summaryrefslogtreecommitdiffstats
path: root/Doc/reference/simple_stmts.rst
blob: 04132c78ce77a6704c3a48891f5c777632e2aeaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

.. _simple:

*****************
Simple statements
*****************

.. index:: pair: simple; statement

A simple statement is comprised within a single logical line. Several simple
statements may occur on a single line separated by semicolons.  The syntax for
simple statements is:

.. productionlist:: python-grammar
   simple_stmt: `expression_stmt`
              : | `assert_stmt`
              : | `assignment_stmt`
              : | `augmented_assignment_stmt`
              : | `annotated_assignment_stmt`
              : | `pass_stmt`
              : | `del_stmt`
              : | `return_stmt`
              : | `yield_stmt`
              : | `raise_stmt`
              : | `break_stmt`
              : | `continue_stmt`
              : | `import_stmt`
              : | `future_stmt`
              : | `global_stmt`
              : | `nonlocal_stmt`
              : | `type_stmt`


.. _exprstmts:

Expression statements
=====================

.. index::
   pair: expression; statement
   pair: expression; list
.. index:: pair: expression; list

Expression statements are used (mostly interactively) to compute and write a
value, or (usually) to call a procedure (a function that returns no meaningful
result; in Python, procedures return the value ``None``).  Other uses of
expression statements are allowed and occasionally useful.  The syntax for an
expression statement is:

.. productionlist:: python-grammar
   expression_stmt: `starred_expression`

An expression statement evaluates the expression list (which may be a single
expression).

.. index::
   pair: built-in function; repr
   pair: object; None
   pair: string; conversion
   single: output
   pair: standard; output
   pair: writing; values
   pair: procedure; call

In interactive mode, if the value is not ``None``, it is converted to a string
using the built-in :func:`repr` function and the resulting string is written to
standard output on a line by itself (except if the result is ``None``, so that
procedure calls do not cause any output.)

.. _assignment:

Assignment statements
=====================

.. index::
   single: = (equals); assignment statement
   pair: assignment; statement
   pair: binding; name
   pair: rebinding; name
   pair: object; mutable
   pair: attribute; assignment

Assignment statements are used to (re)bind names to values and to modify
attributes or items of mutable objects:

.. productionlist:: python-grammar
   assignment_stmt: (`target_list` "=")+ (`starred_expression` | `yield_expression`)
   target_list: `target` ("," `target`)* [","]
   target: `identifier`
         : | "(" [`target_list`] ")"
         : | "[" [`target_list`] "]"
         : | `attributeref`
         : | `subscription`
         : | `slicing`
         : | "*" `target`

(See section :ref:`primaries` for the syntax definitions for *attributeref*,
*subscription*, and *slicing*.)

An assignment statement evaluates the expression list (remember that this can be
a single expression or a comma-separated list, the latter yielding a tuple) and
assigns the single resulting object to each of the target lists, from left to
right.

.. index::
   single: target
   pair: target; list

Assignment is defined recursively depending on the form of the target (list).
When a target is part of a mutable object (an attribute reference, subscription
or slicing), the mutable object must ultimately perform the assignment and
decide about its validity, and may raise an exception if the assignment is
unacceptable.  The rules observed by various types and the exceptions raised are
given with the definition of the object types (see section :ref:`types`).

.. index:: triple: target; list; assignment
   single: , (comma); in target list
   single: * (asterisk); in assignment target list
   single: [] (square brackets); in assignment target list
   single: () (parentheses); in assignment target list

Assignment of an object to a target list, optionally enclosed in parentheses or
square brackets, is recursively defined as follows.

* If the target list is a single target with no trailing comma,
  optionally in parentheses, the object is assigned to that target.

* Else:

  * If the target list contains one target prefixed with an asterisk, called a
    "starred" target: The object must be an iterable with at least as many items
    as there are targets in the target list, minus one.  The first items of the
    iterable are assigned, from left to right, to the targets before the starred
    target.  The final items of the iterable are assigned to the targets after
    the starred target.  A list of the remaining items in the iterable is then
    assigned to the starred target (the list can be empty).

