summaryrefslogtreecommitdiffstats
path: root/Doc/library/typing.rst
blob: 89d4bba4362259fd93b72b310084ec1aa9c5b6a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
:mod:`typing` --- Support for type hints
========================================

.. module:: typing
   :synopsis: Support for type hints (see PEP 484).

**Source code:** :source:`Lib/typing.py`

.. versionadded:: 3.5

--------------

This module supports type hints as specified by :pep:`484`.  The most
fundamental support consists of the type :class:`Any`, :class:`Union`,
:class:`Tuple`, :class:`Callable`, :class:`TypeVar`, and
:class:`Generic`.  For full specification please see :pep:`484`.  For
a simplified introduction to type hints see :pep:`483`.


The function below takes and returns a string and is annotated as follows::

   def greeting(name: str) -> str:
       return 'Hello ' + name

In the function ``greeting``, the argument ``name`` is expected to be of type
:class:`str` and the return type :class:`str`. Subtypes are accepted as
arguments.

Type aliases
------------

A type alias is defined by assigning the type to the alias::

   Vector = List[float]

Callable
--------

Frameworks expecting callback functions of specific signatures might be
type hinted using ``Callable[[Arg1Type, Arg2Type], ReturnType]``.

For example::

   from typing import Callable

   def feeder(get_next_item: Callable[[], str]) -> None:
       # Body

   def async_query(on_success: Callable[[int], None],
                   on_error: Callable[[int, Exception], None]) -> None:
       # Body

It is possible to declare the return type of a callable without specifying
the call signature by substituting a literal ellipsis
for the list of arguments in the type hint: ``Callable[..., ReturnType]``.
``None`` as a type hint is a special case and is replaced by ``type(None)``.

Generics
--------

Since type information about objects kept in containers cannot be statically
inferred in a generic way, abstract base classes have been extended to support
subscription to denote expected types for container elements.

::

   from typing import Mapping, Sequence

   def notify_by_email(employees: Sequence[Employee],
                       overrides: Mapping[str, str]) -> None: ...

Generics can be parametrized by using a new factory available in typing
called :class:`TypeVar`.

::

   from typing import Sequence, TypeVar

   T = TypeVar('T')      # Declare type variable

   def first(l: Sequence[T]) -> T:   # Generic function
       return l[0]


User-defined generic types
--------------------------

A user-defined class can be defined as a generic class.

::

   from typing import TypeVar, Generic
   from logging import Logger

   T = TypeVar('T')

   class LoggedVar(Generic[T]):
       def __init__(self, value: T, name: str, logger: Logger) -> None:
           self.name = name
           self.logger = logger
           self.value = value

       def set(self, new: T) -> None:
           self.log('Set ' + repr(self.value))
           self.value = new

       def get(self) -> T:
           self.log('Get ' + repr(self.value))
           return self.value

       def log(self, message: str) -> None:
           self.logger.info('{}: {}'.format(self.name, message))

``Generic[T]`` as a base class defines that the class ``LoggedVar`` takes a
single type parameter ``T`` . This also makes ``T`` valid as a type within the
class body.

The :class:`Generic` base class uses a metaclass that defines
:meth:`__getitem__` so that ``LoggedVar[t]`` is valid as a type::

   from typing import Iterable

   def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
       for var in vars:
           var.set(0)

A generic type can have any number of type variables, and type variables may
be constrained::

   from typing import TypeVar, Generic
   ...

   T = TypeVar('T')
   S = TypeVar('S', int, str)

   class StrangePair(Generic[T, S]):
       ...

Each type variable argument to :class:`Generic` must be distinct.
This is thus invalid::

   from typing import TypeVar, Generic
   ...

   T = TypeVar('T')

   class Pair(Generic[T, T]):   # INVALID
       ...

You can use multiple inheritance with :class:`Generic`::

   from typing import TypeVar, Generic, Sized

   T = TypeVar('T')

   class LinkedList(Sized, Generic[T]):
       ...

When inheriting from generic classes, some type variables could fixed::

    from typing import TypeVar, Mapping

    T = TypeVar('T')

    class MyDict(Mapping[str, T]):
        ...

In this case ``MyDict`` has a single parameter, ``T``.

Subclassing a generic class without specifying type parameters assumes
:class:`Any` for each position. In the following example, ``MyIterable`` is
not generic but implicitly inherits from ``Iterable[Any]``::

   from typing import Iterable

   class MyIterable(Iterable): # Same as Iterable[Any]

The metaclass used by :class:`Generic` is a subclass of :class:`abc.ABCMeta`.
A generic class can be an ABC by including abstract methods or properties,
and generic classes can also have ABCs as base classes without a metaclass
conflict.  Generic metaclasses are not supported.


