summaryrefslogtreecommitdiffstats
path: root/Doc/ref5.tex
blob: a4a7b530c25d0db5fcd36dac0d8802a1756c1a4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
\chapter{Expressions and conditions}
\index{expression}
\index{condition}

{\bf Note:} In this and the following chapters, extended BNF notation
will be used to describe syntax, not lexical analysis.
\index{BNF}

This chapter explains the meaning of the elements of expressions and
conditions.  Conditions are a superset of expressions, and a condition
may be used wherever an expression is required by enclosing it in
parentheses.  The only places where expressions are used in the syntax
instead of conditions is in expression statements and on the
right-hand side of assignment statements; this catches some nasty bugs
like accidentally writing \verb@x == 1@ instead of \verb@x = 1@.
\indexii{assignment}{statement}

The comma plays several roles in Python's syntax.  It is usually an
operator with a lower precedence than all others, but occasionally
serves other purposes as well; e.g. it separates function arguments,
is used in list and dictionary constructors, and has special semantics
in \verb@print@ statements.
\index{comma}

When (one alternative of) a syntax rule has the form

\begin{verbatim}
name:           othername
\end{verbatim}

and no semantics are given, the semantics of this form of \verb@name@
are the same as for \verb@othername@.
\index{syntax}

\section{Arithmetic conversions}
\indexii{arithmetic}{conversion}

When a description of an arithmetic operator below uses the phrase
``the numeric arguments are converted to a common type'',
this both means that if either argument is not a number, a
\verb@TypeError@ exception is raised, and that otherwise
the following conversions are applied:
\exindex{TypeError}
\indexii{floating point}{number}
\indexii{long}{integer}
\indexii{plain}{integer}

\begin{itemize}
\item	first, if either argument is a floating point number,
	the other is converted to floating point;
\item	else, if either argument is a long integer,
	the other is converted to long integer;
\item	otherwise, both must be plain integers and no conversion
	is necessary.
\end{itemize}

\section{Atoms}
\index{atom}

Atoms are the most basic elements of expressions.  Forms enclosed in
reverse quotes or in parentheses, brackets or braces are also
categorized syntactically as atoms.  The syntax for atoms is:

\begin{verbatim}
atom:           identifier | literal | enclosure
enclosure:      parenth_form | list_display | dict_display | string_conversion
\end{verbatim}

\subsection{Identifiers (Names)}
\index{name}
\index{identifier}

An identifier occurring as an atom is a reference to a local, global
or built-in name binding.  If a name is assigned to anywhere in a code
block (even in unreachable code), and is not mentioned in a
\verb@global@ statement in that code block, then it refers to a local
name throughout that code block.  When it is not assigned to anywhere
in the block, or when it is assigned to but also explicitly listed in
a \verb@global@ statement, it refers to a global name if one exists,
else to a built-in name (and this binding may dynamically change).
\indexii{name}{binding}
\index{code block}
\stindex{global}
\indexii{built-in}{name}
\indexii{global}{name}

When the name is bound to an object, evaluation of the atom yields
that object.  When a name is not bound, an attempt to evaluate it
raises a \verb@NameError@ exception.
\exindex{NameError}

\subsection{Literals}
\index{literal}

Python knows string and numeric literals:

\begin{verbatim}
literal:        stringliteral | integer | longinteger | floatnumber
\end{verbatim}

Evaluation of a literal yields an object of the given type (string,
integer, long integer, floating point number) with the given value.
The value may be approximated in the case of floating point literals.
See section \ref{literals} for details.

All literals correspond to immutable data types, and hence the
object's identity is less important than its value.  Multiple
evaluations of literals with the same value (either the same
occurrence in the program text or a different occurrence) may obtain
the same object or a different object with the same value.
\indexiii{immutable}{data}{type}

(In the original implementation, all literals in the same code block
with the same type and value yield the same object.)

