      @dataclass_transform()
      class ModelMeta(type): ...

      class ModelBase(metaclass=ModelMeta): ...

      class CustomerModel(ModelBase):
          id: int
          name: str

   The ``CustomerModel`` classes defined above will
   be treated by type checkers similarly to classes created with
   :func:`@dataclasses.dataclass <dataclasses.dataclass>`.
   For example, type checkers will assume these classes have
   ``__init__`` methods that accept ``id`` and ``name``.

   The decorated class, metaclass, or function may accept the following bool
   arguments which type checkers will assume have the same effect as they
   would have on the
   :func:`@dataclasses.dataclass<dataclasses.dataclass>` decorator: ``init``,
   ``eq``, ``order``, ``unsafe_hash``, ``frozen``, ``match_args``,
   ``kw_only``, and ``slots``. It must be possible for the value of these
   arguments (``True`` or ``False``) to be statically evaluated.

   The arguments to the ``dataclass_transform`` decorator can be used to
   customize the default behaviors of the decorated class, metaclass, or
   function:

   :param bool eq_default:
       Indicates whether the ``eq`` parameter is assumed to be
       ``True`` or ``False`` if it is omitted by the caller.
       Defaults to ``True``.

   :param bool order_default:
       Indicates whether the ``order`` parameter is
       assumed to be ``True`` or ``False`` if it is omitted by the caller.
       Defaults to ``False``.

   :param bool kw_only_default:
       Indicates whether the ``kw_only`` parameter is
       assumed to be ``True`` or ``False`` if it is omitted by the caller.
       Defaults to ``False``.

   :param bool frozen_default:
       Indicates whether the ``frozen`` parameter is
       assumed to be ``True`` or ``False`` if it is omitted by the caller.
       Defaults to ``False``.

       .. versionadded:: 3.12

   :param field_specifiers:
       Specifies a static list of supported classes
       or functions that describe fields, similar to :func:`dataclasses.field`.
       Defaults to ``()``.
   :type field_specifiers: tuple[Callable[..., Any], ...]

   :param Any \**kwargs:
       Arbitrary other keyword arguments are accepted in order to allow for
       possible future extensions.

   Type checkers recognize the following optional parameters on field
   specifiers:

   .. list-table:: **Recognised parameters for field specifiers**
      :header-rows: 1
      :widths: 20 80

      * - Parameter name
        - Description
      * - ``init``
        - Indicates whether the field should be included in the
          synthesized ``__init__`` method. If unspecified, ``init`` defaults to
          ``True``.
      * - ``default``
        - Provides the default value for the field.
      * - ``default_factory``
        - Provides a runtime callback that returns the
          default value for the field. If neither ``default`` nor
          ``default_factory`` are specified, the field is assumed to have no
          default value and must be provided a value when the class is
          instantiated.
      * - ``factory``
        - An alias for the ``default_factory`` parameter on field specifiers.
      * - ``kw_only``
        - Indicates whether the field should be marked as
          keyword-only. If ``True``, the field will be keyword-only. If
          ``False``, it will not be keyword-only. If unspecified, the value of
          the ``kw_only`` parameter on the object decorated with
          ``dataclass_transform`` will be used, or if that is unspecified, the
          value of ``kw_only_default`` on ``dataclass_transform`` will be used.
      * - ``alias``
        - Provides an alternative name for the field. This alternative
          name is used in the synthesized ``__init__`` method.

   At runtime, this decorator records its arguments in the
   ``__dataclass_transform__`` attribute on the decorated object.
   It has no other runtime effect.

   See :pep:`681` for more details.

   .. versionadded:: 3.11

.. decorator:: overload

   Decorator for creating overloaded functions and methods.

   The ``@overload`` decorator allows describing functions and methods
   that support multiple different combinations of argument types. A series
   of ``@overload``-decorated definitions must be followed by exactly one
   non-``@overload``-decorated definition (for the same function/method).

   ``@overload``-decorated definitions are for the benefit of the
   type checker only, since they will be overwritten by the
   non-``@overload``-decorated definition. The non-``@overload``-decorated
   definition, meanwhile, will be used at
   runtime but should be ignored by a type checker.  At runtime, calling
   an ``@overload``-decorated function directly will raise
   :exc:`NotImplementedError`.