  * Else: The object must be an iterable with the same number of items as there
    are targets in the target list, and the items are assigned, from left to
    right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

* If the target is an identifier (name):

  * If the name does not occur in a :keyword:`global` or :keyword:`nonlocal`
    statement in the current code block: the name is bound to the object in the
    current local namespace.

  * Otherwise: the name is bound to the object in the global namespace or the
    outer namespace determined by :keyword:`nonlocal`, respectively.

  .. index:: single: destructor

  The name is rebound if it was already bound.  This may cause the reference
  count for the object previously bound to the name to reach zero, causing the
  object to be deallocated and its destructor (if it has one) to be called.

  .. index:: pair: attribute; assignment

* If the target is an attribute reference: The primary expression in the
  reference is evaluated.  It should yield an object with assignable attributes;
  if this is not the case, :exc:`TypeError` is raised.  That object is then
  asked to assign the assigned object to the given attribute; if it cannot
  perform the assignment, it raises an exception (usually but not necessarily
  :exc:`AttributeError`).

  .. _attr-target-note:

  Note: If the object is a class instance and the attribute reference occurs on
  both sides of the assignment operator, the right-hand side expression, ``a.x`` can access
  either an instance attribute or (if no instance attribute exists) a class
  attribute.  The left-hand side target ``a.x`` is always set as an instance attribute,
  creating it if necessary.  Thus, the two occurrences of ``a.x`` do not
  necessarily refer to the same attribute: if the right-hand side expression refers to a
  class attribute, the left-hand side creates a new instance attribute as the target of the
  assignment::

     class Cls:
         x = 3             # class variable
     inst = Cls()
     inst.x = inst.x + 1   # writes inst.x as 4 leaving Cls.x as 3

  This description does not necessarily apply to descriptor attributes, such as
  properties created with :func:`property`.

  .. index::
     pair: subscription; assignment
     pair: object; mutable

* If the target is a subscription: The primary expression in the reference is
  evaluated.  It should yield either a mutable sequence object (such as a list)
  or a mapping object (such as a dictionary).  Next, the subscript expression is
  evaluated.

  .. index::
     pair: object; sequence
     pair: object; list

  If the primary is a mutable sequence object (such as a list), the subscript
  must yield an integer.  If it is negative, the sequence's length is added to
  it.  The resulting value must be a nonnegative integer less than the
  sequence's length, and the sequence is asked to assign the assigned object to
  its item with that index.  If the index is out of range, :exc:`IndexError` is
  raised (assignment to a subscripted sequence cannot add new items to a list).

  .. index::
     pair: object; mapping
     pair: object; dictionary

  If the primary is a mapping object (such as a dictionary), the subscript must
  have a type compatible with the mapping's key type, and the mapping is then
  asked to create a key/value pair which maps the subscript to the assigned
  object.  This can either replace an existing key/value pair with the same key
  value, or insert a new key/value pair (if no key with the same value existed).

  For user-defined objects, the :meth:`~object.__setitem__` method is called with
  appropriate arguments.

  .. index:: pair: slicing; assignment

* If the target is a slicing: The primary expression in the reference is
  evaluated.  It should yield a mutable sequence object (such as a list).  The
  assigned object should be a sequence object of the same type.  Next, the lower
  and upper bound expressions are evaluated, insofar they are present; defaults
  are zero and the sequence's length.  The bounds should evaluate to integers.
  If either bound is negative, the sequence's length is added to it.  The
  resulting bounds are clipped to lie between zero and the sequence's length,
  inclusive.  Finally, the sequence object is asked to replace the slice with
  the items of the assigned sequence.  The length of the slice may be different
  from the length of the assigned sequence, thus changing the length of the
  target sequence, if the target sequence allows it.

.. impl-detail::

   In the current implementation, the syntax for targets is taken to be the same
   as for expressions, and invalid syntax is rejected during the code generation
   phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the
left-hand side and the right-hand side are 'simultaneous' (for example ``a, b =
b, a`` swaps two variables), overlaps *within* the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion.  For instance,
the following program prints ``[0, 2]``::

   x = [0, 1]
   i = 0
   i, x[i] = 1, 2         # i is updated, then x[i] is updated
   print(x)


.. seealso::

   :pep:`3132` - Extended Iterable Unpacking
      The specification for the ``*target`` feature.