\subsection{Parenthesized forms}
\index{parenthesized form}

A parenthesized form is an optional condition list enclosed in
parentheses:

\begin{verbatim}
parenth_form:      "(" [condition_list] ")"
\end{verbatim}

A parenthesized condition list yields whatever that condition list
yields.

An empty pair of parentheses yields an empty tuple object.  Since
tuples are immutable, the rules for literals apply here.
\indexii{empty}{tuple}

(Note that tuples are not formed by the parentheses, but rather by use
of the comma operator.  The exception is the empty tuple, for which
parentheses {\em are} required --- allowing unparenthesized ``nothing''
in expressions would cause ambiguities and allow common typos to
pass uncaught.)
\index{comma}
\indexii{tuple}{display}

\subsection{List displays}
\indexii{list}{display}

A list display is a possibly empty series of conditions enclosed in
square brackets:

\begin{verbatim}
list_display:   "[" [condition_list] "]"
\end{verbatim}

A list display yields a new list object.
\obindex{list}

If it has no condition list, the list object has no items.  Otherwise,
the elements of the condition list are evaluated from left to right
and inserted in the list object in that order.
\indexii{empty}{list}

\subsection{Dictionary displays} \label{dict}
\indexii{dictionary}{display}

A dictionary display is a possibly empty series of key/datum pairs
enclosed in curly braces:
\index{key}
\index{datum}
\index{key/datum pair}

\begin{verbatim}
dict_display:   "{" [key_datum_list] "}"
key_datum_list: key_datum ("," key_datum)* [","]
key_datum:      condition ":" condition
\end{verbatim}

A dictionary display yields a new dictionary object.
\obindex{dictionary}

The key/datum pairs are evaluated from left to right to define the
entries of the dictionary: each key object is used as a key into the
dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in
section \ref{types}.
Clashes between duplicate keys are not detected; the last
datum (textually rightmost in the display) stored for a given key
value prevails.
\exindex{TypeError}

\subsection{String conversions}
\indexii{string}{conversion}

A string conversion is a condition list enclosed in reverse (or
backward) quotes:

\begin{verbatim}
string_conversion: "`" condition_list "`"
\end{verbatim}

A string conversion evaluates the contained condition list and
converts the resulting object into a string according to rules
specific to its type.

If the object is a string, a number, \verb@None@, or a tuple, list or
dictionary containing only objects whose type is one of these, the
resulting string is a valid Python expression which can be passed to
the built-in function \verb@eval()@ to yield an expression with the
same value (or an approximation, if floating point numbers are
involved).

(In particular, converting a string adds quotes around it and converts
``funny'' characters to escape sequences that are safe to print.)

It is illegal to attempt to convert recursive objects (e.g. lists or
dictionaries that contain a reference to themselves, directly or
indirectly.)
\obindex{recursive}

\section{Primaries} \label{primaries}
\index{primary}

Primaries represent the most tightly bound operations of the language.
Their syntax is:

\begin{verbatim}
primary:        atom | attributeref | subscription | slicing | call
\end{verbatim}

\subsection{Attribute references}
\indexii{attribute}{reference}

An attribute reference is a primary followed by a period and a name:

\begin{verbatim}
attributeref:   primary "." identifier
\end{verbatim}

The primary must evaluate to an object of a type that supports
attribute references, e.g. a module or a list.  This object is then
asked to produce the attribute whose name is the identifier.  If this
attribute is not available, the exception \verb@AttributeError@ is
raised.  Otherwise, the type and value of the object produced is
determined by the object.  Multiple evaluations of the same attribute
reference may yield different objects.
\obindex{module}
\obindex{list}

\subsection{Subscriptions}
\index{subscription}

A subscription selects an item of a sequence (string, tuple or list)
or mapping (dictionary) object:
\obindex{sequence}
\obindex{mapping}
\obindex{string}
\obindex{tuple}
\obindex{list}
\obindex{dictionary}
\indexii{sequence}{item}

\begin{verbatim}
subscription:   primary "[" condition "]"
\end{verbatim}

The primary must evaluate to an object of a sequence or mapping type.

