summaryrefslogtreecommitdiffstats
path: root/Doc/tut/tut.tex
blob: 2e11352073f15dbfab2232ccb2648b0089492a2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
\documentstyle[twoside,11pt,myformat]{report}

\title{Python Tutorial}

\input{boilerplate}

\begin{document}

\pagenumbering{roman}

\maketitle

\input{copyright}

\begin{abstract}

\noindent
Python is a simple, yet powerful programming language that bridges the
gap between C and shell programming, and is thus ideally suited for
``throw-away programming''
and rapid prototyping.  Its syntax is put
together from constructs borrowed from a variety of other languages;
most prominent are influences from ABC, C, Modula-3 and Icon.

The Python interpreter is easily extended with new functions and data
types implemented in C.  Python is also suitable as an extension
language for highly customizable C applications such as editors or
window managers.

Python is available for various operating systems, amongst which
several flavors of {\UNIX}, Amoeba, the Apple Macintosh O.S.,
and MS-DOS.

This tutorial introduces the reader informally to the basic concepts
and features of the Python language and system.  It helps to have a
Python interpreter handy for hands-on experience, but as the examples
are self-contained, the tutorial can be read off-line as well.

For a description of standard objects and modules, see the {\em Python
Library Reference} document.  The {\em Python Reference Manual} gives
a more formal definition of the language.

\end{abstract}

\pagebreak
{
\parskip = 0mm
\tableofcontents
}

\pagebreak

\pagenumbering{arabic}


\chapter{Whetting Your Appetite}

If you ever wrote a large shell script, you probably know this
feeling: you'd love to add yet another feature, but it's already so
slow, and so big, and so complicated; or the feature involves a system
call or other function that is only accessible from C \ldots  Usually
the problem at hand isn't serious enough to warrant rewriting the
script in C; perhaps because the problem requires variable-length
strings or other data types (like sorted lists of file names) that are
easy in the shell but lots of work to implement in C; or perhaps just
because you're not sufficiently familiar with C.

In such cases, Python may be just the language for you.  Python is
simple to use, but it is a real programming language, offering much
more structure and support for large programs than the shell has.  On
the other hand, it also offers much more error checking than C, and,
being a {\em very-high-level language}, it has high-level data types
built in, such as flexible arrays and dictionaries that would cost you
days to implement efficiently in C.  Because of its more general data
types Python is applicable to a much larger problem domain than {\em
Awk} or even {\em Perl}, yet many things are at least as easy in
Python as in those languages.

Python allows you to split up your program in modules that can be
reused in other Python programs.  It comes with a large collection of
standard modules that you can use as the basis of your programs --- or
as examples to start learning to program in Python.  There are also
built-in modules that provide things like file I/O, system calls,
sockets, and even a generic interface to window systems (STDWIN).

Python is an interpreted language, which can save you considerable time
during program development because no compilation and linking is
necessary.  The interpreter can be used interactively, which makes it
easy to experiment with features of the language, to write throw-away
programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python allows writing very compact and readable programs.  Programs
written in Python are typically much shorter than equivalent C
programs, for several reasons:
\begin{itemize}
\item
the high-level data types allow you to express complex operations in a
single statement;
\item
statement grouping is done by indentation instead of begin/end
brackets;
\item
no variable or argument declarations are necessary.
\end{itemize}

Python is {\em extensible}: if you know how to program in C it is easy
to add a new built-in
function or
module to the interpreter, either to
perform critical operations at maximum speed, or to link Python
programs to libraries that may only be available in binary form (such
as a vendor-specific graphics library).  Once you are really hooked,
you can link the Python interpreter into an application written in C
and use it as an extension or command language for that application.

By the way, the language is named after the BBC show ``Monty
Python's Flying Circus'' and has nothing to do with nasty reptiles...

\section{Where From Here}

Now that you are all excited about Python, you'll want to examine it
in some more detail.  Since the best way to learn a language is
using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are
explained.  This is rather mundane information, but essential for
trying out the examples shown later.

The rest of the tutorial introduces various features of the Python
language and system though examples, beginning with simple
expressions, statements and data types, through functions and modules,
and finally touching upon advanced concepts like exceptions
and user-defined classes.

When you're through with the tutorial (or just getting bored), you
should read the Library Reference, which gives complete (though terse)
reference material about built-in and standard types, functions and
modules that can save you a lot of time when writing Python programs.


\chapter{Using the Python Interpreter}

\section{Invoking the Interpreter}

The Python interpreter is usually installed as {\tt /usr/local/bin/python}
on those machines where it is available; putting {\tt /usr/local/bin} in
your {\UNIX} shell's search path makes it possible to start it by
typing the command

\bcode\begin{verbatim}
python
\end{verbatim}\ecode
%
to the shell.  Since the choice of the directory where the interpreter
lives is an installation option, other places are possible; check with
your local Python guru or system administrator.  (E.g., {\tt
/usr/local/python} is a popular alternative location.)

The interpreter operates somewhat like the {\UNIX} shell: when called
with standard input connected to a tty device, it reads and executes
commands interactively; when called with a file name argument or with
a file as standard input, it reads and executes a {\em script} from
that file.

A third way of starting the interpreter is
``{\tt python -c command [arg] ...}'', which
executes the statement(s) in {\tt command}, analogous to the shell's
{\tt -c} option.  Since Python statements often contain spaces or other
characters that are special to the shell, it is best to quote {\tt
command} in its entirety with double quotes.

Note that there is a difference between ``{\tt python file}'' and
``{\tt python $<$file}''.  In the latter case, input requests from the
program, such as calls to {\tt input()} and {\tt raw_input()}, are
satisfied from {\em file}.  Since this file has already been read
until the end by the parser before the program starts executing, the
program will encounter EOF immediately.  In the former case (which is
usually what you want) they are satisfied from whatever file or device
is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run
the script and enter interactive mode afterwards.  This can be done by
passing {\tt -i} before the script.  (This does not work if the script
is read from standard input, for the same reason as explained in the
previous paragraph.)

\subsection{Argument Passing}

When known to the interpreter, the script name and additional
arguments thereafter are passed to the script in the variable {\tt
sys.argv}, which is a list of strings.  Its length is at least one;
when no script and no arguments are given, {\tt sys.argv[0]} is an
empty string.  When the script name is given as {\tt '-'} (meaning
standard input), {\tt sys.argv[0]} is set to {\tt '-'}.  When {\tt -c
command} is used, {\tt sys.argv[0]} is set to {\tt '-c'}.  Options
found after {\tt -c command} are not consumed by the Python
interpreter's option processing but left in {\tt sys.argv} for the
command to handle.

\subsection{Interactive Mode}

When commands are read from a tty, the interpreter is said to be in
{\em interactive\ mode}.  In this mode it prompts for the next command
with the {\em primary\ prompt}, usually three greater-than signs ({\tt
>>>}); for continuation lines it prompts with the {\em secondary\
prompt}, by default three dots ({\tt ...}).  Typing an EOF (Control-D)
at the primary prompt causes the interpreter to exit with a zero exit
status.

The interpreter prints a welcome message stating its version number
and a copyright notice before printing the first prompt, e.g.:

\bcode\begin{verbatim}
python
Python 1.1 (Oct  6 1994)
Copyright 1991-1994 Stichting Mathematisch Centrum, Amsterdam
>>>
\end{verbatim}\ecode

\section{The Interpreter and its Environment}

\subsection{Error Handling}

When an error occurs, the interpreter prints an error
message and a stack trace.  In interactive mode, it then returns to
the primary prompt; when input came from a file, it exits with a
nonzero exit status after printing
the stack trace.  (Exceptions handled by an {\tt except} clause in a
{\tt try} statement are not errors in this context.)  Some errors are
unconditionally fatal and cause an exit with a nonzero exit; this
applies to internal inconsistencies and some cases of running out of
memory.  All error messages are written to the standard error stream;
normal output from the executed commands is written to standard
output.

Typing the interrupt character (usually Control-C or DEL) to the
primary or secondary prompt cancels the input and returns to the
primary prompt.%
\footnote{
        A problem with the GNU Readline package may prevent this.
}
Typing an interrupt while a command is executing raises the {\tt
KeyboardInterrupt} exception, which may be handled by a {\tt try}
statement.

\subsection{The Module Search Path}

When a module named {\tt spam} is imported, the interpreter searches
for a file named {\tt spam.py} in the list of directories specified by
the environment variable {\tt PYTHONPATH}.  It has the same syntax as
the {\UNIX} shell variable {\tt PATH}, i.e., a list of colon-separated
directory names.  When {\tt PYTHONPATH} is not set, or when the file
is not found there, the search continues in an installation-dependent
default path, usually {\tt .:/usr/local/lib/python}.

Actually, modules are searched in the list of directories given by the
variable {\tt sys.path} which is initialized from {\tt PYTHONPATH} and
the installation-dependent default.  This allows Python programs that
know what they're doing to modify or replace the module search path.
See the section on Standard Modules later.

\subsection{``Compiled'' Python files}

As an important speed-up of the start-up time for short programs that
use a lot of standard modules, if a file called {\tt spam.pyc} exists
in the directory where {\tt spam.py} is found, this is assumed to
contain an already-``compiled'' version of the module {\tt spam}.  The
modification time of the version of {\tt spam.py} used to create {\tt
spam.pyc} is recorded in {\tt spam.pyc}, and the file is ignored if
these don't match.

Whenever {\tt spam.py} is successfully compiled, an attempt is made to
write the compiled version to {\tt spam.pyc}.  It is not an error if
this attempt fails; if for any reason the file is not written
completely, the resulting {\tt spam.pyc} file will be recognized as
invalid and thus ignored later.

\subsection{Executable Python scripts}

On BSD'ish {\UNIX} systems, Python scripts can be made directly
executable, like shell scripts, by putting the line

\bcode\begin{verbatim}
#! /usr/local/bin/python
\end{verbatim}\ecode
%
(assuming that's the name of the interpreter) at the beginning of the
script and giving the file an executable mode.  The {\tt \#!} must be
the first two characters of the file.

\subsection{The Interactive Startup File}

When you use Python interactively, it is frequently handy to have some
standard commands executed every time the interpreter is started.  You
can do this by setting an environment variable named {\tt
PYTHONSTARTUP} to the name of a file containing your start-up
commands.  This is similar to the {\tt .profile} feature of the UNIX
shells.

This file is only read in interactive sessions, not when Python reads
commands from a script, and not when {\tt /dev/tty} is given as the
explicit source of commands (which otherwise behaves like an
interactive session).  It is executed in the same name space where
interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session.
You can also change the prompts {\tt sys.ps1} and {\tt sys.ps2} in
this file.

If you want to read an additional start-up file from the current
directory, you can program this in the global start-up file, e.g.
\verb\execfile('.pythonrc')\.  If you want to use the startup file
in a script, you must write this explicitly in the script, e.g.
\verb\import os;\ \verb\execfile(os.environ['PYTHONSTARTUP'])\.