.. _augassign:

Augmented assignment statements
-------------------------------

.. index::
   pair: augmented; assignment
   single: statement; assignment, augmented
   single: +=; augmented assignment
   single: -=; augmented assignment
   single: *=; augmented assignment
   single: /=; augmented assignment
   single: %=; augmented assignment
   single: &=; augmented assignment
   single: ^=; augmented assignment
   single: |=; augmented assignment
   single: **=; augmented assignment
   single: //=; augmented assignment
   single: >>=; augmented assignment
   single: <<=; augmented assignment

Augmented assignment is the combination, in a single statement, of a binary
operation and an assignment statement:

.. productionlist:: python-grammar
   augmented_assignment_stmt: `augtarget` `augop` (`expression_list` | `yield_expression`)
   augtarget: `identifier` | `attributeref` | `subscription` | `slicing`
   augop: "+=" | "-=" | "*=" | "@=" | "/=" | "//=" | "%=" | "**="
        : | ">>=" | "<<=" | "&=" | "^=" | "|="

(See section :ref:`primaries` for the syntax definitions of the last three
symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment
statements, cannot be an unpacking) and the expression list, performs the binary
operation specific to the type of assignment on the two operands, and assigns
the result to the original target.  The target is only evaluated once.

An augmented assignment expression like ``x += 1`` can be rewritten as ``x = x +
1`` to achieve a similar, but not exactly equal effect. In the augmented
version, ``x`` is only evaluated once. Also, when possible, the actual operation
is performed *in-place*, meaning that rather than creating a new object and
assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side
*before* evaluating the right-hand side.  For example, ``a[i] += f(x)`` first
looks-up ``a[i]``, then it evaluates ``f(x)`` and performs the addition, and
lastly, it writes the result back to ``a[i]``.

With the exception of assigning to tuples and multiple targets in a single
statement, the assignment done by augmented assignment statements is handled the
same way as normal assignments. Similarly, with the exception of the possible
*in-place* behavior, the binary operation performed by augmented assignment is
the same as the normal binary operations.

For targets which are attribute references, the same :ref:`caveat about class
and instance attributes <attr-target-note>` applies as for regular assignments.


.. _annassign:

Annotated assignment statements
-------------------------------

.. index::
   pair: annotated; assignment
   single: statement; assignment, annotated
   single: : (colon); annotated variable

:term:`Annotation <variable annotation>` assignment is the combination, in a single
statement, of a variable or attribute annotation and an optional assignment statement:

.. productionlist:: python-grammar
   annotated_assignment_stmt: `augtarget` ":" `expression`
                            : ["=" (`starred_expression` | `yield_expression`)]

The difference from normal :ref:`assignment` is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope,
the annotations are evaluated and stored in a special class or module
attribute :attr:`__annotations__`
that is a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically
created at the start of class or module body execution, if annotations
are found statically.

For expressions as assignment targets, the annotations are evaluated if
in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for
that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated
assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression
target, then the interpreter evaluates the target except for the last
:meth:`~object.__setitem__` or :meth:`~object.__setattr__` call.

.. seealso::

   :pep:`526` - Syntax for Variable Annotations
      The proposal that added syntax for annotating the types of variables
      (including class variables and instance variables), instead of expressing
      them through comments.

   :pep:`484` - Type hints
      The proposal that added the :mod:`typing` module to provide a standard
      syntax for type annotations that can be used in static analysis tools and
      IDEs.

.. versionchanged:: 3.8
   Now annotated assignments allow the same expressions in the right hand side as
   regular assignments. Previously, some expressions (like un-parenthesized
   tuple expressions) caused a syntax error.