   An example of overload that gives a more
   precise type than can be expressed using a union or a type variable:

   .. testcode::

      @overload
      def process(response: None) -> None:
          ...
      @overload
      def process(response: int) -> tuple[int, str]:
          ...
      @overload
      def process(response: bytes) -> str:
          ...
      def process(response):
          ...  # actual implementation goes here

   See :pep:`484` for more details and comparison with other typing semantics.

   .. versionchanged:: 3.11
      Overloaded functions can now be introspected at runtime using
      :func:`get_overloads`.


.. function:: get_overloads(func)

   Return a sequence of :func:`@overload <overload>`-decorated definitions for
   *func*.

   *func* is the function object for the implementation of the
   overloaded function. For example, given the definition of ``process`` in
   the documentation for :func:`@overload <overload>`,
   ``get_overloads(process)`` will return a sequence of three function objects
   for the three defined overloads. If called on a function with no overloads,
   ``get_overloads()`` returns an empty sequence.

   ``get_overloads()`` can be used for introspecting an overloaded function at
   runtime.

   .. versionadded:: 3.11


.. function:: clear_overloads()

   Clear all registered overloads in the internal registry.

   This can be used to reclaim the memory used by the registry.

   .. versionadded:: 3.11


.. decorator:: final

   Decorator to indicate final methods and final classes.

   Decorating a method with ``@final`` indicates to a type checker that the
   method cannot be overridden in a subclass. Decorating a class with ``@final``
   indicates that it cannot be subclassed.

   For example::

      class Base:
          @final
          def done(self) -> None:
              ...
      class Sub(Base):
          def done(self) -> None:  # Error reported by type checker
              ...

      @final
      class Leaf:
          ...
      class Other(Leaf):  # Error reported by type checker
          ...

   There is no runtime checking of these properties. See :pep:`591` for
   more details.

   .. versionadded:: 3.8

   .. versionchanged:: 3.11
      The decorator will now attempt to set a ``__final__`` attribute to ``True``
      on the decorated object. Thus, a check like
      ``if getattr(obj, "__final__", False)`` can be used at runtime
      to determine whether an object ``obj`` has been marked as final.
      If the decorated object does not support setting attributes,
      the decorator returns the object unchanged without raising an exception.


.. decorator:: no_type_check

   Decorator to indicate that annotations are not type hints.

   This works as a class or function :term:`decorator`.  With a class, it
   applies recursively to all methods and classes defined in that class
   (but not to methods defined in its superclasses or subclasses). Type
   checkers will ignore all annotations in a function or class with this
   decorator.

   ``@no_type_check`` mutates the decorated object in place.

.. decorator:: no_type_check_decorator

   Decorator to give another decorator the :func:`no_type_check` effect.

   This wraps the decorator with something that wraps the decorated
   function in :func:`no_type_check`.

   .. deprecated-removed:: 3.13 3.15
      No type checker ever added support for ``@no_type_check_decorator``. It
      is therefore deprecated, and will be removed in Python 3.15.

.. decorator:: override

   Decorator to indicate that a method in a subclass is intended to override a
   method or attribute in a superclass.

   Type checkers should emit an error if a method decorated with ``@override``
   does not, in fact, override anything.
   This helps prevent bugs that may occur when a base class is changed without
   an equivalent change to a child class.

   For example:

   .. testcode::

      class Base:
          def log_status(self) -> None:
              ...

      class Sub(Base):
          @override
          def log_status(self) -> None:  # Okay: overrides Base.log_status
              ...

          @override
          def done(self) -> None:  # Error reported by type checker
              ...

   There is no runtime checking of this property.

   The decorator will attempt to set an ``__override__`` attribute to ``True`` on
   the decorated object. Thus, a check like
   ``if getattr(obj, "__override__", False)`` can be used at runtime to determine
   whether an object ``obj`` has been marked as an override.  If the decorated object
   does not support setting attributes, the decorator returns the object unchanged
   without raising an exception.

   See :pep:`698` for more details.

   .. versionadded:: 3.12


.. decorator:: type_check_only

   Decorator to mark a class or function as unavailable at runtime.