If it is a mapping, the condition must evaluate to an object whose
value is one of the keys of the mapping, and the subscription selects
the value in the mapping that corresponds to that key.

If it is a sequence, the condition must evaluate to a plain integer.
If this value is negative, the length of the sequence is added to it
(so that, e.g. \verb@x[-1]@ selects the last item of \verb@x@.)
The resulting value must be a nonnegative integer smaller than the
number of items in the sequence, and the subscription selects the item
whose index is that value (counting from zero).

A string's items are characters.  A character is not a separate data
type but a string of exactly one character.
\index{character}
\indexii{string}{item}

\subsection{Slicings}
\index{slicing}
\index{slice}

A slicing (or slice) selects a range of items in a sequence (string,
tuple or list) object:
\obindex{sequence}
\obindex{string}
\obindex{tuple}
\obindex{list}

\begin{verbatim}
slicing:        primary "[" [condition] ":" [condition] "]"
\end{verbatim}

The primary must evaluate to a sequence object.  The lower and upper
bound expressions, if present, must evaluate to plain integers;
defaults are zero and the sequence's length, respectively.  If either
bound is negative, the sequence's length is added to it.  The slicing
now selects all items with index $k$ such that $i <= k < j$ where $i$
and $j$ are the specified lower and upper bounds.  This may be an
empty sequence.  It is not an error if $i$ or $j$ lie outside the
range of valid indexes (such items don't exist so they aren't
selected).

\subsection{Calls} \label{calls}
\index{call}

A call calls a callable object (e.g. a function) with a possibly empty
series of arguments:
\obindex{callable}

\begin{verbatim}
call:           primary "(" [condition_list] ")"
\end{verbatim}

The primary must evaluate to a callable object (user-defined
functions, built-in functions, methods of built-in objects, class
objects, and methods of class instances are callable).  If it is a
class, the argument list must be empty; otherwise, the arguments are
evaluated.

A call always returns some value, possibly \verb@None@, unless it
raises an exception.  How this value is computed depends on the type
of the callable object.  If it is:

\begin{description}

\item[a user-defined function:] the code block for the function is
executed, passing it the argument list.  The first thing the code
block will do is bind the formal parameters to the arguments; this is
described in section \ref{function}.  When the code block executes a
\verb@return@ statement, this specifies the return value of the
function call.
\indexii{function}{call}
\indexiii{user-defined}{function}{call}
\obindex{user-defined function}
\obindex{function}

\item[a built-in function or method:] the result is up to the
interpreter; see the library reference manual for the descriptions of
built-in functions and methods.
\indexii{function}{call}
\indexii{built-in function}{call}
\indexii{method}{call}
\indexii{built-in method}{call}
\obindex{built-in method}
\obindex{built-in function}
\obindex{method}
\obindex{function}

\item[a class object:] a new instance of that class is returned.
\obindex{class}
\indexii{class object}{call}

\item[a class instance method:] the corresponding user-defined
function is called, with an argument list that is one longer than the
argument list of the call: the instance becomes the first argument.
\obindex{class instance}
\obindex{instance}
\indexii{instance}{call}
\indexii{class instance}{call}

\end{description}

\section{Unary arithmetic operations}
\indexiii{unary}{arithmetic}{operation}
\indexiii{unary}{bit-wise}{operation}

All unary arithmetic (and bit-wise) operations have the same priority:

\begin{verbatim}
u_expr:         primary | "-" u_expr | "+" u_expr | "~" u_expr
\end{verbatim}

The unary \verb@"-"@ (minus) operator yields the negation of its
numeric argument.
\index{negation}
\index{minus}

The unary \verb@"+"@ (plus) operator yields its numeric argument
unchanged.
\index{plus}