\section{Interactive Input Editing and History Substitution}

Some versions of the Python interpreter support editing of the current
input line and history substitution, similar to facilities found in
the Korn shell and the GNU Bash shell.  This is implemented using the
{\em GNU\ Readline} library, which supports Emacs-style and vi-style
editing.  This library has its own documentation which I won't
duplicate here; however, the basics are easily explained.

Perhaps the quickest check to see whether command line editing is
supported is typing Control-P to the first Python prompt you get.  If
it beeps, you have command line editing.  If nothing appears to
happen, or if \verb/^P/ is echoed, you can skip the rest of this
section.

\subsection{Line Editing}

If supported, input line editing is active whenever the interpreter
prints a primary or secondary prompt.  The current line can be edited
using the conventional Emacs control characters.  The most important
of these are: C-A (Control-A) moves the cursor to the beginning of the
line, C-E to the end, C-B moves it one position to the left, C-F to
the right.  Backspace erases the character to the left of the cursor,
C-D the character to its right.  C-K kills (erases) the rest of the
line to the right of the cursor, C-Y yanks back the last killed
string.  C-underscore undoes the last change you made; it can be
repeated for cumulative effect.

\subsection{History Substitution}

History substitution works as follows.  All non-empty input lines
issued are saved in a history buffer, and when a new prompt is given
you are positioned on a new line at the bottom of this buffer.  C-P
moves one line up (back) in the history buffer, C-N moves one down.
Any line in the history buffer can be edited; an asterisk appears in
front of the prompt to mark a line as modified.  Pressing the Return
key passes the current line to the interpreter.  C-R starts an
incremental reverse search; C-S starts a forward search.

\subsection{Key Bindings}

The key bindings and some other parameters of the Readline library can
be customized by placing commands in an initialization file called
{\tt \$HOME/.inputrc}.  Key bindings have the form

\bcode\begin{verbatim}
key-name: function-name
\end{verbatim}\ecode
%
or

\bcode\begin{verbatim}
"string": function-name
\end{verbatim}\ecode
%
and options can be set with

\bcode\begin{verbatim}
set option-name value
\end{verbatim}\ecode
%
For example:

\bcode\begin{verbatim}
# I prefer vi-style editing:
set editing-mode vi
# Edit using a single line:
set horizontal-scroll-mode On
# Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
\end{verbatim}\ecode
%
Note that the default binding for TAB in Python is to insert a TAB
instead of Readline's default filename completion function.  If you
insist, you can override this by putting

\bcode\begin{verbatim}
TAB: complete
\end{verbatim}\ecode
%
in your {\tt \$HOME/.inputrc}.  (Of course, this makes it hard to type
indented continuation lines...)

\subsection{Commentary}

This facility is an enormous step forward compared to previous
versions of the interpreter; however, some wishes are left: It would
be nice if the proper indentation were suggested on continuation lines
(the parser knows if an indent token is required next).  The
completion mechanism might use the interpreter's symbol table.  A
command to check (or even suggest) matching parentheses, quotes etc.
would also be useful.


\chapter{An Informal Introduction to Python}

In the following examples, input and output are distinguished by the
presence or absence of prompts ({\tt >>>} and {\tt ...}): to repeat
the example, you must type everything after the prompt, when the
prompt appears; lines that do not begin with a prompt are output from
the interpreter.%
\footnote{
        I'd prefer to use different fonts to distinguish input
        from output, but the amount of LaTeX hacking that would require
        is currently beyond my ability.
}
Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

\section{Using Python as a Calculator}

Let's try some simple Python commands.  Start the interpreter and wait
for the primary prompt, {\tt >>>}.  (It shouldn't take long.)

\subsection{Numbers}

The interpreter acts as a simple calculator: you can type an
expression at it and it will write the value.  Expression syntax is
straightforward: the operators {\tt +}, {\tt -}, {\tt *} and {\tt /}
work just like in most other languages (e.g., Pascal or C); parentheses
can be used for grouping.  For example:

\bcode\begin{verbatim}
>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2  # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3
>>> 
\end{verbatim}\ecode
%
Like in C, the equal sign ({\tt =}) is used to assign a value to a
variable.  The value of an assignment is not written:

\bcode\begin{verbatim}
>>> width = 20
>>> height = 5*9
>>> width * height
900
>>> 
\end{verbatim}\ecode
%
A value can be assigned to several variables simultaneously:

\bcode\begin{verbatim}
>>> x = y = z = 0  # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0
>>> 
\end{verbatim}\ecode
%
There is full support for floating point; operators with mixed type
operands convert the integer operand to floating point:

\bcode\begin{verbatim}
>>> 4 * 2.5 / 3.3
3.0303030303
>>> 7.0 / 2
3.5
>>> 
\end{verbatim}\ecode

\subsection{Strings}

Besides numbers, Python can also manipulate strings, enclosed in
single quotes or double quotes:

\bcode\begin{verbatim}
>>> 'spam eggs'
'spam eggs'
>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
>>> 
\end{verbatim}\ecode
%
Strings are written the same way as they are typed for input: inside
quotes and with quotes and other funny characters escaped by backslashes,
to show the precise value.  The string is enclosed in double quotes if
the string contains a single quote and no double quotes, else it's
enclosed in single quotes.  (The {\tt print} statement, described later,
can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the {\tt +}
operator, and repeated with {\tt *}:

\bcode\begin{verbatim}
>>> word = 'Help' + 'A'
>>> word
'HelpA'
>>> '<' + word*5 + '>'
'<HelpAHelpAHelpAHelpAHelpA>'
>>> 
\end{verbatim}\ecode
%
Strings can be subscripted (indexed); like in C, the first character of
a string has subscript (index) 0.

There is no separate character type; a character is simply a string of
size one.  Like in Icon, substrings can be specified with the {\em
slice} notation: two indices separated by a colon.

\bcode\begin{verbatim}
>>> word[4]
'A'
>>> word[0:2]
'He'
>>> word[2:4]
'lp'
>>> 
\end{verbatim}\ecode
%
Slice indices have useful defaults; an omitted first index defaults to
zero, an omitted second index defaults to the size of the string being
sliced.

\bcode\begin{verbatim}
>>> word[:2]    # The first two characters
'He'
>>> word[2:]    # All but the first two characters
'lpA'
>>>
\end{verbatim}\ecode
%
Here's a useful invariant of slice operations: \verb\s[:i] + s[i:]\
equals \verb\s\.

\bcode\begin{verbatim}
>>> word[:2] + word[2:]
'HelpA'
>>> word[:3] + word[3:]
'HelpA'
>>> 
\end{verbatim}\ecode
%
Degenerate slice indices are handled gracefully: an index that is too
large is replaced by the string size, an upper bound smaller than the
lower bound returns an empty string.

\bcode\begin{verbatim}
>>> word[1:100]
'elpA'
>>> word[10:]
''
>>> word[2:1]
''
>>> 
\end{verbatim}\ecode
%
Indices may be negative numbers, to start counting from the right.
For example:

\bcode\begin{verbatim}
>>> word[-1]     # The last character
'A'
>>> word[-2]     # The last-but-one character
'p'
>>> word[-2:]    # The last two characters
'pA'
>>> word[:-2]    # All but the last two characters
'Hel'
>>>
\end{verbatim}\ecode
%
But note that -0 is really the same as 0, so it does not count from
the right!

\bcode\begin{verbatim}
>>> word[-0]     # (since -0 equals 0)
'H'
>>>
\end{verbatim}\ecode
%
Out-of-range negative slice indices are truncated, but don't try this
for single-element (non-slice) indices:

\bcode\begin{verbatim}
>>> word[-100:]
'HelpA'
>>> word[-10]    # error
Traceback (innermost last):
  File "<stdin>", line 1
IndexError: string index out of range
>>> 
\end{verbatim}\ecode
%
The best way to remember how slices work is to think of the indices as
pointing {\em between} characters, with the left edge of the first
character numbered 0.  Then the right edge of the last character of a
string of {\tt n} characters has index {\tt n}, for example:

\bcode\begin{verbatim}
 +---+---+---+---+---+ 
 | H | e | l | p | A |
 +---+---+---+---+---+ 
 0   1   2   3   4   5 
-5  -4  -3  -2  -1
\end{verbatim}\ecode
%
The first row of numbers gives the position of the indices 0...5 in
the string; the second row gives the corresponding negative indices.
The slice from \verb\i\ to \verb\j\ consists of all characters between
the edges labeled \verb\i\ and \verb\j\, respectively.

For nonnegative indices, the length of a slice is the difference of
the indices, if both are within bounds, e.g., the length of
\verb\word[1:3]\ is 2.

The built-in function {\tt len()} returns the length of a string:

\bcode\begin{verbatim}
>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34
>>> 
\end{verbatim}\ecode

\subsection{Lists}

Python knows a number of {\em compound} data types, used to group
together other values.  The most versatile is the {\em list}, which
can be written as a list of comma-separated values (items) between
square brackets.  List items need not all have the same type.

\bcode\begin{verbatim}
>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]
>>> 
\end{verbatim}\ecode
%
Like string indices, list indices start at 0, and lists can be sliced,
concatenated and so on:

\bcode\begin{verbatim}
>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boe!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!']
>>> 
\end{verbatim}\ecode
%
Unlike strings, which are {\em immutable}, it is possible to change
individual elements of a list:

\bcode\begin{verbatim}
>>> a
['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]
>>>
\end{verbatim}\ecode
%
Assignment to slices is also possible, and this can even change the size
of the list:

\bcode\begin{verbatim}
>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy', 1234]
>>> a[:0] = a     # Insert (a copy of) itself at the beginning
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
>>> 
\end{verbatim}\ecode
%
The built-in function {\tt len()} also applies to lists:

\bcode\begin{verbatim}
>>> len(a)
8
>>> 
\end{verbatim}\ecode
%
It is possible to nest lists (create lists containing other lists),
for example:

\bcode\begin{verbatim}
>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append('xtra')     # See section 5.1
>>> p
[1, [2, 3, 'xtra'], 4]
>>> q
[2, 3, 'xtra']
>>>
\end{verbatim}\ecode
%
Note that in the last example, {\tt p[1]} and {\tt q} really refer to
the same object!  We'll come back to {\em object semantics} later.

\section{First Steps Towards Programming}

Of course, we can use Python for more complicated tasks than adding
two and two together.  For instance, we can write an initial
subsequence of the {\em Fibonacci} series as follows:

\bcode\begin{verbatim}
>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
...       print b
...       a, b = b, a+b
... 
1
1
2
3
5
8
>>> 
\end{verbatim}\ecode
%
This example introduces several new features.

\begin{itemize}

\item
The first line contains a {\em multiple assignment}: the variables
{\tt a} and {\tt b} simultaneously get the new values 0 and 1.  On the
last line this is used again, demonstrating that the expressions on
the right-hand side are all evaluated first before any of the
assignments take place.