   This decorator is itself not available at runtime. It is mainly
   intended to mark classes that are defined in type stub files if
   an implementation returns an instance of a private class::

      @type_check_only
      class Response:  # private or not available at runtime
          code: int
          def get_header(self, name: str) -> str: ...

      def fetch_response() -> Response: ...

   Note that returning instances of private classes is not recommended.
   It is usually preferable to make such classes public.

Introspection helpers
---------------------

.. function:: get_type_hints(obj, globalns=None, localns=None, include_extras=False)

   Return a dictionary containing type hints for a function, method, module
   or class object.

   This is often the same as ``obj.__annotations__``. In addition,
   forward references encoded as string literals are handled by evaluating
   them in ``globals`` and ``locals`` namespaces. For a class ``C``, return
   a dictionary constructed by merging all the ``__annotations__`` along
   ``C.__mro__`` in reverse order.

   The function recursively replaces all ``Annotated[T, ...]`` with ``T``,
   unless ``include_extras`` is set to ``True`` (see :class:`Annotated` for
   more information). For example:

   .. testcode::

       class Student(NamedTuple):
           name: Annotated[str, 'some marker']

       assert get_type_hints(Student) == {'name': str}
       assert get_type_hints(Student, include_extras=False) == {'name': str}
       assert get_type_hints(Student, include_extras=True) == {
           'name': Annotated[str, 'some marker']
       }

   .. note::

      :func:`get_type_hints` does not work with imported
      :ref:`type aliases <type-aliases>` that include forward references.
      Enabling postponed evaluation of annotations (:pep:`563`) may remove
      the need for most forward references.

   .. versionchanged:: 3.9
      Added ``include_extras`` parameter as part of :pep:`593`.
      See the documentation on :data:`Annotated` for more information.

   .. versionchanged:: 3.11
      Previously, ``Optional[t]`` was added for function and method annotations
      if a default value equal to ``None`` was set.
      Now the annotation is returned unchanged.

.. function:: get_origin(tp)

   Get the unsubscripted version of a type: for a typing object of the form
   ``X[Y, Z, ...]`` return ``X``.

   If ``X`` is a typing-module alias for a builtin or
   :mod:`collections` class, it will be normalized to the original class.
   If ``X`` is an instance of :class:`ParamSpecArgs` or :class:`ParamSpecKwargs`,
   return the underlying :class:`ParamSpec`.
   Return ``None`` for unsupported objects.

   Examples:

   .. testcode::

      assert get_origin(str) is None
      assert get_origin(Dict[str, int]) is dict
      assert get_origin(Union[int, str]) is Union
      P = ParamSpec('P')
      assert get_origin(P.args) is P
      assert get_origin(P.kwargs) is P

   .. versionadded:: 3.8

.. function:: get_args(tp)

   Get type arguments with all substitutions performed: for a typing object
   of the form ``X[Y, Z, ...]`` return ``(Y, Z, ...)``.

   If ``X`` is a union or :class:`Literal` contained in another
   generic type, the order of ``(Y, Z, ...)`` may be different from the order
   of the original arguments ``[Y, Z, ...]`` due to type caching.
   Return ``()`` for unsupported objects.

   Examples:

   .. testcode::

      assert get_args(int) == ()
      assert get_args(Dict[int, str]) == (int, str)
      assert get_args(Union[int, str]) == (int, str)

   .. versionadded:: 3.8

.. function:: get_protocol_members(tp)

   Return the set of members defined in a :class:`Protocol`.

   ::

      >>> from typing import Protocol, get_protocol_members
      >>> class P(Protocol):
      ...     def a(self) -> str: ...
      ...     b: int
      >>> get_protocol_members(P)
      frozenset({'a', 'b'})

   Raise :exc:`TypeError` for arguments that are not Protocols.

   .. versionadded:: 3.13

.. function:: is_protocol(tp)

   Determine if a type is a :class:`Protocol`.

   For example::

      class P(Protocol):
          def a(self) -> str: ...
          b: int

      is_protocol(P)    # => True
      is_protocol(int)  # => False

   .. versionadded:: 3.13

.. function:: is_typeddict(tp)

   Check if a type is a :class:`TypedDict`.