.. _assert:

The :keyword:`!assert` statement
================================

.. index::
   ! pair: statement; assert
   pair: debugging; assertions
   single: , (comma); expression list

Assert statements are a convenient way to insert debugging assertions into a
program:

.. productionlist:: python-grammar
   assert_stmt: "assert" `expression` ["," `expression`]

The simple form, ``assert expression``, is equivalent to ::

   if __debug__:
       if not expression: raise AssertionError

The extended form, ``assert expression1, expression2``, is equivalent to ::

   if __debug__:
       if not expression1: raise AssertionError(expression2)

.. index::
   single: __debug__
   pair: exception; AssertionError

These equivalences assume that :const:`__debug__` and :exc:`AssertionError` refer to
the built-in variables with those names.  In the current implementation, the
built-in variable :const:`__debug__` is ``True`` under normal circumstances,
``False`` when optimization is requested (command line option :option:`-O`).  The current
code generator emits no code for an assert statement when optimization is
requested at compile time.  Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed
as part of the stack trace.

Assignments to :const:`__debug__` are illegal.  The value for the built-in variable
is determined when the interpreter starts.


.. _pass:

The :keyword:`!pass` statement
==============================

.. index::
   pair: statement; pass
   pair: null; operation
           pair: null; operation

.. productionlist:: python-grammar
   pass_stmt: "pass"

:keyword:`pass` is a null operation --- when it is executed, nothing happens.
It is useful as a placeholder when a statement is required syntactically, but no
code needs to be executed, for example::

   def f(arg): pass    # a function that does nothing (yet)

   class C: pass       # a class with no methods (yet)


.. _del:

The :keyword:`!del` statement
=============================

.. index::
   ! pair: statement; del
   pair: deletion; target
   triple: deletion; target; list

.. productionlist:: python-grammar
   del_stmt: "del" `target_list`

Deletion is recursively defined very similar to the way assignment is defined.
Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

.. index::
   pair: statement; global
   pair: unbinding; name

Deletion of a name removes the binding of that name from the local or global
namespace, depending on whether the name occurs in a :keyword:`global` statement
in the same code block.  If the name is unbound, a :exc:`NameError` exception
will be raised.

.. index:: pair: attribute; deletion

Deletion of attribute references, subscriptions and slicings is passed to the
primary object involved; deletion of a slicing is in general equivalent to
assignment of an empty slice of the right type (but even this is determined by
the sliced object).

.. versionchanged:: 3.2
   Previously it was illegal to delete a name from the local namespace if it
   occurs as a free variable in a nested block.


.. _return:

The :keyword:`!return` statement
================================

.. index::
   ! pair: statement; return
   pair: function; definition
   pair: class; definition

.. productionlist:: python-grammar
   return_stmt: "return" [`expression_list`]

:keyword:`return` may only occur syntactically nested in a function definition,
not within a nested class definition.

If an expression list is present, it is evaluated, else ``None`` is substituted.

:keyword:`return` leaves the current function call with the expression list (or
``None``) as return value.

.. index:: pair: keyword; finally

When :keyword:`return` passes control out of a :keyword:`try` statement with a
:keyword:`finally` clause, that :keyword:`!finally` clause is executed before
really leaving the function.

In a generator function, the :keyword:`return` statement indicates that the
generator is done and will cause :exc:`StopIteration` to be raised. The returned
value (if any) is used as an argument to construct :exc:`StopIteration` and
becomes the :attr:`StopIteration.value` attribute.

In an asynchronous generator function, an empty :keyword:`return` statement
indicates that the asynchronous generator is done and will cause
:exc:`StopAsyncIteration` to be raised.  A non-empty :keyword:`!return`
statement is a syntax error in an asynchronous generator function.

.. _yield:

The :keyword:`!yield` statement
===============================

.. index::
   pair: statement; yield
   single: generator; function
   single: generator; iterator
   single: function; generator
   pair: exception; StopIteration

.. productionlist:: python-grammar
   yield_stmt: `yield_expression`

A :keyword:`yield` statement is semantically equivalent to a :ref:`yield
expression <yieldexpr>`. The yield statement can be used to omit the parentheses
that would otherwise be required in the equivalent yield expression
statement. For example, the yield statements ::

  yield <expr>
  yield from <expr>

are equivalent to the yield expression statements ::

  (yield <expr>)
  (yield from <expr>)

Yield expressions and statements are only used when defining a :term:`generator`
function, and are only used in the body of the generator function.  Using yield
in a function definition is sufficient to cause that definition to create a
generator function instead of a normal function.

For full details of :keyword:`yield` semantics, refer to the
:ref:`yieldexpr` section.