The :class:`Any` type
---------------------

A special kind of type is :class:`Any`. Every type is a subtype of
:class:`Any`. This is also true for the builtin type object. However, to the
static type checker these are completely different.

When the type of a value is :class:`object`, the type checker will reject
almost all operations on it, and assigning it to a variable (or using it as a
return value) of a more specialized type is a type error. On the other hand,
when a value has type :class:`Any`, the type checker will allow all operations
on it, and a value of type :class:`Any` can be assigned to a variable (or used
as a return value) of a more constrained type.


Classes, functions, and decorators
----------------------------------

The module defines the following classes, functions and decorators:

.. class:: Any

   Special type indicating an unconstrained type.

   * Any object is an instance of :class:`Any`.
   * Any class is a subclass of :class:`Any`.
   * As a special case, :class:`Any` and :class:`object` are subclasses of
     each other.

.. class:: TypeVar

    Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows::

       def repeat(x: T, n: int) -> Sequence[T]:
           """Return a list containing n references to x."""
           return [x]*n

       def longest(x: A, y: A) -> A:
           """Return the longest of two strings."""
           return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``.  Also note
    that if the arguments are instances of some subclass of :class:`str`,
    the return type is still plain :class:`str`.

    At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`.  In general,
    :func:`isinstance` and :func:`issubclass` should not be used with types.

    Type variables may be marked covariant or contravariant by passing
    ``covariant=True`` or ``contravariant=True``.  See :pep:`484` for more
    details.  By default type variables are invariant.  Alternatively,
    a type variable may specify an upper bound using ``bound=<type>``.
    This means that an actual type substituted (explicitly or implicitly)
    for the type variable must be a subclass of the boundary type,
    see :pep:`484`.

.. class:: Union

   Union type; ``Union[X, Y]`` means either X or Y.

   To define a union, use e.g. ``Union[int, str]``.  Details:

   * The arguments must be types and there must be at least one.

   * Unions of unions are flattened, e.g.::

       Union[Union[int, str], float] == Union[int, str, float]

   * Unions of a single argument vanish, e.g.::

       Union[int] == int  # The constructor actually returns int

   * Redundant arguments are skipped, e.g.::

       Union[int, str, int] == Union[int, str]

   * When comparing unions, the argument order is ignored, e.g.::

       Union[int, str] == Union[str, int]

   * If :class:`Any` is present it is the sole survivor, e.g.::

       Union[int, Any] == Any

   * You cannot subclass or instantiate a union.

   * You cannot write ``Union[X][Y]``.

   * You can use ``Optional[X]`` as a shorthand for ``Union[X, None]``.

.. class:: Optional

   Optional type.

   ``Optional[X]`` is equivalent to ``Union[X, type(None)]``.

   Note that this is not the same concept as an optional argument,
   which is one that has a default.  An optional argument with a
   default needn't use the ``Optional`` qualifier on its type
   annotation (although it is inferred if the default is ``None``).
   A mandatory argument may still have an ``Optional`` type if an
   explicit value of ``None`` is allowed.

.. class:: Tuple

  Tuple type; ``Tuple[X, Y]`` is the is the type of a tuple of two items
  with the first item of type X and the second of type Y.

  Example: ``Tuple[T1, T2]`` is a tuple of two elements corresponding
  to type variables T1 and T2.  ``Tuple[int, float, str]`` is a tuple
  of an int, a float and a string.

  To specify a variable-length tuple of homogeneous type,
  use literal ellipsis, e.g. ``Tuple[int, ...]``.

.. class:: Callable

   Callable type; ``Callable[[int], str]`` is a function of (int) -> str.

   The subscription syntax must always be used with exactly two
   values: the argument list and the return type.  The argument list
   must be a list of types; the return type must be a single type.

   There is no syntax to indicate optional or keyword arguments,
   such function types are rarely used as callback types.
   ``Callable[..., ReturnType]`` could be used to type hint a callable
   taking any number of arguments and returning ``ReturnType``.
   A plain :class:`Callable` is equivalent to ``Callable[..., Any]``.

.. class:: Generic

   Abstract base class for generic types.

   A generic type is typically declared by inheriting from an
   instantiation of this class with one or more type variables.
   For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
              # Etc.

   This class can then be used as follows::

      X = TypeVar('X')
      Y = TypeVar('Y')

      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
          try:
              return mapping[key]
          except KeyError:
              return default

.. class:: Iterable(Generic[T_co])

    A generic version of the :class:`collections.abc.Iterable`.

.. class:: Iterator(Iterable[T_co])

    A generic version of the :class:`collections.abc.Iterator`.

.. class:: SupportsInt

    An ABC with one abstract method ``__int__``.

.. class:: SupportsFloat

    An ABC with one abstract method ``__float__``.

.. class:: SupportsAbs

    An ABC with one abstract method ``__abs__`` that is covariant
    in its return type.