   For example:

   .. testcode::

      class Film(TypedDict):
          title: str
          year: int

      assert is_typeddict(Film)
      assert not is_typeddict(list | str)

      # TypedDict is a factory for creating typed dicts,
      # not a typed dict itself
      assert not is_typeddict(TypedDict)

   .. versionadded:: 3.10

.. class:: ForwardRef

   Class used for internal typing representation of string forward references.

   For example, ``List["SomeClass"]`` is implicitly transformed into
   ``List[ForwardRef("SomeClass")]``.  ``ForwardRef`` should not be instantiated by
   a user, but may be used by introspection tools.

   .. note::
      :pep:`585` generic types such as ``list["SomeClass"]`` will not be
      implicitly transformed into ``list[ForwardRef("SomeClass")]`` and thus
      will not automatically resolve to ``list[SomeClass]``.

   .. versionadded:: 3.7.4

Constant
--------

.. data:: TYPE_CHECKING

   A special constant that is assumed to be ``True`` by 3rd party static
   type checkers. It is ``False`` at runtime.

   Usage::

      if TYPE_CHECKING:
          import expensive_mod

      def fun(arg: 'expensive_mod.SomeType') -> None:
          local_var: expensive_mod.AnotherType = other_fun()

   The first type annotation must be enclosed in quotes, making it a
   "forward reference", to hide the ``expensive_mod`` reference from the
   interpreter runtime.  Type annotations for local variables are not
   evaluated, so the second annotation does not need to be enclosed in quotes.

   .. note::

      If ``from __future__ import annotations`` is used,
      annotations are not evaluated at function definition time.
      Instead, they are stored as strings in ``__annotations__``.
      This makes it unnecessary to use quotes around the annotation
      (see :pep:`563`).

   .. versionadded:: 3.5.2

.. _generic-concrete-collections:
.. _deprecated-aliases:

Deprecated aliases
------------------

This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the typing
module in order to support parameterizing these generic classes using ``[]``.
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support ``[]`` (see
:pep:`585`).

The redundant types are deprecated as of Python 3.9. However, while the aliases
may be removed at some point, removal of these aliases is not currently
planned. As such, no deprecation warnings are currently issued by the
interpreter for these aliases.

If at some point it is decided to remove these deprecated aliases, a
deprecation warning will be issued by the interpreter for at least two releases
prior to removal. The aliases are guaranteed to remain in the typing module
without deprecation warnings until at least Python 3.14.

Type checkers are encouraged to flag uses of the deprecated types if the
program they are checking targets a minimum Python version of 3.9 or newer.

.. _corresponding-to-built-in-types:

Aliases to built-in types
"""""""""""""""""""""""""

.. class:: Dict(dict, MutableMapping[KT, VT])

   Deprecated alias to :class:`dict`.

   Note that to annotate arguments, it is preferred
   to use an abstract collection type such as :class:`Mapping`
   rather than to use :class:`dict` or :class:`!typing.Dict`.

   This type can be used as follows::

      def count_words(text: str) -> Dict[str, int]:
          ...

   .. deprecated:: 3.9
      :class:`builtins.dict <dict>` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: List(list, MutableSequence[T])

   Deprecated alias to :class:`list`.

   Note that to annotate arguments, it is preferred
   to use an abstract collection type such as :class:`Sequence` or
   :class:`Iterable` rather than to use :class:`list` or :class:`!typing.List`.

   This type may be used as follows::

      def vec2[T: (int, float)](x: T, y: T) -> List[T]:
          return [x, y]

      def keep_positives[T: (int, float)](vector: Sequence[T]) -> List[T]:
          return [item for item in vector if item > 0]

   .. deprecated:: 3.9
      :class:`builtins.list <list>` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Set(set, MutableSet[T])

   Deprecated alias to :class:`builtins.set <set>`.

   Note that to annotate arguments, it is preferred
   to use an abstract collection type such as :class:`AbstractSet`
   rather than to use :class:`set` or :class:`!typing.Set`.

   .. deprecated:: 3.9
      :class:`builtins.set <set>` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: FrozenSet(frozenset, AbstractSet[T_co])

   Deprecated alias to :class:`builtins.frozenset <frozenset>`.

   .. deprecated:: 3.9
      :class:`builtins.frozenset <frozenset>`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. data:: Tuple

   Deprecated alias for :class:`tuple`.

   :class:`tuple` and ``Tuple`` are special-cased in the type system; see
   :ref:`annotating-tuples` for more details.