\item
The {\tt while} loop executes as long as the condition (here: {\tt b <
10}) remains true.  In Python, like in C, any non-zero integer value is
true; zero is false.  The condition may also be a string or list value,
in fact any sequence; anything with a non-zero length is true, empty
sequences are false.  The test used in the example is a simple
comparison.  The standard comparison operators are written the same as
in C: {\tt <}, {\tt >}, {\tt ==}, {\tt <=}, {\tt >=} and {\tt !=}.

\item
The {\em body} of the loop is {\em indented}: indentation is Python's
way of grouping statements.  Python does not (yet!) provide an
intelligent input line editing facility, so you have to type a tab or
space(s) for each indented line.  In practice you will prepare more
complicated input for Python with a text editor; most text editors have
an auto-indent facility.  When a compound statement is entered
interactively, it must be followed by a blank line to indicate
completion (since the parser cannot guess when you have typed the last
line).

\item
The {\tt print} statement writes the value of the expression(s) it is
given.  It differs from just writing the expression you want to write
(as we did earlier in the calculator examples) in the way it handles
multiple expressions and strings.  Strings are printed without quotes,
and a space is inserted between items, so you can format things nicely,
like this:

\bcode\begin{verbatim}
>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536
>>> 
\end{verbatim}\ecode
%
A trailing comma avoids the newline after the output:

\bcode\begin{verbatim}
>>> a, b = 0, 1
>>> while b < 1000:
...     print b,
...     a, b = b, a+b
... 
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> 
\end{verbatim}\ecode
%
Note that the interpreter inserts a newline before it prints the next
prompt if the last line was not completed.

\end{itemize}


\chapter{More Control Flow Tools}

Besides the {\tt while} statement just introduced, Python knows the
usual control flow statements known from other languages, with some
twists.

\section{If Statements}

Perhaps the most well-known statement type is the {\tt if} statement.
For example:

\bcode\begin{verbatim}
>>> if x < 0:
...      x = 0
...      print 'Negative changed to zero'
... elif x == 0:
...      print 'Zero'
... elif x == 1:
...      print 'Single'
... else:
...      print 'More'
... 
\end{verbatim}\ecode
%
There can be zero or more {\tt elif} parts, and the {\tt else} part is
optional.  The keyword `{\tt elif}' is short for `{\tt else if}', and is
useful to avoid excessive indentation.  An {\tt if...elif...elif...}
sequence is a substitute for the {\em switch} or {\em case} statements
found in other languages.

\section{For Statements}

The {\tt for} statement in Python differs a bit from what you may be
used to in C or Pascal.  Rather than always iterating over an
arithmetic progression of numbers (like in Pascal), or leaving the user
completely free in the iteration test and step (as C), Python's {\tt
for} statement iterates over the items of any sequence (e.g., a list
or a string), in the order that they appear in the sequence.  For
example (no pun intended):

\bcode\begin{verbatim}
>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
...     print x, len(x)
... 
cat 3
window 6
defenestrate 12
>>> 
\end{verbatim}\ecode
%
It is not safe to modify the sequence being iterated over in the loop
(this can only happen for mutable sequence types, i.e., lists).  If
you need to modify the list you are iterating over, e.g., duplicate
selected items, you must iterate over a copy.  The slice notation
makes this particularly convenient:

\bcode\begin{verbatim}
>>> for x in a[:]: # make a slice copy of the entire list
...    if len(x) > 6: a.insert(0, x)
... 
>>> a
['defenestrate', 'cat', 'window', 'defenestrate']
>>> 
\end{verbatim}\ecode

\section{The {\tt range()} Function}

If you do need to iterate over a sequence of numbers, the built-in
function {\tt range()} comes in handy.  It generates lists containing
arithmetic progressions, e.g.:

\bcode\begin{verbatim}
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> 
\end{verbatim}\ecode
%
The given end point is never part of the generated list; {\tt range(10)}
generates a list of 10 values, exactly the legal indices for items of a
sequence of length 10.  It is possible to let the range start at another
number, or to specify a different increment (even negative):

\bcode\begin{verbatim}
>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]
>>> 
\end{verbatim}\ecode
%
To iterate over the indices of a sequence, combine {\tt range()} and
{\tt len()} as follows:

\bcode\begin{verbatim}
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print i, a[i]
... 
0 Mary
1 had
2 a
3 little
4 lamb
>>> 
\end{verbatim}\ecode

\section{Break and Continue Statements, and Else Clauses on Loops}

The {\tt break} statement, like in C, breaks out of the smallest
enclosing {\tt for} or {\tt while} loop.

The {\tt continue} statement, also borrowed from C, continues with the
next iteration of the loop.

Loop statements may have an {\tt else} clause; it is executed when the
loop terminates through exhaustion of the list (with {\tt for}) or when
the condition becomes false (with {\tt while}), but not when the loop is
terminated by a {\tt break} statement.  This is exemplified by the
following loop, which searches for prime numbers:

\bcode\begin{verbatim}
>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...            print n, 'equals', x, '*', n/x
...            break
...     else:
...          print n, 'is a prime number'
... 
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
>>> 
\end{verbatim}\ecode

\section{Pass Statements}

The {\tt pass} statement does nothing.
It can be used when a statement is required syntactically but the
program requires no action.
For example:

\bcode\begin{verbatim}
>>> while 1:
...       pass # Busy-wait for keyboard interrupt
... 
\end{verbatim}\ecode

\section{Defining Functions}

We can create a function that writes the Fibonacci series to an
arbitrary boundary:

\bcode\begin{verbatim}
>>> def fib(n):    # write Fibonacci series up to n
...     a, b = 0, 1
...     while b < n:
...           print b,
...           a, b = b, a+b
... 
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
>>> 
\end{verbatim}\ecode
%
The keyword {\tt def} introduces a function {\em definition}.  It must
be followed by the function name and the parenthesized list of formal
parameters.  The statements that form the body of the function starts at
the next line, indented by a tab stop.

The {\em execution} of a function introduces a new symbol table used
for the local variables of the function.  More precisely, all variable
assignments in a function store the value in the local symbol table;
whereas
variable references first look in the local symbol table, then
in the global symbol table, and then in the table of built-in names.
Thus,
global variables cannot be directly assigned a value within a
function (unless named in a {\tt global} statement), although
they may be referenced.

The actual parameters (arguments) to a function call are introduced in
the local symbol table of the called function when it is called; thus,
arguments are passed using {\em call\ by\ value}.%
\footnote{
         Actually, {\em call  by  object reference} would be a better
         description, since if a mutable object is passed, the caller
         will see any changes the callee makes to it (e.g., items
         inserted into a list).
}
When a function calls another function, a new local symbol table is
created for that call.

A function definition introduces the function name in the
current
symbol table.  The value
of the function name
has a type that is recognized by the interpreter as a user-defined
function.  This value can be assigned to another name which can then
also be used as a function.  This serves as a general renaming
mechanism:

\bcode\begin{verbatim}
>>> fib
<function object at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89
>>> 
\end{verbatim}\ecode
%
You might object that {\tt fib} is not a function but a procedure.  In
Python, like in C, procedures are just functions that don't return a
value.  In fact, technically speaking, procedures do return a value,
albeit a rather boring one.  This value is called {\tt None} (it's a
built-in name).  Writing the value {\tt None} is normally suppressed by
the interpreter if it would be the only value written.  You can see it
if you really want to:

\bcode\begin{verbatim}
>>> print fib(0)
None
>>> 
\end{verbatim}\ecode
%
It is simple to write a function that returns a list of the numbers of
the Fibonacci series, instead of printing it:

\bcode\begin{verbatim}
>>> def fib2(n): # return Fibonacci series up to n
...     result = []
...     a, b = 0, 1
...     while b < n:
...           result.append(b)    # see below
...           a, b = b, a+b
...     return result
... 
>>> f100 = fib2(100)    # call it
>>> f100                # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> 
\end{verbatim}\ecode
%
This example, as usual, demonstrates some new Python features:

\begin{itemize}

\item
The {\tt return} statement returns with a value from a function.  {\tt
return} without an expression argument is used to return from the middle
of a procedure (falling off the end also returns from a procedure), in
which case the {\tt None} value is returned.

\item
The statement {\tt result.append(b)} calls a {\em method} of the list
object {\tt result}.  A method is a function that `belongs' to an
object and is named {\tt obj.methodname}, where {\tt obj} is some
object (this may be an expression), and {\tt methodname} is the name
of a method that is defined by the object's type.  Different types
define different methods.  Methods of different types may have the
same name without causing ambiguity.  (It is possible to define your
own object types and methods, using {\em classes}, as discussed later
in this tutorial.)
The method {\tt append} shown in the example, is defined for
list objects; it adds a new element at the end of the list.  In this
example
it is equivalent to {\tt result = result + [b]}, but more efficient.

\end{itemize}


\chapter{Odds and Ends}

This chapter describes some things you've learned about already in
more detail, and adds some new things as well.

\section{More on Lists}

The list data type has some more methods.  Here are all of the methods
of lists objects:

\begin{description}

\item[{\tt insert(i, x)}]
Insert an item at a given position.  The first argument is the index of
the element before which to insert, so {\tt a.insert(0, x)} inserts at
the front of the list, and {\tt a.insert(len(a), x)} is equivalent to
{\tt a.append(x)}.

\item[{\tt append(x)}]
Equivalent to {\tt a.insert(len(a), x)}.

\item[{\tt index(x)}]
Return the index in the list of the first item whose value is {\tt x}.
It is an error if there is no such item.

\item[{\tt remove(x)}]
Remove the first item from the list whose value is {\tt x}.
It is an error if there is no such item.

\item[{\tt sort()}]
Sort the items of the list, in place.

\item[{\tt reverse()}]
Reverse the elements of the list, in place.

\item[{\tt count(x)}]
Return the number of times {\tt x} appears in the list.

\end{description}

An example that uses all list methods:

\bcode\begin{verbatim}
>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.6, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.6]
>>> a.sort()
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]
>>>
\end{verbatim}\ecode

\section{The {\tt del} statement}

There is a way to remove an item from a list given its index instead
of its value: the {\tt del} statement.  This can also be used to
remove slices from a list (which we did earlier by assignment of an
empty list to the slice).  For example:

\bcode\begin{verbatim}
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.6, 1234.5]
>>>
\end{verbatim}\ecode
%
{\tt del} can also be used to delete entire variables:

\bcode\begin{verbatim}
>>> del a
>>>
\end{verbatim}\ecode
%
Referencing the name {\tt a} hereafter is an error (at least until
another value is assigned to it).  We'll find other uses for {\tt del}
later.