.. class:: SupportsRound

    An ABC with one abstract method ``__round__``
    that is covariant in its return type.

.. class:: Reversible

    An ABC with one abstract method ``__reversed__`` returning
    an ``Iterator[T_co]``.

.. class:: Container(Generic[T_co])

    A generic version of :class:`collections.abc.Container`.

.. class:: AbstractSet(Sized, Iterable[T_co], Container[T_co])

    A generic version of :class:`collections.abc.Set`.

.. class:: MutableSet(AbstractSet[T])

    A generic version of :class:`collections.abc.MutableSet`.

.. class:: Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co])

    A generic version of :class:`collections.abc.Mapping`.

.. class:: MutableMapping(Mapping[KT, VT])

    A generic version of :class:`collections.abc.MutableMapping`.

.. class:: Sequence(Sized, Iterable[T_co], Container[T_co])

    A generic version of :class:`collections.abc.Sequence`.

.. class:: MutableSequence(Sequence[T])

   A generic version of :class:`collections.abc.MutableSequence`.

.. class:: ByteString(Sequence[int])

   A generic version of :class:`collections.abc.ByteString`.

   This type represents the types :class:`bytes`, :class:`bytearray`,
   and :class:`memoryview`.

   As a shorthand for this type, :class:`bytes` can be used to
   annotate arguments of any of the types mentioned above.

.. class:: List(list, MutableSequence[T])

   Generic version of :class:`list`.
   Useful for annotating return types. To annotate arguments it is preferred
   to use abstract collection types such as :class:`Mapping`, :class:`Sequence`,
   or :class:`AbstractSet`.

   This type may be used as follows::

      T = TypeVar('T', int, float)

      def vec2(x: T, y: T) -> List[T]:
          return [x, y]

      def slice__to_4(vector: Sequence[T]) -> List[T]:
          return vector[0:4]

.. class:: AbstractSet(set, MutableSet[T])

   A generic version of :class:`collections.abc.Set`.

.. class:: MappingView(Sized, Iterable[T_co])

   A generic version of :class:`collections.abc.MappingView`.

.. class:: KeysView(MappingView[KT_co], AbstractSet[KT_co])

   A generic version of :class:`collections.abc.KeysView`.

.. class:: ItemsView(MappingView, Generic[KT_co, VT_co])

   A generic version of :class:`collections.abc.ItemsView`.

.. class:: ValuesView(MappingView[VT_co])

   A generic version of :class:`collections.abc.ValuesView`.

.. class:: Dict(dict, MutableMapping[KT, VT])

   A generic version of :class:`dict`.
   The usage of this type is as follows::

      def get_position_in_index(word_list: Dict[str, int], word: str) -> int:
          return word_list[word]

.. class:: Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

.. class:: io

   Wrapper namespace for I/O stream types.

   This defines the generic type ``IO[AnyStr]`` and aliases ``TextIO``
   and ``BinaryIO`` for respectively ``IO[str]`` and ``IO[bytes]``.
   These representing the types of I/O streams such as returned by
   :func:`open`.

.. class:: re

   Wrapper namespace for regular expression matching types.

   This defines the type aliases ``Pattern`` and ``Match`` which
   correspond to the return types from :func:`re.compile` and
   :func:`re.match`.  These types (and the corresponding functions)
   are generic in ``AnyStr`` and can be made specific by writing
   ``Pattern[str]``, ``Pattern[bytes]``, ``Match[str]``, or
   ``Match[bytes]``.

.. function:: NamedTuple(typename, fields)

   Typed version of namedtuple.

   Usage::

       Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])

   This is equivalent to::

       Employee = collections.namedtuple('Employee', ['name', 'id'])

   The resulting class has one extra attribute: _field_types,
   giving a dict mapping field names to types.  (The field names
   are in the _fields attribute, which is part of the namedtuple
   API.)

.. function:: cast(typ, val)

   Cast a value to a type.

   This returns the value unchanged.  To the type checker this
   signals that the return value has the designated type, but at
   runtime we intentionally don't check anything (we want this
   to be as fast as possible).

.. function:: get_type_hints(obj)

   Return type hints for a function or method object.

   This is often the same as ``obj.__annotations__``, but it handles
   forward references encoded as string literals, and if necessary
   adds ``Optional[t]`` if a default value equal to None is set.

.. decorator:: no_type_check(arg)

   Decorator to indicate that annotations are not type hints.

   The argument must be a class or function; if it is a class, it
   applies recursively to all methods defined in that class (but not
   to methods defined in its superclasses or subclasses).

   This mutates the function(s) in place.

.. decorator:: no_type_check_decorator(decorator)

   Decorator to give another decorator the :func:`no_type_check` effect.

   This wraps the decorator with something that wraps the decorated
   function in :func:`no_type_check`.