   .. deprecated:: 3.9
      :class:`builtins.tuple <tuple>` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Type(Generic[CT_co])

   Deprecated alias to :class:`type`.

   See :ref:`type-of-class-objects` for details on using :class:`type` or
   ``typing.Type`` in type annotations.

   .. versionadded:: 3.5.2

   .. deprecated:: 3.9
      :class:`builtins.type <type>` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. _corresponding-to-types-in-collections:

Aliases to types in :mod:`collections`
""""""""""""""""""""""""""""""""""""""

.. class:: DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

   Deprecated alias to :class:`collections.defaultdict`.

   .. versionadded:: 3.5.2

   .. deprecated:: 3.9
      :class:`collections.defaultdict` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])

   Deprecated alias to :class:`collections.OrderedDict`.

   .. versionadded:: 3.7.2

   .. deprecated:: 3.9
      :class:`collections.OrderedDict` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: ChainMap(collections.ChainMap, MutableMapping[KT, VT])

   Deprecated alias to :class:`collections.ChainMap`.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.1

   .. deprecated:: 3.9
      :class:`collections.ChainMap` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Counter(collections.Counter, Dict[T, int])

   Deprecated alias to :class:`collections.Counter`.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.1

   .. deprecated:: 3.9
      :class:`collections.Counter` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Deque(deque, MutableSequence[T])

   Deprecated alias to :class:`collections.deque`.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.1

   .. deprecated:: 3.9
      :class:`collections.deque` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. _other-concrete-types:

Aliases to other concrete types
"""""""""""""""""""""""""""""""

.. class:: Pattern
           Match

   Deprecated aliases corresponding to the return types from
   :func:`re.compile` and :func:`re.match`.

   These types (and the corresponding functions) are generic over
   :data:`AnyStr`. ``Pattern`` can be specialised as ``Pattern[str]`` or
   ``Pattern[bytes]``; ``Match`` can be specialised as ``Match[str]`` or
   ``Match[bytes]``.

   .. deprecated:: 3.9
      Classes ``Pattern`` and ``Match`` from :mod:`re` now support ``[]``.
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Text

   Deprecated alias for :class:`str`.

   ``Text`` is provided to supply a forward
   compatible path for Python 2 code: in Python 2, ``Text`` is an alias for
   ``unicode``.

   Use ``Text`` to indicate that a value must contain a unicode string in
   a manner that is compatible with both Python 2 and Python 3::

       def add_unicode_checkmark(text: Text) -> Text:
           return text + u' \u2713'

   .. versionadded:: 3.5.2

   .. deprecated:: 3.11
      Python 2 is no longer supported, and most type checkers also no longer
      support type checking Python 2 code. Removal of the alias is not
      currently planned, but users are encouraged to use
      :class:`str` instead of ``Text``.

.. _abstract-base-classes:
.. _corresponding-to-collections-in-collections-abc:

Aliases to container ABCs in :mod:`collections.abc`
"""""""""""""""""""""""""""""""""""""""""""""""""""

.. class:: AbstractSet(Collection[T_co])

   Deprecated alias to :class:`collections.abc.Set`.

   .. deprecated:: 3.9
      :class:`collections.abc.Set` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: ByteString(Sequence[int])

   This type represents the types :class:`bytes`, :class:`bytearray`,
   and :class:`memoryview` of byte sequences.

   .. deprecated-removed:: 3.9 3.14
      Prefer :class:`collections.abc.Buffer`, or a union like ``bytes | bytearray | memoryview``.

.. class:: Collection(Sized, Iterable[T_co], Container[T_co])

   Deprecated alias to :class:`collections.abc.Collection`.

   .. versionadded:: 3.6.0

   .. deprecated:: 3.9
      :class:`collections.abc.Collection` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Container(Generic[T_co])

   Deprecated alias to :class:`collections.abc.Container`.

   .. deprecated:: 3.9
      :class:`collections.abc.Container` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])

   Deprecated alias to :class:`collections.abc.ItemsView`.

   .. deprecated:: 3.9
      :class:`collections.abc.ItemsView` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: KeysView(MappingView, AbstractSet[KT_co])

   Deprecated alias to :class:`collections.abc.KeysView`.