.. _raise:

The :keyword:`!raise` statement
===============================

.. index::
   ! pair: statement; raise
   single: exception
   pair: raising; exception
   single: __traceback__ (exception attribute)

.. productionlist:: python-grammar
   raise_stmt: "raise" [`expression` ["from" `expression`]]

If no expressions are present, :keyword:`raise` re-raises the
exception that is currently being handled, which is also known as the *active exception*.
If there isn't currently an active exception, a :exc:`RuntimeError` exception is raised
indicating that this is an error.

Otherwise, :keyword:`raise` evaluates the first expression as the exception
object.  It must be either a subclass or an instance of :class:`BaseException`.
If it is a class, the exception instance will be obtained when needed by
instantiating the class with no arguments.

The :dfn:`type` of the exception is the exception instance's class, the
:dfn:`value` is the instance itself.

.. index:: pair: object; traceback

A traceback object is normally created automatically when an exception is raised
and attached to it as the :attr:`~BaseException.__traceback__` attribute.
You can create an exception and set your own traceback in one step using the
:meth:`~BaseException.with_traceback` exception method (which returns the
same exception instance, with its traceback set to its argument), like so::

   raise Exception("foo occurred").with_traceback(tracebackobj)

.. index:: pair: exception; chaining
           __cause__ (exception attribute)
           __context__ (exception attribute)

The ``from`` clause is used for exception chaining: if given, the second
*expression* must be another exception class or instance. If the second
expression is an exception instance, it will be attached to the raised
exception as the :attr:`~BaseException.__cause__` attribute (which is writable). If the
expression is an exception class, the class will be instantiated and the
resulting exception instance will be attached to the raised exception as the
:attr:`!__cause__` attribute. If the raised exception is not handled, both
exceptions will be printed:

.. code-block:: pycon

   >>> try:
   ...     print(1 / 0)
   ... except Exception as exc:
   ...     raise RuntimeError("Something bad happened") from exc
   ...
   Traceback (most recent call last):
     File "<stdin>", line 2, in <module>
       print(1 / 0)
             ~~^~~
   ZeroDivisionError: division by zero

   The above exception was the direct cause of the following exception:

   Traceback (most recent call last):
     File "<stdin>", line 4, in <module>
       raise RuntimeError("Something bad happened") from exc
   RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when
an exception is already being handled.  An exception may be handled
when an :keyword:`except` or :keyword:`finally` clause, or a
:keyword:`with` statement, is used.  The previous exception is then
attached as the new exception's :attr:`~BaseException.__context__` attribute:

.. code-block:: pycon

   >>> try:
   ...     print(1 / 0)
   ... except:
   ...     raise RuntimeError("Something bad happened")
   ...
   Traceback (most recent call last):
     File "<stdin>", line 2, in <module>
       print(1 / 0)
             ~~^~~
   ZeroDivisionError: division by zero

   During handling of the above exception, another exception occurred:

   Traceback (most recent call last):
     File "<stdin>", line 4, in <module>
       raise RuntimeError("Something bad happened")
   RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying :const:`None` in
the ``from`` clause:

.. doctest::

   >>> try:
   ...     print(1 / 0)
   ... except:
   ...     raise RuntimeError("Something bad happened") from None
   ...
   Traceback (most recent call last):
     File "<stdin>", line 4, in <module>
   RuntimeError: Something bad happened

Additional information on exceptions can be found in section :ref:`exceptions`,
and information about handling exceptions is in section :ref:`try`.

.. versionchanged:: 3.3
    :const:`None` is now permitted as ``Y`` in ``raise X from Y``.

.. versionadded:: 3.3
    The :attr:`~BaseException.__suppress_context__` attribute to suppress
    automatic display of the exception context.

.. versionchanged:: 3.11
    If the traceback of the active exception is modified in an :keyword:`except`
    clause, a subsequent ``raise`` statement re-raises the exception with the
    modified traceback. Previously, the exception was re-raised with the
    traceback it had when it was caught.