\section{Tuples and Sequences}

We saw that lists and strings have many common properties, e.g.,
indexing and slicing operations.  They are two examples of {\em
sequence} data types.  Since Python is an evolving language, other
sequence data types may be added.  There is also another standard
sequence data type: the {\em tuple}.

A tuple consists of a number of values separated by commas, for
instance:

\bcode\begin{verbatim}
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>>
\end{verbatim}\ecode
%
As you see, on output tuples are alway enclosed in parentheses, so
that nested tuples are interpreted correctly; they may be input with
or without surrounding parentheses, although often parentheses are
necessary anyway (if the tuple is part of a larger expression).

Tuples have many uses, e.g., (x, y) coordinate pairs, employee records
from a database, etc.  Tuples, like strings, are immutable: it is not
possible to assign to the individual items of a tuple (you can
simulate much of the same effect with slicing and concatenation,
though).

A special problem is the construction of tuples containing 0 or 1
items: the syntax has some extra quirks to accommodate these.  Empty
tuples are constructed by an empty pair of parentheses; a tuple with
one item is constructed by following a value with a comma
(it is not sufficient to enclose a single value in parentheses).
Ugly, but effective.  For example:

\bcode\begin{verbatim}
>>> empty = ()
>>> singleton = 'hello',    # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)
>>>
\end{verbatim}\ecode
%
The statement {\tt t = 12345, 54321, 'hello!'} is an example of {\em
tuple packing}: the values {\tt 12345}, {\tt 54321} and {\tt 'hello!'}
are packed together in a tuple.  The reverse operation is also
possible, e.g.:

\bcode\begin{verbatim}
>>> x, y, z = t
>>>
\end{verbatim}\ecode
%
This is called, appropriately enough, {\em tuple unpacking}.  Tuple
unpacking requires that the list of variables on the left has the same
number of elements as the length of the tuple.  Note that multiple
assignment is really just a combination of tuple packing and tuple
unpacking!

Occasionally, the corresponding operation on lists is useful: {\em list
unpacking}.  This is supported by enclosing the list of variables in
square brackets:

\bcode\begin{verbatim}
>>> a = ['spam', 'eggs', 100, 1234]
>>> [a1, a2, a3, a4] = a
>>>
\end{verbatim}\ecode

\section{Dictionaries}

Another useful data type built into Python is the {\em dictionary}.
Dictionaries are sometimes found in other languages as ``associative
memories'' or ``associative arrays''.  Unlike sequences, which are
indexed by a range of numbers, dictionaries are indexed by {\em keys},
which are strings (the use of non-string values as keys
is supported, but beyond the scope of this tutorial).
It is best to think of a dictionary as an unordered set of
{\em key:value} pairs, with the requirement that the keys are unique
(within one dictionary).
A pair of braces creates an empty dictionary: \verb/{}/.
Placing a comma-separated list of key:value pairs within the
braces adds initial key:value pairs to the dictionary; this is also the
way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key
and extracting the value given the key.  It is also possible to delete
a key:value pair
with {\tt del}.
If you store using a key that is already in use, the old value
associated with that key is forgotten.  It is an error to extract a
value using a non-existent key.

The {\tt keys()} method of a dictionary object returns a list of all the
keys used in the dictionary, in random order (if you want it sorted,
just apply the {\tt sort()} method to the list of keys).  To check
whether a single key is in the dictionary, use the \verb/has_key()/
method of the dictionary.

Here is a small example using a dictionary:

\bcode\begin{verbatim}
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> tel.has_key('guido')
1
>>> 
\end{verbatim}\ecode

\section{More on Conditions}

The conditions used in {\tt while} and {\tt if} statements above can
contain other operators besides comparisons.

The comparison operators {\tt in} and {\tt not in} check whether a value
occurs (does not occur) in a sequence.  The operators {\tt is} and {\tt
is not} compare whether two objects are really the same object; this
only matters for mutable objects like lists.  All comparison operators
have the same priority, which is lower than that of all numerical
operators.

Comparisons can be chained: e.g., {\tt a < b == c} tests whether {\tt a}
is less than {\tt b} and moreover {\tt b} equals {\tt c}.

Comparisons may be combined by the Boolean operators {\tt and} and {\tt
or}, and the outcome of a comparison (or of any other Boolean
expression) may be negated with {\tt not}.  These all have lower
priorities than comparison operators again; between them, {\tt not} has
the highest priority, and {\tt or} the lowest, so that
{\tt A and not B or C} is equivalent to {\tt (A and (not B)) or C}.  Of
course, parentheses can be used to express the desired composition.

The Boolean operators {\tt and} and {\tt or} are so-called {\em
shortcut} operators: their arguments are evaluated from left to right,
and evaluation stops as soon as the outcome is determined.  E.g., if
{\tt A} and {\tt C} are true but {\tt B} is false, {\tt A and B and C}
does not evaluate the expression C.  In general, the return value of a
shortcut operator, when used as a general value and not as a Boolean, is
the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean
expression to a variable.  For example,

\bcode\begin{verbatim}
>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'
>>> 
\end{verbatim}\ecode
%
Note that in Python, unlike C, assignment cannot occur inside expressions.

\section{Comparing Sequences and Other Types}

Sequence objects may be compared to other objects with the same
sequence type.  The comparison uses {\em lexicographical} ordering:
first the first two items are compared, and if they differ this
determines the outcome of the comparison; if they are equal, the next
two items are compared, and so on, until either sequence is exhausted.
If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively.  If all
items of two sequences compare equal, the sequences are considered
equal.  If one sequence is an initial subsequence of the other, the
shorted sequence is the smaller one.  Lexicographical ordering for
strings uses the ASCII ordering for individual characters.  Some
examples of comparisons between sequences with the same types:

\bcode\begin{verbatim}
(1, 2, 3)              < (1, 2, 4)
[1, 2, 3]              < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4)           < (1, 2, 4)
(1, 2)                 < (1, 2, -1)
(1, 2, 3)              = (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab'))   < (1, 2, ('abc', 'a'), 4)
\end{verbatim}\ecode
%
Note that comparing objects of different types is legal.  The outcome
is deterministic but arbitrary: the types are ordered by their name.
Thus, a list is always smaller than a string, a string is always
smaller than a tuple, etc.  Mixed numeric types are compared according
to their numeric value, so 0 equals 0.0, etc.%
\footnote{
        The rules for comparing objects of different types should
        not be relied upon; they may change in a future version of
        the language.
}


\chapter{Modules}

If you quit from the Python interpreter and enter it again, the
definitions you have made (functions and variables) are lost.
Therefore, if you want to write a somewhat longer program, you are
better off using a text editor to prepare the input for the interpreter
and running it with that file as input instead.  This is known as creating a
{\em script}.  As your program gets longer, you may want to split it
into several files for easier maintenance.  You may also want to use a
handy function that you've written in several programs without copying
its definition into each program.

To support this, Python has a way to put definitions in a file and use
them in a script or in an interactive instance of the interpreter.
Such a file is called a {\em module}; definitions from a module can be
{\em imported} into other modules or into the {\em main} module (the
collection of variables that you have access to in a script
executed at the top level
and in calculator mode).

A module is a file containing Python definitions and statements.  The
file name is the module name with the suffix {\tt .py} appended.  Within
a module, the module's name (as a string) is available as the value of
the global variable {\tt __name__}.  For instance, use your favorite text
editor to create a file called {\tt fibo.py} in the current directory
with the following contents:

\bcode\begin{verbatim}
# Fibonacci numbers module

def fib(n):    # write Fibonacci series up to n
    a, b = 0, 1
    while b < n:
          print b,
          a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
    result = []
    a, b = 0, 1
    while b < n:
          result.append(b)
          a, b = b, a+b
    return result
\end{verbatim}\ecode
%
Now enter the Python interpreter and import this module with the
following command:

\bcode\begin{verbatim}
>>> import fibo
>>> 
\end{verbatim}\ecode
%
This does not enter the names of the functions defined in
{\tt fibo}
directly in the current symbol table; it only enters the module name
{\tt fibo}
there.
Using the module name you can access the functions:

\bcode\begin{verbatim}
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'
>>> 
\end{verbatim}\ecode
%
If you intend to use a function often you can assign it to a local name:

\bcode\begin{verbatim}
>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
>>> 
\end{verbatim}\ecode

\section{More on Modules}

A module can contain executable statements as well as function
definitions.
These statements are intended to initialize the module.
They are executed only the
{\em first}
time the module is imported somewhere.%
\footnote{
        In fact function definitions are also `statements' that are
        `executed'; the execution enters the function name in the
        module's global symbol table.
}

Each module has its own private symbol table, which is used as the
global symbol table by all functions defined in the module.
Thus, the author of a module can use global variables in the module
without worrying about accidental clashes with a user's global
variables.
On the other hand, if you know what you are doing you can touch a
module's global variables with the same notation used to refer to its
functions,
{\tt modname.itemname}.

Modules can import other modules.
It is customary but not required to place all
{\tt import}
statements at the beginning of a module (or script, for that matter).
The imported module names are placed in the importing module's global
symbol table.

There is a variant of the
{\tt import}
statement that imports names from a module directly into the importing
module's symbol table.
For example:

\bcode\begin{verbatim}
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
>>> 
\end{verbatim}\ecode
%
This does not introduce the module name from which the imports are taken
in the local symbol table (so in the example, {\tt fibo} is not
defined).

There is even a variant to import all names that a module defines:

\bcode\begin{verbatim}
>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
>>> 
\end{verbatim}\ecode
%
This imports all names except those beginning with an underscore
({\tt _}).

\section{Standard Modules}

Python comes with a library of standard modules, described in a separate
document (Python Library Reference).  Some modules are built into the
interpreter; these provide access to operations that are not part of the
core of the language but are nevertheless built in, either for
efficiency or to provide access to operating system primitives such as
system calls.  The set of such modules is a configuration option; e.g.,
the {\tt amoeba} module is only provided on systems that somehow support
Amoeba primitives.  One particular module deserves some attention: {\tt
sys}, which is built into every Python interpreter.  The variables {\tt
sys.ps1} and {\tt sys.ps2} define the strings used as primary and
secondary prompts:

\bcode\begin{verbatim}
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print 'Yuck!'
Yuck!
C> 
\end{verbatim}\ecode
%
These two variables are only defined if the interpreter is in
interactive mode.