   .. deprecated:: 3.9
      :class:`collections.abc.KeysView` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Mapping(Collection[KT], Generic[KT, VT_co])

   Deprecated alias to :class:`collections.abc.Mapping`.

   This type can be used as follows::

      def get_position_in_index(word_list: Mapping[str, int], word: str) -> int:
          return word_list[word]

   .. deprecated:: 3.9
      :class:`collections.abc.Mapping` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: MappingView(Sized)

   Deprecated alias to :class:`collections.abc.MappingView`.

   .. deprecated:: 3.9
      :class:`collections.abc.MappingView` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: MutableMapping(Mapping[KT, VT])

   Deprecated alias to :class:`collections.abc.MutableMapping`.

   .. deprecated:: 3.9
      :class:`collections.abc.MutableMapping`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: MutableSequence(Sequence[T])

   Deprecated alias to :class:`collections.abc.MutableSequence`.

   .. deprecated:: 3.9
      :class:`collections.abc.MutableSequence`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: MutableSet(AbstractSet[T])

   Deprecated alias to :class:`collections.abc.MutableSet`.

   .. deprecated:: 3.9
      :class:`collections.abc.MutableSet` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Sequence(Reversible[T_co], Collection[T_co])

   Deprecated alias to :class:`collections.abc.Sequence`.

   .. deprecated:: 3.9
      :class:`collections.abc.Sequence` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: ValuesView(MappingView, Collection[_VT_co])

   Deprecated alias to :class:`collections.abc.ValuesView`.

   .. deprecated:: 3.9
      :class:`collections.abc.ValuesView` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. _asynchronous-programming:

Aliases to asynchronous ABCs in :mod:`collections.abc`
""""""""""""""""""""""""""""""""""""""""""""""""""""""

.. class:: Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])

   Deprecated alias to :class:`collections.abc.Coroutine`.

   The variance and order of type variables
   correspond to those of :class:`Generator`, for example::

      from collections.abc import Coroutine
      c: Coroutine[list[str], str, int]  # Some coroutine defined elsewhere
      x = c.send('hi')                   # Inferred type of 'x' is list[str]
      async def bar() -> None:
          y = await c                    # Inferred type of 'y' is int

   .. versionadded:: 3.5.3

   .. deprecated:: 3.9
      :class:`collections.abc.Coroutine` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])

   Deprecated alias to :class:`collections.abc.AsyncGenerator`.

   An async generator can be annotated by the generic type
   ``AsyncGenerator[YieldType, SendType]``. For example::

      async def echo_round() -> AsyncGenerator[int, float]:
          sent = yield 0
          while sent >= 0.0:
              rounded = await round(sent)
              sent = yield rounded

   Unlike normal generators, async generators cannot return a value, so there
   is no ``ReturnType`` type parameter. As with :class:`Generator`, the
   ``SendType`` behaves contravariantly.

   If your generator will only yield values, set the ``SendType`` to
   ``None``::

      async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
          while True:
              yield start
              start = await increment(start)

   Alternatively, annotate your generator as having a return type of
   either ``AsyncIterable[YieldType]`` or ``AsyncIterator[YieldType]``::

      async def infinite_stream(start: int) -> AsyncIterator[int]:
          while True:
              yield start
              start = await increment(start)

   .. versionadded:: 3.6.1

   .. deprecated:: 3.9
      :class:`collections.abc.AsyncGenerator`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: AsyncIterable(Generic[T_co])

   Deprecated alias to :class:`collections.abc.AsyncIterable`.

   .. versionadded:: 3.5.2

   .. deprecated:: 3.9
      :class:`collections.abc.AsyncIterable` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: AsyncIterator(AsyncIterable[T_co])

   Deprecated alias to :class:`collections.abc.AsyncIterator`.

   .. versionadded:: 3.5.2

   .. deprecated:: 3.9
      :class:`collections.abc.AsyncIterator` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Awaitable(Generic[T_co])

   Deprecated alias to :class:`collections.abc.Awaitable`.

   .. versionadded:: 3.5.2

   .. deprecated:: 3.9
      :class:`collections.abc.Awaitable` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. _corresponding-to-other-types-in-collections-abc:

Aliases to other ABCs in :mod:`collections.abc`
"""""""""""""""""""""""""""""""""""""""""""""""

.. class:: Iterable(Generic[T_co])

   Deprecated alias to :class:`collections.abc.Iterable`.