.. _break:

The :keyword:`!break` statement
===============================

.. index::
   ! pair: statement; break
   pair: statement; for
   pair: statement; while
   pair: loop; statement

.. productionlist:: python-grammar
   break_stmt: "break"

:keyword:`break` may only occur syntactically nested in a :keyword:`for` or
:keyword:`while` loop, but not nested in a function or class definition within
that loop.

.. index:: pair: keyword; else
           pair: loop control; target

It terminates the nearest enclosing loop, skipping the optional :keyword:`!else`
clause if the loop has one.

If a :keyword:`for` loop is terminated by :keyword:`break`, the loop control
target keeps its current value.

.. index:: pair: keyword; finally

When :keyword:`break` passes control out of a :keyword:`try` statement with a
:keyword:`finally` clause, that :keyword:`!finally` clause is executed before
really leaving the loop.


.. _continue:

The :keyword:`!continue` statement
==================================

.. index::
   ! pair: statement; continue
   pair: statement; for
   pair: statement; while
   pair: loop; statement
   pair: keyword; finally

.. productionlist:: python-grammar
   continue_stmt: "continue"

:keyword:`continue` may only occur syntactically nested in a :keyword:`for` or
:keyword:`while` loop, but not nested in a function or class definition within
that loop.  It continues with the next cycle of the nearest enclosing loop.

When :keyword:`continue` passes control out of a :keyword:`try` statement with a
:keyword:`finally` clause, that :keyword:`!finally` clause is executed before
really starting the next loop cycle.


.. _import:
.. _from:

The :keyword:`!import` statement
================================

.. index::
   ! pair: statement; import
   single: module; importing
   pair: name; binding
   pair: keyword; from
   pair: keyword; as
   pair: exception; ImportError
   single: , (comma); import statement

.. productionlist:: python-grammar
   import_stmt: "import" `module` ["as" `identifier`] ("," `module` ["as" `identifier`])*
              : | "from" `relative_module` "import" `identifier` ["as" `identifier`]
              : ("," `identifier` ["as" `identifier`])*
              : | "from" `relative_module` "import" "(" `identifier` ["as" `identifier`]
              : ("," `identifier` ["as" `identifier`])* [","] ")"
              : | "from" `relative_module` "import" "*"
   module: (`identifier` ".")* `identifier`
   relative_module: "."* `module` | "."+

The basic import statement (no :keyword:`from` clause) is executed in two
steps:

#. find a module, loading and initializing it if necessary
#. define a name or names in the local namespace for the scope where
   the :keyword:`import` statement occurs.

When the statement contains multiple clauses (separated by
commas) the two steps are carried out separately for each clause, just
as though the clauses had been separated out into individual import
statements.

The details of the first step, finding and loading modules, are described in
greater detail in the section on the :ref:`import system <importsystem>`,
which also describes the various types of packages and modules that can
be imported, as well as all the hooks that can be used to customize
the import system. Note that failures in this step may indicate either
that the module could not be located, *or* that an error occurred while
initializing the module, which includes execution of the module's code.

If the requested module is retrieved successfully, it will be made
available in the local namespace in one of three ways:

.. index:: single: as; import statement

* If the module name is followed by :keyword:`!as`, then the name
  following :keyword:`!as` is bound directly to the imported module.
* If no other name is specified, and the module being imported is a top
  level module, the module's name is bound in the local namespace as a
  reference to the imported module
* If the module being imported is *not* a top level module, then the name
  of the top level package that contains the module is bound in the local
  namespace as a reference to the top level package. The imported module
  must be accessed using its full qualified name rather than directly


.. index::
   pair: name; binding
   single: from; import statement

The :keyword:`from` form uses a slightly more complex process:

#. find the module specified in the :keyword:`from` clause, loading and
   initializing it if necessary;
#. for each of the identifiers specified in the :keyword:`import` clauses:

   #. check if the imported module has an attribute by that name
   #. if not, attempt to import a submodule with that name and then
      check the imported module again for that attribute
   #. if the attribute is not found, :exc:`ImportError` is raised.
   #. otherwise, a reference to that value is stored in the local namespace,
      using the name in the :keyword:`!as` clause if it is present,
      otherwise using the attribute name

Examples::

   import foo                 # foo imported and bound locally
   import foo.bar.baz         # foo, foo.bar, and foo.bar.baz imported, foo bound locally
   import foo.bar.baz as fbb  # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz bound as fbb
   from foo.bar import baz    # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz bound as baz
   from foo import attr       # foo imported and foo.attr bound as attr

.. index:: single: * (asterisk); import statement

If the list of identifiers is replaced by a star (``'*'``), all public
names defined in the module are bound in the local namespace for the scope
where the :keyword:`import` statement occurs.