The variable
{\tt sys.path}
is a list of strings that determine the interpreter's search path for
modules.
It is initialized to a default path taken from the environment variable
{\tt PYTHONPATH},
or from a built-in default if
{\tt PYTHONPATH}
is not set.
You can modify it using standard list operations, e.g.:

\bcode\begin{verbatim}
>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')
>>> 
\end{verbatim}\ecode

\section{The {\tt dir()} function}

The built-in function {\tt dir} is used to find out which names a module
defines.  It returns a sorted list of strings:

\bcode\begin{verbatim}
>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__name__', 'argv', 'builtin_module_names', 'copyright', 'exit',
'maxint', 'modules', 'path', 'ps1', 'ps2', 'setprofile', 'settrace',
'stderr', 'stdin', 'stdout', 'version']
>>>
\end{verbatim}\ecode
%
Without arguments, {\tt dir()} lists the names you have defined currently:

\bcode\begin{verbatim}
>>> a = [1, 2, 3, 4, 5]
>>> import fibo, sys
>>> fib = fibo.fib
>>> dir()
['__name__', 'a', 'fib', 'fibo', 'sys']
>>>
\end{verbatim}\ecode
%
Note that it lists all types of names: variables, modules, functions, etc.

{\tt dir()} does not list the names of built-in functions and variables.
If you want a list of those, they are defined in the standard module
{\tt __builtin__}:

\bcode\begin{verbatim}
>>> import __builtin__
>>> dir(__builtin__)
['AccessError', 'AttributeError', 'ConflictError', 'EOFError', 'IOError',
'ImportError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'MemoryError', 'NameError', 'None', 'OverflowError', 'RuntimeError',
'SyntaxError', 'SystemError', 'SystemExit', 'TypeError', 'ValueError',
'ZeroDivisionError', '__name__', 'abs', 'apply', 'chr', 'cmp', 'coerce',
'compile', 'dir', 'divmod', 'eval', 'execfile', 'filter', 'float',
'getattr', 'hasattr', 'hash', 'hex', 'id', 'input', 'int', 'len', 'long',
'map', 'max', 'min', 'oct', 'open', 'ord', 'pow', 'range', 'raw_input',
'reduce', 'reload', 'repr', 'round', 'setattr', 'str', 'type', 'xrange']
>>>
\end{verbatim}\ecode


\chapter{Output Formatting}

So far we've encountered two ways of writing values: {\em expression
statements} and the {\tt print} statement.  (A third way is using the
{\tt write} method of file objects; the standard output file can be
referenced as {\tt sys.stdout}.  See the Library Reference for more
information on this.)

Often you'll want more control over the formatting of your output than
simply printing space-separated values.  The key to nice formatting in
Python is to do all the string handling yourself; using string slicing
and concatenation operations you can create any lay-out you can imagine.
The standard module {\tt string} contains some useful operations for
padding strings to a given column width; these will be discussed shortly.
Finally, the \code{\%} operator (modulo) with a string left argument
interprets this string as a C sprintf format string to be applied to the
right argument, and returns the string resulting from this formatting
operation.

One question remains, of course: how do you convert values to strings?
Luckily, Python has a way to convert any value to a string: just write
the value between reverse quotes (\verb/``/).  Some examples:

\bcode\begin{verbatim}
>>> x = 10 * 3.14
>>> y = 200*200
>>> s = 'The value of x is ' + `x` + ', and y is ' + `y` + '...'
>>> print s
The value of x is 31.4, and y is 40000...
>>> # Reverse quotes work on other types besides numbers:
... p = [x, y]
>>> ps = `p`
>>> ps
'[31.4, 40000]'
>>> # Converting a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = `hello`
>>> print hellos
'hello, world\012'
>>> # The argument of reverse quotes may be a tuple:
... `x, y, ('spam', 'eggs')`
"(31.4, 40000, ('spam', 'eggs'))"
>>>
\end{verbatim}\ecode
%
Here are two ways to write a table of squares and cubes:

\bcode\begin{verbatim}
>>> import string
>>> for x in range(1, 11):
...     print string.rjust(`x`, 2), string.rjust(`x*x`, 3),
...     # Note trailing comma on previous line
...     print string.rjust(`x*x*x`, 4)
...
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000
>>> for x in range(1,11):
...     print '%2d %3d %4d' % (x, x*x, x*x*x)
... 
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000
>>>
\end{verbatim}\ecode
%
(Note that one space between each column was added by the way {\tt print}
works: it always adds spaces between its arguments.)

This example demonstrates the function {\tt string.rjust()}, which
right-justifies a string in a field of a given width by padding it with
spaces on the left.  There are similar functions {\tt string.ljust()}
and {\tt string.center()}.  These functions do not write anything, they
just return a new string.  If the input string is too long, they don't
truncate it, but return it unchanged; this will mess up your column
lay-out but that's usually better than the alternative, which would be
lying about a value.  (If you really want truncation you can always add
a slice operation, as in {\tt string.ljust(x,~n)[0:n]}.)

There is another function, {\tt string.zfill}, which pads a numeric
string on the left with zeros.  It understands about plus and minus
signs:

\bcode\begin{verbatim}
>>> string.zfill('12', 5)
'00012'
>>> string.zfill('-3.14', 7)
'-003.14'
>>> string.zfill('3.14159265359', 5)
'3.14159265359'
>>>
\end{verbatim}\ecode


\chapter{Errors and Exceptions}

Until now error messages haven't been more than mentioned, but if you
have tried out the examples you have probably seen some.  There are
(at least) two distinguishable kinds of errors: {\em syntax\ errors}
and {\em exceptions}.

\section{Syntax Errors}

Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:

\bcode\begin{verbatim}
>>> while 1 print 'Hello world'
  File "<stdin>", line 1
    while 1 print 'Hello world'
                ^
SyntaxError: invalid syntax
>>> 
\end{verbatim}\ecode
%
The parser repeats the offending line and displays a little `arrow'
pointing at the earliest point in the line where the error was detected.
The error is caused by (or at least detected at) the token
{\em preceding}
the arrow: in the example, the error is detected at the keyword
{\tt print}, since a colon ({\tt :}) is missing before it.
File name and line number are printed so you know where to look in case
the input came from a script.

\section{Exceptions}

Even if a statement or expression is syntactically correct, it may
cause an error when an attempt is made to execute it.
Errors detected during execution are called {\em exceptions} and are
not unconditionally fatal: you will soon learn how to handle them in
Python programs.  Most exceptions are not handled by programs,
however, and result in error messages as shown here:

\bcode\small\begin{verbatim}
>>> 10 * (1/0)
Traceback (innermost last):
  File "<stdin>", line 1
ZeroDivisionError: integer division or modulo
>>> 4 + spam*3
Traceback (innermost last):
  File "<stdin>", line 1
NameError: spam
>>> '2' + 2
Traceback (innermost last):
  File "<stdin>", line 1
TypeError: illegal argument type for built-in operation
>>> 
\end{verbatim}\ecode
%
The last line of the error message indicates what happened.
Exceptions come in different types, and the type is printed as part of
the message: the types in the example are
{\tt ZeroDivisionError},
{\tt NameError}
and
{\tt TypeError}.
The string printed as the exception type is the name of the built-in
name for the exception that occurred.  This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although
it is a useful convention).
Standard exception names are built-in identifiers (not reserved
keywords).

The rest of the line is a detail whose interpretation depends on the
exception type; its meaning is dependent on the exception type.

The preceding part of the error message shows the context where the
exception happened, in the form of a stack backtrace.
In general it contains a stack backtrace listing source lines; however,
it will not display lines read from standard input.

The Python library reference manual lists the built-in exceptions and
their meanings.

\section{Handling Exceptions}

It is possible to write programs that handle selected exceptions.
Look at the following example, which prints a table of inverses of
some floating point numbers:

\bcode\begin{verbatim}
>>> numbers = [0.3333, 2.5, 0, 10]
>>> for x in numbers:
...     print x,
...     try:
...         print 1.0 / x
...     except ZeroDivisionError:
...         print '*** has no inverse ***'
... 
0.3333 3.00030003
2.5 0.4
0 *** has no inverse ***
10 0.1
>>> 
\end{verbatim}\ecode
%
The {\tt try} statement works as follows.
\begin{itemize}
\item
First, the
{\em try\ clause}
(the statement(s) between the {\tt try} and {\tt except} keywords) is
executed.
\item
If no exception occurs, the
{\em except\ clause}
is skipped and execution of the {\tt try} statement is finished.
\item
If an exception occurs during execution of the try clause,
the rest of the clause is skipped.  Then if
its type matches the exception named after the {\tt except} keyword,
the rest of the try clause is skipped, the except clause is executed,
and then execution continues after the {\tt try} statement.
\item
If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is
found, it is an
{\em unhandled\ exception}
and execution stops with a message as shown above.
\end{itemize}
A {\tt try} statement may have more than one except clause, to specify
handlers for different exceptions.
At most one handler will be executed.
Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same {\tt try} statement.
An except clause may name multiple exceptions as a parenthesized list,
e.g.:

\bcode\begin{verbatim}
... except (RuntimeError, TypeError, NameError):
...     pass
\end{verbatim}\ecode
%
The last except clause may omit the exception name(s), to serve as a
wildcard.
Use this with extreme caution, since it is easy to mask a real
programming error in this way!

When an exception occurs, it may have an associated value, also known as
the exceptions's
{\em argument}.
The presence and type of the argument depend on the exception type.
For exception types which have an argument, the except clause may
specify a variable after the exception name (or list) to receive the
argument's value, as follows:

\bcode\begin{verbatim}
>>> try:
...     spam()
... except NameError, x:
...     print 'name', x, 'undefined'
... 
name spam undefined
>>> 
\end{verbatim}\ecode
%
If an exception has an argument, it is printed as the last part
(`detail') of the message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur
immediately in the try clause, but also if they occur inside functions
that are called (even indirectly) in the try clause.
For example:

\bcode\begin{verbatim}
>>> def this_fails():
...     x = 1/0
... 
>>> try:
...     this_fails()
... except ZeroDivisionError, detail:
...     print 'Handling run-time error:', detail
... 
Handling run-time error: integer division or modulo
>>> 
\end{verbatim}\ecode

\section{Raising Exceptions}

The {\tt raise} statement allows the programmer to force a specified
exception to occur.
For example:

\bcode\begin{verbatim}
>>> raise NameError, 'HiThere'
Traceback (innermost last):
  File "<stdin>", line 1
NameError: HiThere
>>> 
\end{verbatim}\ecode
%
The first argument to {\tt raise} names the exception to be raised.
The optional second argument specifies the exception's argument.

\section{User-defined Exceptions}

Programs may name their own exceptions by assigning a string to a
variable.
For example:

\bcode\begin{verbatim}
>>> my_exc = 'my_exc'
>>> try:
...     raise my_exc, 2*2
... except my_exc, val:
...     print 'My exception occurred, value:', val
... 
My exception occurred, value: 4
>>> raise my_exc, 1
Traceback (innermost last):
  File "<stdin>", line 1
my_exc: 1
>>> 
\end{verbatim}\ecode
%
Many standard modules use this to report errors that may occur in
functions they define.