The unary \verb@"~"@ (invert) operator yields the bit-wise inversion
of its plain or long integer argument.  The bit-wise inversion of
\verb@x@ is defined as \verb@-(x+1)@.
\index{inversion}

In all three cases, if the argument does not have the proper type,
a \verb@TypeError@ exception is raised.
\exindex{TypeError}

\section{Binary arithmetic operations}
\indexiii{binary}{arithmetic}{operation}

The binary arithmetic operations have the conventional priority
levels.  Note that some of these operations also apply to certain
non-numeric types.  There is no ``power'' operator, so there are only
two levels, one for multiplicative operators and one for additive
operators:

\begin{verbatim}
m_expr:         u_expr | m_expr "*" u_expr
              | m_expr "/" u_expr | m_expr "%" u_expr
a_expr:         m_expr | aexpr "+" m_expr | aexpr "-" m_expr
\end{verbatim}

The \verb@"*"@ (multiplication) operator yields the product of its
arguments.  The arguments must either both be numbers, or one argument
must be a plain integer and the other must be a sequence.  In the
former case, the numbers are converted to a common type and then
multiplied together.  In the latter case, sequence repetition is
performed; a negative repetition factor yields an empty sequence.
\index{multiplication}

The \verb@"/"@ (division) operator yields the quotient of its
arguments.  The numeric arguments are first converted to a common
type.  Plain or long integer division yields an integer of the same
type; the result is that of mathematical division with the `floor'
function applied to the result.  Division by zero raises the
\verb@ZeroDivisionError@ exception.
\exindex{ZeroDivisionError}
\index{division}

The \verb@"%"@ (modulo) operator yields the remainder from the
division of the first argument by the second.  The numeric arguments
are first converted to a common type.  A zero right argument raises
the \verb@ZeroDivisionError@ exception.  The arguments may be floating
point numbers, e.g. \verb@3.14 % 0.7@ equals \verb@0.34@.  The modulo
operator always yields a result with the same sign as its second
operand (or zero); the absolute value of the result is strictly
smaller than the second operand.
\index{modulo}

The integer division and modulo operators are connected by the
following identity: \verb@x == (x/y)*y + (x%y)@.  Integer division and
modulo are also connected with the built-in function \verb@divmod()@:
\verb@divmod(x, y) == (x/y, x%y)@.  These identities don't hold for
floating point numbers; there a similar identity holds where
\verb@x/y@ is replaced by \verb@floor(x/y)@).

The \verb@"+"@ (addition) operator yields the sum of its arguments.
The arguments must either both be numbers, or both sequences of the
same type.  In the former case, the numbers are converted to a common
type and then added together.  In the latter case, the sequences are
concatenated.
\index{addition}

The \verb@"-"@ (subtraction) operator yields the difference of its
arguments.  The numeric arguments are first converted to a common
type.
\index{subtraction}

\section{Shifting operations}
\indexii{shifting}{operation}

The shifting operations have lower priority than the arithmetic
operations:

\begin{verbatim}
shift_expr:     a_expr | shift_expr ( "<<" | ">>" ) a_expr
\end{verbatim}

These operators accept plain or long integers as arguments.  The
arguments are converted to a common type.  They shift the first
argument to the left or right by the number of bits given by the
second argument.

A right shift by $n$ bits is defined as division by $2^n$.  A left
shift by $n$ bits is defined as multiplication with $2^n$; for plain
integers there is no overflow check so this drops bits and flip the
sign if the result is not less than $2^{31}$ in absolute value.