.. index:: single: __all__ (optional module attribute)

The *public names* defined by a module are determined by checking the module's
namespace for a variable named ``__all__``; if defined, it must be a sequence
of strings which are names defined or imported by that module.  The names
given in ``__all__`` are all considered public and are required to exist.  If
``__all__`` is not defined, the set of public names includes all names found
in the module's namespace which do not begin with an underscore character
(``'_'``).  ``__all__`` should contain the entire public API. It is intended
to avoid accidentally exporting items that are not part of the API (such as
library modules which were imported and used within the module).

The wild card form of import --- ``from module import *`` --- is only allowed at
the module level.  Attempting to use it in class or function definitions will
raise a :exc:`SyntaxError`.

.. index::
    single: relative; import

When specifying what module to import you do not have to specify the absolute
name of the module. When a module or package is contained within another
package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the
specified module or package after :keyword:`from` you can specify how high to
traverse up the current package hierarchy without specifying exact names. One
leading dot means the current package where the module making the import
exists. Two dots means up one package level. Three dots is up two levels, etc.
So if you execute ``from . import mod`` from a module in the ``pkg`` package
then you will end up importing ``pkg.mod``. If you execute ``from ..subpkg2
import mod`` from within ``pkg.subpkg1`` you will import ``pkg.subpkg2.mod``.
The specification for relative imports is contained in
the :ref:`relativeimports` section.

:func:`importlib.import_module` is provided to support applications that
determine dynamically the modules to be loaded.

.. audit-event:: import module,filename,sys.path,sys.meta_path,sys.path_hooks import

.. _future:

Future statements
-----------------

.. index::
   pair: future; statement
   single: __future__; future statement

A :dfn:`future statement` is a directive to the compiler that a particular
module should be compiled using syntax or semantics that will be available in a
specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python
that introduce incompatible changes to the language.  It allows use of the new
features on a per-module basis before the release in which the feature becomes
standard.

.. productionlist:: python-grammar
   future_stmt: "from" "__future__" "import" `feature` ["as" `identifier`]
              : ("," `feature` ["as" `identifier`])*
              : | "from" "__future__" "import" "(" `feature` ["as" `identifier`]
              : ("," `feature` ["as" `identifier`])* [","] ")"
   feature: `identifier`

A future statement must appear near the top of the module.  The only lines that
can appear before a future statement are:

* the module docstring (if any),
* comments,
* blank lines, and
* other future statements.

The only feature that requires using the future statement is
``annotations`` (see :pep:`563`).

All historical features enabled by the future statement are still recognized
by Python 3.  The list includes ``absolute_import``, ``division``,
``generators``, ``generator_stop``, ``unicode_literals``,
``print_function``, ``nested_scopes`` and ``with_statement``.  They are
all redundant because they are always enabled, and only kept for
backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes
to the semantics of core constructs are often implemented by generating
different code.  It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler
may need to parse the module differently.  Such decisions cannot be pushed off
until runtime.

For any given release, the compiler knows which feature names have been defined,
and raises a compile-time error if a future statement contains a feature not
known to it.

The direct runtime semantics are the same as for any import statement: there is
a standard module :mod:`__future__`, described later, and it will be imported in
the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the
future statement.

Note that there is nothing special about the statement::

   import __future__ [as name]

That is not a future statement; it's an ordinary import statement with no
special semantics or syntax restrictions.

Code compiled by calls to the built-in functions :func:`exec` and :func:`compile`
that occur in a module :mod:`!M` containing a future statement will, by default,
use the new syntax or semantics associated with the future statement.  This can
be controlled by optional arguments to :func:`compile` --- see the documentation
of that function for details.