\section{Defining Clean-up Actions}

The {\tt try} statement has another optional clause which is intended to
define clean-up actions that must be executed under all circumstances.
For example:

\bcode\begin{verbatim}
>>> try:
...     raise KeyboardInterrupt
... finally:
...     print 'Goodbye, world!'
... 
Goodbye, world!
Traceback (innermost last):
  File "<stdin>", line 2
KeyboardInterrupt
>>> 
\end{verbatim}\ecode
%
A {\tt finally} clause is executed whether or not an exception has
occurred in the {\tt try} clause.  When an exception has occurred, it
is re-raised after the {\tt finally} clause is executed.  The
{\tt finally} clause is also executed ``on the way out'' when the
{\tt try} statement is left via a {\tt break} or {\tt return}
statement.

A {\tt try} statement must either have one or more {\tt except}
clauses or one {\tt finally} clause, but not both.


\chapter{Classes}

Python's class mechanism adds classes to the language with a minimum
of new syntax and semantics.  It is a mixture of the class mechanisms
found in \Cpp{} and Modula-3.  As is true for modules, classes in Python
do not put an absolute barrier between definition and user, but rather
rely on the politeness of the user not to ``break into the
definition.''  The most important features of classes are retained
with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its
base class(es), a method can call the method of a base class with the
same name.  Objects can contain an arbitrary amount of private data.

In \Cpp{} terminology, all class members (including the data members) are
{\em public}, and all member functions are {\em virtual}.  There are
no special constructors or destructors.  As in Modula-3, there are no
shorthands for referencing the object's members from its methods: the
method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call.  As
in Smalltalk, classes themselves are objects, albeit in the wider
sense of the word: in Python, all data types are objects.  This
provides semantics for importing and renaming.  But, just like in \Cpp{}
or Modula-3, built-in types cannot be used as base classes for
extension by the user.  Also, like in \Cpp{} but unlike in Modula-3, most
built-in operators with special syntax (arithmetic operators,
subscripting etc.) can be redefined for class members.


\section{A word about terminology}

Lacking universally accepted terminology to talk about classes, I'll
make occasional use of Smalltalk and \Cpp{} terms.  (I'd use Modula-3
terms, since its object-oriented semantics are closer to those of
Python than \Cpp{}, but I expect that few readers have heard of it...)

I also have to warn you that there's a terminological pitfall for
object-oriented readers: the word ``object'' in Python does not
necessarily mean a class instance.  Like \Cpp{} and Modula-3, and unlike
Smalltalk, not all types in Python are classes: the basic built-in
types like integers and lists aren't, and even somewhat more exotic
types like files aren't.  However, {\em all} Python types share a little
bit of common semantics that is best described by using the word
object.

Objects have individuality, and multiple names (in multiple scopes)
can be bound to the same object.  This is known as aliasing in other
languages.  This is usually not appreciated on a first glance at
Python, and can be safely ignored when dealing with immutable basic
types (numbers, strings, tuples).  However, aliasing has an
(intended!) effect on the semantics of Python code involving mutable
objects such as lists, dictionaries, and most types representing
entities outside the program (files, windows, etc.).  This is usually
used to the benefit of the program, since aliases behave like pointers
in some respects.  For example, passing an object is cheap since only
a pointer is passed by the implementation; and if a function modifies
an object passed as an argument, the caller will see the change --- this
obviates the need for two different argument passing mechanisms as in
Pascal.


\section{Python scopes and name spaces}

Before introducing classes, I first have to tell you something about
Python's scope rules.  Class definitions play some neat tricks with
name spaces, and you need to know how scopes and name spaces work to
fully understand what's going on.  Incidentally, knowledge about this
subject is useful for any advanced Python programmer.

Let's begin with some definitions.

A {\em name space} is a mapping from names to objects.  Most name
spaces are currently implemented as Python dictionaries, but that's
normally not noticeable in any way (except for performance), and it
may change in the future.  Examples of name spaces are: the set of
built-in names (functions such as \verb\abs()\, and built-in exception
names); the global names in a module; and the local names in a
function invocation.  In a sense the set of attributes of an object
also form a name space.  The important thing to know about name
spaces is that there is absolutely no relation between names in
different name spaces; for instance, two different modules may both
define a function ``maximize'' without confusion --- users of the
modules must prefix it with the module name.

By the way, I use the word {\em attribute} for any name following a
dot --- for example, in the expression \verb\z.real\, \verb\real\ is
an attribute of the object \verb\z\.  Strictly speaking, references to
names in modules are attribute references: in the expression
\verb\modname.funcname\, \verb\modname\ is a module object and
\verb\funcname\ is an attribute of it.  In this case there happens to
be a straightforward mapping between the module's attributes and the
global names defined in the module: they share the same name space!%
\footnote{
        Except for one thing.  Module objects have a secret read-only
        attribute called {\tt __dict__} which returns the dictionary
        used to implement the module's name space; the name
        {\tt __dict__} is an attribute but not a global name.
        Obviously, using this violates the abstraction of name space
        implementation, and should be restricted to things like
        post-mortem debuggers...
}

Attributes may be read-only or writable.  In the latter case,
assignment to attributes is possible.  Module attributes are writable:
you can write \verb\modname.the_answer = 42\.  Writable attributes may
also be deleted with the del statement, e.g.
\verb\del modname.the_answer\.

Name spaces are created at different moments and have different
lifetimes.  The name space containing the built-in names is created
when the Python interpreter starts up, and is never deleted.  The
global name space for a module is created when the module definition
is read in; normally, module name spaces also last until the
interpreter quits.  The statements executed by the top-level
invocation of the interpreter, either read from a script file or
interactively, are considered part of a module called \verb\__main__\,
so they have their own global name space.  (The built-in names
actually also live in a module; this is called \verb\__builtin__\.)

The local name space for a function is created when the function is
called, and deleted when the function returns or raises an exception
that is not handled within the function.  (Actually, forgetting would
be a better way to describe what actually happens.)  Of course,
recursive invocations each have their own local name space.

A {\em scope} is a textual region of a Python program where a name space
is directly accessible.  ``Directly accessible'' here means that an
unqualified reference to a name attempts to find the name in the name
space.

Although scopes are determined statically, they are used dynamically.
At any time during execution, exactly three nested scopes are in use
(i.e., exactly three name spaces are directly accessible): the
innermost scope, which is searched first, contains the local names,
the middle scope, searched next, contains the current module's global
names, and the outermost scope (searched last) is the name space
containing built-in names.

Usually, the local scope references the local names of the (textually)
current function.  Outside of functions, the the local scope references
the same name space as the global scope: the module's name space.
Class definitions place yet another name space in the local scope.

It is important to realize that scopes are determined textually: the
global scope of a function defined in a module is that module's name
space, no matter from where or by what alias the function is called.
On the other hand, the actual search for names is done dynamically, at
run time --- however, the the language definition is evolving towards
static name resolution, at ``compile'' time, so don't rely on dynamic
name resolution!  (In fact, local variables are already determined
statically.)

A special quirk of Python is that assignments always go into the
innermost scope.  Assignments do not copy data --- they just
bind names to objects.  The same is true for deletions: the statement
\verb\del x\ removes the binding of x from the name space referenced by the
local scope.  In fact, all operations that introduce new names use the
local scope: in particular, import statements and function definitions
bind the module or function name in the local scope.  (The
\verb\global\ statement can be used to indicate that particular
variables live in the global scope.)


\section{A first look at classes}

Classes introduce a little bit of new syntax, three new object types,
and some new semantics.


\subsection{Class definition syntax}

The simplest form of class definition looks like this:

\begin{verbatim}
        class ClassName:
                <statement-1>
                .
                .
                .
                <statement-N>
\end{verbatim}

Class definitions, like function definitions (\verb\def\ statements)
must be executed before they have any effect.  (You could conceivably
place a class definition in a branch of an \verb\if\ statement, or
inside a function.)

In practice, the statements inside a class definition will usually be
function definitions, but other statements are allowed, and sometimes
useful --- we'll come back to this later.  The function definitions
inside a class normally have a peculiar form of argument list,
dictated by the calling conventions for methods --- again, this is
explained later.

When a class definition is entered, a new name space is created, and
used as the local scope --- thus, all assignments to local variables
go into this new name space.  In particular, function definitions bind
the name of the new function here.

When a class definition is left normally (via the end), a {\em class
object} is created.  This is basically a wrapper around the contents
of the name space created by the class definition; we'll learn more
about class objects in the next section.  The original local scope
(the one in effect just before the class definitions was entered) is
reinstated, and the class object is bound here to class name given in
the class definition header (ClassName in the example).


\subsection{Class objects}

Class objects support two kinds of operations: attribute references
and instantiation.

{\em Attribute references} use the standard syntax used for all
attribute references in Python: \verb\obj.name\.  Valid attribute
names are all the names that were in the class's name space when the
class object was created.  So, if the class definition looked like
this:

\begin{verbatim}
        class MyClass:
                i = 12345
                def f(x):
                        return 'hello world'
\end{verbatim}

then \verb\MyClass.i\ and \verb\MyClass.f\ are valid attribute
references, returning an integer and a function object, respectively.
Class attributes can also be assigned to, so you can change the
value of \verb\MyClass.i\ by assignment.

Class {\em instantiation} uses function notation.  Just pretend that
the class object is a parameterless function that returns a new
instance of the class.  For example, (assuming the above class):

\begin{verbatim}
        x = MyClass()
\end{verbatim}

creates a new {\em instance} of the class and assigns this object to
the local variable \verb\x\.


\subsection{Instance objects}

Now what can we do with instance objects?  The only operations
understood by instance objects are attribute references.  There are
two kinds of valid attribute names.

The first I'll call {\em data attributes}.  These correspond to
``instance variables'' in Smalltalk, and to ``data members'' in \Cpp{}.
Data attributes need not be declared; like local variables, they
spring into existence when they are first assigned to.  For example,
if \verb\x\ in the instance of \verb\MyClass\ created above, the
following piece of code will print the value 16, without leaving a
trace:

\begin{verbatim}
        x.counter = 1
        while x.counter < 10:
                x.counter = x.counter * 2
        print x.counter
        del x.counter
\end{verbatim}

The second kind of attribute references understood by instance objects
are {\em methods}.  A method is a function that ``belongs to'' an
object.  (In Python, the term method is not unique to class instances:
other object types can have methods as well, e.g., list objects have
methods called append, insert, remove, sort, and so on.  However,
below, we'll use the term method exclusively to mean methods of class
instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class.  By
definition, all attributes of a class that are (user-defined) function
objects define corresponding methods of its instances.  So in our
example, \verb\x.f\ is a valid method reference, since
\verb\MyClass.f\ is a function, but \verb\x.i\ is not, since
\verb\MyClass.i\ is not.  But \verb\x.f\ is not the
same thing as \verb\MyClass.f\ --- it is a {\em method object}, not a
function object.