Negative shift counts raise a \verb@ValueError@ exception.
\exindex{ValueError}

\section{Binary bit-wise operations}
\indexiii{binary}{bit-wise}{operation}

Each of the three bitwise operations has a different priority level:

\begin{verbatim}
and_expr:       shift_expr | and_expr "&" shift_expr
xor_expr:       and_expr | xor_expr "^" and_expr
or_expr:       xor_expr | or_expr "|" xor_expr
\end{verbatim}

The \verb@"&"@ operator yields the bitwise AND of its arguments, which
must be plain or long integers.  The arguments are converted to a
common type.
\indexii{bit-wise}{and}

The \verb@"^"@ operator yields the bitwise XOR (exclusive OR) of its
arguments, which must be plain or long integers.  The arguments are
converted to a common type.
\indexii{bit-wise}{xor}
\indexii{exclusive}{or}

The \verb@"|"@ operator yields the bitwise (inclusive) OR of its
arguments, which must be plain or long integers.  The arguments are
converted to a common type.
\indexii{bit-wise}{or}
\indexii{inclusive}{or}

\section{Comparisons}
\index{comparison}

Contrary to C, all comparison operations in Python have the same
priority, which is lower than that of any arithmetic, shifting or
bitwise operation.  Also contrary to C, expressions like
\verb@a < b < c@ have the interpretation that is conventional in
mathematics:
\index{C}

\begin{verbatim}
comparison:     or_expr (comp_operator or_expr)*
comp_operator:  "<"|">"|"=="|">="|"<="|"<>"|"!="|"is" ["not"]|["not"] "in"
\end{verbatim}

Comparisons yield integer values: 1 for true, 0 for false.

Comparisons can be chained arbitrarily, e.g. $x < y <= z$ is
equivalent to $x < y$ \verb@and@ $y <= z$, except that $y$ is
evaluated only once (but in both cases $z$ is not evaluated at all
when $x < y$ is found to be false).
\indexii{chaining}{comparisons}

\catcode`\_=8
Formally, $e_0 op_1 e_1 op_2 e_2 ...e_{n-1} op_n e_n$ is equivalent to
$e_0 op_1 e_1$ \verb@and@ $e_1 op_2 e_2$ \verb@and@ ... \verb@and@
$e_{n-1} op_n e_n$, except that each expression is evaluated at most once.

Note that $e_0 op_1 e_1 op_2 e_2$ does not imply any kind of comparison
between $e_0$ and $e_2$, e.g. $x < y > z$ is perfectly legal.
\catcode`\_=12

The forms \verb@<>@ and \verb@!=@ are equivalent; for consistency with
C, \verb@!=@ is preferred; where \verb@!=@ is mentioned below
\verb@<>@ is also implied.

The operators {\tt "<", ">", "==", ">=", "<="}, and {\tt "!="} compare
the values of two objects.  The objects needn't have the same type.
If both are numbers, they are coverted to a common type.  Otherwise,
objects of different types {\em always} compare unequal, and are
ordered consistently but arbitrarily.

(This unusual definition of comparison is done to simplify the
definition of operations like sorting and the \verb@in@ and
\verb@not in@ operators.)

Comparison of objects of the same type depends on the type:

\begin{itemize}

\item
Numbers are compared arithmetically.

\item
Strings are compared lexicographically using the numeric equivalents
(the result of the built-in function \verb@ord@) of their characters.

\item
Tuples and lists are compared lexicographically using comparison of
corresponding items.

\item
Mappings (dictionaries) are compared through lexicographic
comparison of their sorted (key, value) lists.%
\footnote{This is expensive since it requires sorting the keys first,
but about the only sensible definition.  An earlier version of Python
compared dictionaries by identity only, but this caused surprises
because people expected to be able to test a dictionary for emptiness
by comparing it to {\tt \{\}}.}

\item
Most other types compare unequal unless they are the same object;
the choice whether one object is considered smaller or larger than
another one is made arbitrarily but consistently within one
execution of a program.