   .. deprecated:: 3.9
      :class:`collections.abc.Iterable` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Iterator(Iterable[T_co])

   Deprecated alias to :class:`collections.abc.Iterator`.

   .. deprecated:: 3.9
      :class:`collections.abc.Iterator` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. data:: Callable

   Deprecated alias to :class:`collections.abc.Callable`.

   See :ref:`annotating-callables` for details on how to use
   :class:`collections.abc.Callable` and ``typing.Callable`` in type annotations.

   .. deprecated:: 3.9
      :class:`collections.abc.Callable` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

   .. versionchanged:: 3.10
      ``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
      See :pep:`612` for more details.

.. class:: Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])

   Deprecated alias to :class:`collections.abc.Generator`.

   A generator can be annotated by the generic type
   ``Generator[YieldType, SendType, ReturnType]``. For example::

      def echo_round() -> Generator[int, float, str]:
          sent = yield 0
          while sent >= 0:
              sent = yield round(sent)
          return 'Done'

   Note that unlike many other generics in the typing module, the ``SendType``
   of :class:`Generator` behaves contravariantly, not covariantly or
   invariantly.

   If your generator will only yield values, set the ``SendType`` and
   ``ReturnType`` to ``None``::

      def infinite_stream(start: int) -> Generator[int, None, None]:
          while True:
              yield start
              start += 1

   Alternatively, annotate your generator as having a return type of
   either ``Iterable[YieldType]`` or ``Iterator[YieldType]``::

      def infinite_stream(start: int) -> Iterator[int]:
          while True:
              yield start
              start += 1

   .. deprecated:: 3.9
      :class:`collections.abc.Generator` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Hashable

   Deprecated alias to :class:`collections.abc.Hashable`.

   .. deprecated:: 3.12
      Use :class:`collections.abc.Hashable` directly instead.

.. class:: Reversible(Iterable[T_co])

   Deprecated alias to :class:`collections.abc.Reversible`.

   .. deprecated:: 3.9
      :class:`collections.abc.Reversible` now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: Sized

   Deprecated alias to :class:`collections.abc.Sized`.

   .. deprecated:: 3.12
      Use :class:`collections.abc.Sized` directly instead.

.. _context-manager-types:

Aliases to :mod:`contextlib` ABCs
"""""""""""""""""""""""""""""""""

.. class:: ContextManager(Generic[T_co])

   Deprecated alias to :class:`contextlib.AbstractContextManager`.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.0

   .. deprecated:: 3.9
      :class:`contextlib.AbstractContextManager`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

.. class:: AsyncContextManager(Generic[T_co])

   Deprecated alias to :class:`contextlib.AbstractAsyncContextManager`.

   .. versionadded:: 3.5.4
   .. versionadded:: 3.6.2

   .. deprecated:: 3.9
      :class:`contextlib.AbstractAsyncContextManager`
      now supports subscripting (``[]``).
      See :pep:`585` and :ref:`types-genericalias`.

Deprecation Timeline of Major Features
======================================

Certain features in ``typing`` are deprecated and may be removed in a future
version of Python. The following table summarizes major deprecations for your
convenience. This is subject to change, and not all deprecations are listed.

.. list-table::
   :header-rows: 1

   * - Feature
     - Deprecated in
     - Projected removal
     - PEP/issue
   * - ``typing`` versions of standard collections
     - 3.9
     - Undecided (see :ref:`deprecated-aliases` for more information)
     - :pep:`585`
   * - :class:`typing.ByteString`
     - 3.9
     - 3.14
     - :gh:`91896`
   * - :data:`typing.Text`
     - 3.11
     - Undecided
     - :gh:`92332`
   * - :class:`typing.Hashable` and :class:`typing.Sized`
     - 3.12
     - Undecided
     - :gh:`94309`
   * - :data:`typing.TypeAlias`
     - 3.12
     - Undecided
     - :pep:`695`
   * - :func:`@typing.no_type_check_decorator <no_type_check_decorator>`
     - 3.13
     - 3.15
     - :gh:`106309`
   * - :data:`typing.AnyStr`
     - 3.13
     - 3.18
     - :gh:`105578`