A future statement typed at an interactive interpreter prompt will take effect
for the rest of the interpreter session.  If an interpreter is started with the
:option:`-i` option, is passed a script name to execute, and the script includes
a future statement, it will be in effect in the interactive session started
after the script is executed.

.. seealso::

   :pep:`236` - Back to the __future__
      The original proposal for the __future__ mechanism.


.. _global:

The :keyword:`!global` statement
================================

.. index::
   ! pair: statement; global
   triple: global; name; binding
   single: , (comma); identifier list

.. productionlist:: python-grammar
   global_stmt: "global" `identifier` ("," `identifier`)*

The :keyword:`global` statement is a declaration which holds for the entire
current code block.  It means that the listed identifiers are to be interpreted
as globals.  It would be impossible to assign to a global variable without
:keyword:`!global`, although free variables may refer to globals without being
declared global.

Names listed in a :keyword:`global` statement must not be used in the same code
block textually preceding that :keyword:`!global` statement.

Names listed in a :keyword:`global` statement must not be defined as formal
parameters, or as targets in :keyword:`with` statements or :keyword:`except` clauses, or in a :keyword:`for` target list, :keyword:`class`
definition, function definition, :keyword:`import` statement, or variable
annotation.

.. impl-detail::

   The current implementation does not enforce some of these restrictions, but
   programs should not abuse this freedom, as future implementations may enforce
   them or silently change the meaning of the program.

.. index::
   pair: built-in function; exec
   pair: built-in function; eval
   pair: built-in function; compile

**Programmer's note:** :keyword:`global` is a directive to the parser.  It
applies only to code parsed at the same time as the :keyword:`!global` statement.
In particular, a :keyword:`!global` statement contained in a string or code
object supplied to the built-in :func:`exec` function does not affect the code
block *containing* the function call, and code contained in such a string is
unaffected by :keyword:`!global` statements in the code containing the function
call.  The same applies to the :func:`eval` and :func:`compile` functions.


.. _nonlocal:

The :keyword:`!nonlocal` statement
==================================

.. index:: pair: statement; nonlocal
   single: , (comma); identifier list

.. productionlist:: python-grammar
   nonlocal_stmt: "nonlocal" `identifier` ("," `identifier`)*

The :keyword:`nonlocal` statement causes the listed identifiers to refer to
previously bound variables in the nearest enclosing scope excluding globals.
This is important because the default behavior for binding is to search the
local namespace first.  The statement allows encapsulated code to rebind
variables outside of the local scope besides the global (module) scope.

Names listed in a :keyword:`nonlocal` statement, unlike those listed in a
:keyword:`global` statement, must refer to pre-existing bindings in an
enclosing scope (the scope in which a new binding should be created cannot
be determined unambiguously).

Names listed in a :keyword:`nonlocal` statement must not collide with
pre-existing bindings in the local scope.

.. seealso::

   :pep:`3104` - Access to Names in Outer Scopes
      The specification for the :keyword:`nonlocal` statement.

.. _type:

The :keyword:`!type` statement
==============================

.. index:: pair: statement; type

.. productionlist:: python-grammar
   type_stmt: 'type' `identifier` [`type_params`] "=" `expression`

The :keyword:`!type` statement declares a type alias, which is an instance
of :class:`typing.TypeAliasType`.

For example, the following statement creates a type alias::

   type Point = tuple[float, float]

This code is roughly equivalent to::

   annotation-def VALUE_OF_Point():
       return tuple[float, float]
   Point = typing.TypeAliasType("Point", VALUE_OF_Point())

``annotation-def`` indicates an :ref:`annotation scope <annotation-scopes>`, which behaves
mostly like a function, but with several small differences.

The value of the
type alias is evaluated in the annotation scope. It is not evaluated when the
type alias is created, but only when the value is accessed through the type alias's
:attr:`!__value__` attribute (see :ref:`lazy-evaluation`).
This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a :ref:`type parameter list <type-params>`
after the name. See :ref:`generic-type-aliases` for more.

:keyword:`!type` is a :ref:`soft keyword <soft-keywords>`.

.. versionadded:: 3.12

.. seealso::

   :pep:`695` - Type Parameter Syntax
      Introduced the :keyword:`!type` statement and syntax for
      generic classes and functions.