\end{itemize}

The operators \verb@in@ and \verb@not in@ test for sequence
membership: if $y$ is a sequence, $x ~\verb@in@~ y$ is true if and
only if there exists an index $i$ such that $x = y[i]$.
$x ~\verb@not in@~ y$ yields the inverse truth value.  The exception
\verb@TypeError@ is raised when $y$ is not a sequence, or when $y$ is
a string and $x$ is not a string of length one.%
\footnote{The latter restriction is sometimes a nuisance.}
\opindex{in}
\opindex{not in}
\indexii{membership}{test}
\obindex{sequence}

The operators \verb@is@ and \verb@is not@ test for object identity:
$x ~\verb@is@~ y$ is true if and only if $x$ and $y$ are the same
object.  $x ~\verb@is not@~ y$ yields the inverse truth value.
\opindex{is}
\opindex{is not}
\indexii{identity}{test}

\section{Boolean operations} \label{Booleans}
\indexii{Boolean}{operation}

Boolean operations have the lowest priority of all Python operations:

\begin{verbatim}
condition:      or_test | lambda_form
or_test:        and_test | or_test "or" and_test
and_test:       not_test | and_test "and" not_test
not_test:       comparison | "not" not_test
lambda_form:	"lambda" [parameter_list]: condition
\end{verbatim}

In the context of Boolean operations, and also when conditions are
used by control flow statements, the following values are interpreted
as false: \verb@None@, numeric zero of all types, empty sequences
(strings, tuples and lists), and empty mappings (dictionaries).  All
other values are interpreted as true.

The operator \verb@not@ yields 1 if its argument is false, 0 otherwise.
\opindex{not}

The condition $x ~\verb@and@~ y$ first evaluates $x$; if $x$ is false,
its value is returned; otherwise, $y$ is evaluated and the resulting
value is returned.
\opindex{and}

The condition $x ~\verb@or@~ y$ first evaluates $x$; if $x$ is true,
its value is returned; otherwise, $y$ is evaluated and the resulting
value is returned.
\opindex{or}

(Note that \verb@and@ and \verb@or@ do not restrict the value and type
they return to 0 and 1, but rather return the last evaluated argument.
This is sometimes useful, e.g. if \verb@s@ is a string that should be
replaced by a default value if it is empty, the expression
\verb@s or 'foo'@ yields the desired value.  Because \verb@not@ has to
invent a value anyway, it does not bother to return a value of the
same type as its argument, so e.g. \verb@not 'foo'@ yields \verb@0@,
not \verb@''@.)

Lambda forms (lambda expressions) have the same syntactic position as
conditions.  They are a shorthand to create anonymous functions; the
expression {\em {\tt lambda} arguments{\tt :} condition}
yields a function object that behaves virtually identical to one
defined with
{\em {\tt def} name {\tt (}arguments{\tt ): return} condition}.
See section \ref{function} for the syntax of
parameter lists.  Note that functions created with lambda forms cannot
contain statements.
\label{lambda}
\indexii{lambda}{expression}
\indexii{lambda}{form}
\indexii{anonmymous}{function}

\section{Expression lists and condition lists}
\indexii{expression}{list}
\indexii{condition}{list}

\begin{verbatim}
expr_list:      or_expr ("," or_expr)* [","]
cond_list:      condition ("," condition)* [","]
\end{verbatim}

The only difference between expression lists and condition lists is
the lowest priority of operators that can be used in them without
being enclosed in parentheses; condition lists allow all operators,
while expression lists don't allow comparisons and Boolean operators
(they do allow bitwise and shift operators though).

Expression lists are used in expression statements and assignments;
condition lists are used everywhere else where a list of
comma-separated values is required.

An expression (condition) list containing at least one comma yields a
tuple.  The length of the tuple is the number of expressions
(conditions) in the list.  The expressions (conditions) are evaluated
from left to right.  (Condition lists are used syntactically is a few
places where no tuple is constructed but a list of values is needed
nevertheless.)
\obindex{tuple}

The trailing comma is required only to create a single tuple (a.k.a. a
{\em singleton}); it is optional in all other cases.  A single
expression (condition) without a trailing comma doesn't create a
tuple, but rather yields the value of that expression (condition).
\indexii{trailing}{comma}

(To create an empty tuple, use an empty pair of parentheses:
\verb@()@.)