\subsection{Method objects}

Usually, a method is called immediately, e.g.:

\begin{verbatim}
        x.f()
\end{verbatim}

In our example, this will return the string \verb\'hello world'\.
However, it is not necessary to call a method right away: \verb\x.f\
is a method object, and can be stored away and called at a later
moment, for example:

\begin{verbatim}
        xf = x.f
        while 1:
                print xf()
\end{verbatim}

will continue to print \verb\hello world\ until the end of time.

What exactly happens when a method is called?  You may have noticed
that \verb\x.f()\ was called without an argument above, even though
the function definition for \verb\f\ specified an argument.  What
happened to the argument?  Surely Python raises an exception when a
function that requires an argument is called without any --- even if
the argument isn't actually used...

Actually, you may have guessed the answer: the special thing about
methods is that the object is passed as the first argument of the
function.  In our example, the call \verb\x.f()\ is exactly equivalent
to \verb\MyClass.f(x)\.  In general, calling a method with a list of
{\em n} arguments is equivalent to calling the corresponding function
with an argument list that is created by inserting the method's object
before the first argument.

If you still don't understand how methods work, a look at the
implementation can perhaps clarify matters.  When an instance
attribute is referenced that isn't a data attribute, its class is
searched.  If the name denotes a valid class attribute that is a
function object, a method object is created by packing (pointers to)
the instance object and the function object just found together in an
abstract object: this is the method object.  When the method object is
called with an argument list, it is unpacked again, a new argument
list is constructed from the instance object and the original argument
list, and the function object is called with this new argument list.


\section{Random remarks}


[These should perhaps be placed more carefully...]


Data attributes override method attributes with the same name; to
avoid accidental name conflicts, which may cause hard-to-find bugs in
large programs, it is wise to use some kind of convention that
minimizes the chance of conflicts, e.g., capitalize method names,
prefix data attribute names with a small unique string (perhaps just
an underscore), or use verbs for methods and nouns for data attributes.


Data attributes may be referenced by methods as well as by ordinary
users (``clients'') of an object.  In other words, classes are not
usable to implement pure abstract data types.  In fact, nothing in
Python makes it possible to enforce data hiding --- it is all based
upon convention.  (On the other hand, the Python implementation,
written in C, can completely hide implementation details and control
access to an object if necessary; this can be used by extensions to
Python written in C.)


Clients should use data attributes with care --- clients may mess up
invariants maintained by the methods by stamping on their data
attributes.  Note that clients may add data attributes of their own to
an instance object without affecting the validity of the methods, as
long as name conflicts are avoided --- again, a naming convention can
save a lot of headaches here.


There is no shorthand for referencing data attributes (or other
methods!) from within methods.  I find that this actually increases
the readability of methods: there is no chance of confusing local
variables and instance variables when glancing through a method.


Conventionally, the first argument of methods is often called
\verb\self\.  This is nothing more than a convention: the name
\verb\self\ has absolutely no special meaning to Python.  (Note,
however, that by not following the convention your code may be less
readable by other Python programmers, and it is also conceivable that
a {\em class browser} program be written which relies upon such a
convention.)


Any function object that is a class attribute defines a method for
instances of that class.  It is not necessary that the function
definition is textually enclosed in the class definition: assigning a
function object to a local variable in the class is also ok.  For
example:

\begin{verbatim}
        # Function defined outside the class
        def f1(self, x, y):
                return min(x, x+y)

        class C:
                f = f1
                def g(self):
                        return 'hello world'
                h = g
\end{verbatim}

Now \verb\f\, \verb\g\ and \verb\h\ are all attributes of class
\verb\C\ that refer to function objects, and consequently they are all
methods of instances of \verb\C\ --- \verb\h\ being exactly equivalent
to \verb\g\.  Note that this practice usually only serves to confuse
the reader of a program.


Methods may call other methods by using method attributes of the
\verb\self\ argument, e.g.:

\begin{verbatim}
        class Bag:
                def empty(self):
                        self.data = []
                def add(self, x):
                        self.data.append(x)
                def addtwice(self, x):
                        self.add(x)
                        self.add(x)
\end{verbatim}


The instantiation operation (``calling'' a class object) creates an
empty object.  Many classes like to create objects in a known initial
state.  Therefore a class may define a special method named
\verb\__init__\, like this:

\begin{verbatim}
                def __init__(self):
                        self.empty()
\end{verbatim}

When a class defines an \verb\__init__\ method, class instantiation
automatically invokes \verb\__init__\ for the newly-created class
instance.  So in the \verb\Bag\ example, a new and initialized instance
can be obtained by:

\begin{verbatim}
        x = Bag()
\end{verbatim}

Of course, the \verb\__init__\ method may have arguments for greater
flexibility.  In that case, arguments given to the class instantiation
operator are passed on to \verb\__init__\.  For example,

\bcode\begin{verbatim}
>>> class Complex:
...     def __init__(self, realpart, imagpart):
...         self.r = realpart
...         self.i = imagpart
... 
>>> x = Complex(3.0,-4.5)
>>> x.r, x.i
(3.0, -4.5)
>>> 
\end{verbatim}\ecode
%
Methods may reference global names in the same way as ordinary
functions.  The global scope associated with a method is the module
containing the class definition.  (The class itself is never used as a
global scope!)  While one rarely encounters a good reason for using
global data in a method, there are many legitimate uses of the global
scope: for one thing, functions and modules imported into the global
scope can be used by methods, as well as functions and classes defined
in it.  Usually, the class containing the method is itself defined in
this global scope, and in the next section we'll find some good
reasons why a method would want to reference its own class!


\section{Inheritance}

Of course, a language feature would not be worthy of the name ``class''
without supporting inheritance.  The syntax for a derived class
definition looks as follows:

\begin{verbatim}
        class DerivedClassName(BaseClassName):
                <statement-1>
                .
                .
                .
                <statement-N>
\end{verbatim}

The name \verb\BaseClassName\ must be defined in a scope containing
the derived class definition.  Instead of a base class name, an
expression is also allowed.  This is useful when the base class is
defined in another module, e.g.,

\begin{verbatim}
        class DerivedClassName(modname.BaseClassName):
\end{verbatim}

Execution of a derived class definition proceeds the same as for a
base class.  When the class object is constructed, the base class is
remembered.  This is used for resolving attribute references: if a
requested attribute is not found in the class, it is searched in the
base class.  This rule is applied recursively if the base class itself
is derived from some other class.

There's nothing special about instantiation of derived classes:
\verb\DerivedClassName()\ creates a new instance of the class.  Method
references are resolved as follows: the corresponding class attribute
is searched, descending down the chain of base classes if necessary,
and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes.  Because
methods have no special privileges when calling other methods of the
same object, a method of a base class that calls another method
defined in the same base class, may in fact end up calling a method of
a derived class that overrides it.  (For \Cpp{} programmers: all methods
in Python are ``virtual functions''.)

An overriding method in a derived class may in fact want to extend
rather than simply replace the base class method of the same name.
There is a simple way to call the base class method directly: just
call \verb\BaseClassName.methodname(self, arguments)\.  This is
occasionally useful to clients as well.  (Note that this only works if
the base class is defined or imported directly in the global scope.)


\subsection{Multiple inheritance}

Python supports a limited form of multiple inheritance as well.  A
class definition with multiple base classes looks as follows:

\begin{verbatim}
        class DerivedClassName(Base1, Base2, Base3):
                <statement-1>
                .
                .
                .
                <statement-N>
\end{verbatim}

The only rule necessary to explain the semantics is the resolution
rule used for class attribute references.  This is depth-first,
left-to-right.  Thus, if an attribute is not found in
\verb\DerivedClassName\, it is searched in \verb\Base1\, then
(recursively) in the base classes of \verb\Base1\, and only if it is
not found there, it is searched in \verb\Base2\, and so on.

(To some people breadth first---searching \verb\Base2\ and
\verb\Base3\ before the base classes of \verb\Base1\---looks more
natural.  However, this would require you to know whether a particular
attribute of \verb\Base1\ is actually defined in \verb\Base1\ or in
one of its base classes before you can figure out the consequences of
a name conflict with an attribute of \verb\Base2\.  The depth-first
rule makes no differences between direct and inherited attributes of
\verb\Base1\.)

It is clear that indiscriminate use of multiple inheritance is a
maintenance nightmare, given the reliance in Python on conventions to
avoid accidental name conflicts.  A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a
common base class.  While it is easy enough to figure out what happens
in this case (the instance will have a single copy of ``instance
variables'' or data attributes used by the common base class), it is
not clear that these semantics are in any way useful.


\section{Odds and ends}

Sometimes it is useful to have a data type similar to the Pascal
``record'' or C ``struct'', bundling together a couple of named data
items.  An empty class definition will do nicely, e.g.:

\begin{verbatim}
        class Employee:
                pass

        john = Employee() # Create an empty employee record

        # Fill the fields of the record
        john.name = 'John Doe'
        john.dept = 'computer lab'
        john.salary = 1000
\end{verbatim}


A piece of Python code that expects a particular abstract data type
can often be passed a class that emulates the methods of that data
type instead.  For instance, if you have a function that formats some
data from a file object, you can define a class with methods
\verb\read()\ and \verb\readline()\ that gets the data from a string
buffer instead, and pass it as an argument.  (Unfortunately, this
technique has its limitations: a class can't define operations that
are accessed by special syntax such as sequence subscripting or
arithmetic operators, and assigning such a ``pseudo-file'' to
\verb\sys.stdin\ will not cause the interpreter to read further input
from it.)


Instance method objects have attributes, too: \verb\m.im_self\ is the
object of which the method is an instance, and \verb\m.im_func\ is the
function object corresponding to the method.


\chapter{Recent Additions}

Python is an evolving language.  Since this tutorial was last
thoroughly revised, several new features have been added to the
language.  While ideally I should revise the tutorial to incorporate
them in the mainline of the text, lack of time currently requires me
to take a more modest approach.  In this chapter I will briefly list the
most important improvements to the language and how you can use them
to your benefit.

\section{The Last Printed Expression}

In interactive mode, the last printed expression is assigned to the
variable \code{_}.  This means that when you are using Python as a
desk calculator, it is somewhat easier to continue calculations, for
example:

\begin{verbatim}
        >>> tax = 17.5 / 100
        >>> price = 3.50
        >>> price * tax
        0.6125
        >>> price + _
        4.1125
        >>> round(_, 2)
        4.11
        >>> 
\end{verbatim}

For reasons too embarrassing to explain, this variable is implemented
as a built-in (living in the module \code{__builtin__}), so it should
be treated as read-only by the user.  I.e. don't explicitly assign a
value to it --- you would create an independent local variable with
the same name masking the built-in variable with its magic behavior.

\section{String Literals}

\subsection{Double Quotes}

Python can now also use double quotes to surround string literals,
e.g. \verb\"this doesn't hurt a bit"\.  There is no semantic
difference between strings surrounded by single or double quotes.

\subsection{Continuation Of String Literals}

String literals can span multiple lines by escaping newlines with
backslashes, e.g.

\begin{verbatim}
        hello = "This is a rather long string containing\n\
        several lines of text just as you would do in C.\n\
            Note that whitespace at the beginning of the line is\
         significant.\n"
        print hello
\end{verbatim}

which would print the following:
\begin{verbatim}
        This is a rather long string containing
        several lines of text just as you would do in C.
            Note that whitespace at the beginning of the line is significant.
\end{verbatim}

\subsection{Triple-quoted strings}

In some cases, when you need to include really long strings (e.g.
containing several paragraphs of informational text), it is annoying
that you have to terminate each line with \verb@\n\@, especially if
you would like to reformat the text occasionally with a powerful text
editor like Emacs.  For such situations, ``triple-quoted'' strings can
be used, e.g.

\begin{verbatim}
        hello = """

            This string is bounded by triple double quotes (3 times ").
        Unescaped newlines in the string are retained, though \
        it is still possible\nto use all normal escape sequences.

            Whitespace at the beginning of a line is
        significant.  If you need to include three opening quotes
        you have to escape at least one of them, e.g. \""".

            This string ends in a newline.
        """
\end{verbatim}

Triple-quoted strings can be surrounded by three single quotes as
well, again without semantic difference.

\subsection{String Literal Juxtaposition}

One final twist: you can juxtapose multiple string literals.  Two or
more adjacent string literals (but not arbitrary expressions!)
separated only by whitespace will be concatenated (without intervening
whitespace) into a single string object at compile time.  This makes
it possible to continue a long string on the next line without
sacrificing indentation or performance, unlike the use of the string
concatenation operator \verb\+\ or the continuation of the literal
itself on the next line (since leading whitespace is significant
inside all types of string literals).  Note that this feature, like
all string features except triple-quoted strings, is borrowed from
Standard C.

\section{The Formatting Operator}

\subsection{Basic Usage}

The chapter on output formatting is really out of date: there is now
an almost complete interface to C-style printf formats.  This is done
by overloading the modulo operator (\verb\%\) for a left operand
which is a string, e.g.

\begin{verbatim}
        >>> import math
        >>> print 'The value of PI is approximately %5.3f.' % math.pi
        The value of PI is approximately 3.142.
        >>> 
\end{verbatim}

If there is more than one format in the string you pass a tuple as
right operand, e.g.

\begin{verbatim}
        >>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
        >>> for name, phone in table.items():
        ...     print '%-10s ==> %10d' % (name, phone)
        ... 
        Jack       ==>       4098
        Dcab       ==>    8637678
        Sjoerd     ==>       4127
        >>> 
\end{verbatim}

Most formats work exactly as in C and require that you pass the proper
type (however, if you don't you get an exception, not a core dump).
The \verb\%s\ format is more relaxed: if the corresponding argument is
not a string object, it is converted to string using the \verb\str()\
built-in function.  Using \verb\*\ to pass the width or precision in
as a separate (integer) argument is supported.  The C formats
\verb\%n\ and \verb\%p\ are not supported.

\subsection{Referencing Variables By Name}

If you have a really long format string that you don't want to split
up, it would be nice if you could reference the variables to be
formatted by name instead of by position.  This can be done by using
an extension of C formats using the form \verb\%(name)format\, e.g.

\begin{verbatim}
        >>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
        >>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
        Jack: 4098; Sjoerd: 4127; Dcab: 8637678
        >>> 
\end{verbatim}

This is particularly useful in combination with the new built-in
\verb\vars()\ function, which returns a dictionary containing all
local variables.

\section{Optional Function Arguments}

It is now possible to define functions with a variable number of
arguments.  There are two forms, which can be combined.

\subsection{Default Argument Values}

The most useful form is to specify a default value for one or more
arguments.  This creates a function that can be called with fewer
arguments than it is defined, e.g.

\begin{verbatim}
        def ask_ok(prompt, retries = 4, complaint = 'Yes or no, please!'):
                while 1:
                        ok = raw_input(prompt)
                        if ok in ('y', 'ye', 'yes'): return 1
                        if ok in ('n', 'no', 'nop', 'nope'): return 0
                        retries = retries - 1
                        if retries < 0: raise IOError, 'refusenik user'
                        print complaint
\end{verbatim}

This function can be called either like this:
\verb\ask_ok('Do you really want to quit?')\ or like this:
\verb\ask_ok('OK to overwrite the file?', 2)\.

The default values are evaluated at the point of function definition
in the {\em defining} scope, so that e.g.

\begin{verbatim}
        i = 5
        def f(arg = i): print arg
        i = 6
        f()
\end{verbatim}

will print \verb\5\.

\subsection{Arbitrary Argument Lists}

It is also possible to specify that a function can be called with an
arbitrary number of arguments.  These arguments will be wrapped up in
a tuple.  Before the variable number of arguments, zero or more normal
arguments may occur, e.g.

\begin{verbatim}
        def fprintf(file, format, *args):
                file.write(format % args)
\end{verbatim}

This feature may be combined with the previous, e.g.

\begin{verbatim}
        def but_is_it_useful(required, optional = None, *remains):
                print "I don't know"
\end{verbatim}

\section{Lambda And Functional Programming Tools}

\subsection{Lambda Forms}

By popular demand, a few features commonly found in functional
programming languages and Lisp have been added to Python.  With the
\verb\lambda\ keyword, small anonymous functions can be created.
Here's a function that returns the sum of its two arguments:
\verb\lambda a, b: a+b\.  Lambda forms can be used wherever function
objects are required.  They are syntactically restricted to a single
expression.  Semantically, they are just syntactic sugar for a normal
function definition.  Like nested function definitions, lambda forms
cannot reference variables from the containing scope, but this can be
overcome through the judicious use of default argument values, e.g.

\begin{verbatim}
        def make_incrementor(n):
                return lambda x, incr=n: x+incr
\end{verbatim}

\subsection{Map, Reduce and Filter}

Three new built-in functions on sequences are good candidate to pass
lambda forms.

\subsubsection{Map.}

\verb\map(function, sequence)\ calls \verb\function(item)\ for each of
the sequence's items and returns a list of the return values.  For
example, to compute some cubes:

\begin{verbatim}
        >>> map(lambda x: x*x*x, range(1, 11))
        [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
        >>>
\end{verbatim}

More than one sequence may be passed; the function must then have as
many arguments as there are sequences and is called with the
corresponding item from each sequence (or \verb\None\ if some sequence
is shorter than another).  If \verb\None\ is passed for the function,
a function returning its argument(s) is substituted.

Combining these two special cases, we see that
\verb\map(None, list1, list2)\  is a convenient way of turning a pair
of lists into a list of pairs.  For example:

\begin{verbatim}
        >>> seq = range(8)
        >>> map(None, seq, map(lambda x: x*x, seq))
        [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]
        >>> 
\end{verbatim}

\subsubsection{Filter.}

\verb\filter(function, sequence)\ returns a sequence (of the same
type, if possible) consisting of those items from the sequence for
which \verb\function(item)\ is true.  For example, to compute some
primes:

\begin{verbatim}
        >>> filter(lambda x: x%2 != 0 and x%3 != 0, range(2, 25))
        [5, 7, 11, 13, 17, 19, 23]
        >>>
\end{verbatim}

\subsubsection{Reduce.}

\verb\reduce(function, sequence)\ returns a single value constructed
by calling the (binary) function on the first two items of the
sequence, then on the result and the next item, and so on.  For
example, to compute the sum of the numbers 1 through 10:

\begin{verbatim}
        >>> reduce(lambda x, y: x+y, range(1, 11))
        55
        >>> 
\end{verbatim}

If there's only one item in the sequence, its value is returned; if
the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value.  In this
case the starting value is returned for an empty sequence, and the
function is first applied to the starting value and the first sequence
item, then to the result and the next item, and so on.  For example,

\begin{verbatim}
        >>> def sum(seq):
        ...     return reduce(lambda x, y: x+y, seq, 0)
        ... 
        >>> sum(range(1, 11))
        55
        >>> sum([])
        0
        >>> 
\end{verbatim}

\section{Continuation Lines Without Backslashes}

While the general mechanism for continuation of a source line on the
next physical line remains to place a backslash on the end of the
line, expressions inside matched parentheses (or square brackets, or
curly braces) can now also be continued without using a backslash.
This is particularly useful for calls to functions with many
arguments, and for initializations of large tables.

For example:

\begin{verbatim}
        month_names = ['Januari', 'Februari', 'Maart', 
                       'April',   'Mei',      'Juni', 
                       'Juli',    'Augustus', 'September',
                       'Oktober', 'November', 'December']
\end{verbatim}

and

\begin{verbatim}
        CopyInternalHyperLinks(self.context.hyperlinks,
                               copy.context.hyperlinks,
                               uidremap)
\end{verbatim}

\section{Regular Expressions}

While C's printf-style output formats, transformed into Python, are
adequate for most output formatting jobs, C's scanf-style input
formats are not very powerful.  Instead of scanf-style input, Python
offers Emacs-style regular expressions as a powerful input and
scanning mechanism.  Read the corresponding section in the Library
Reference for a full description.

\section{Generalized Dictionaries}

The keys of dictionaries are no longer restricted to strings --- they
can be any immutable basic type including strings, numbers, tuples, or
(certain) class instances.  (Lists and dictionaries are not acceptable
as dictionary keys, in order to avoid problems when the object used as
a key is modified.)

Dictionaries have two new methods: \verb\d.values()\ returns a list of
the dictionary's values, and \verb\d.items()\ returns a list of the
dictionary's (key, value) pairs.  Like \verb\d.keys()\, these
operations are slow for large dictionaries.  Examples:

\begin{verbatim}
        >>> d = {100: 'honderd', 1000: 'duizend', 10: 'tien'}
        >>> d.keys()
        [100, 10, 1000]
        >>> d.values()
        ['honderd', 'tien', 'duizend']
        >>> d.items()
        [(100, 'honderd'), (10, 'tien'), (1000, 'duizend')]
        >>> 
\end{verbatim}

\section{Miscellaneous New Built-in Functions}

The function \verb\vars()\ returns a dictionary containing the current
local variables.  With a module argument, it returns that module's
global variables.  The old function \verb\dir(x)\ returns
\verb\vars(x).keys()\.

The function \verb\round(x)\ returns a floating point number rounded
to the nearest integer (but still expressed as a floating point
number).  E.g. \verb\round(3.4) == 3.0\ and \verb\round(3.5) == 4.0\.
With a second argument it rounds to the specified number of digits,
e.g. \verb\round(math.pi, 4) == 3.1416\ or even
\verb\round(123.4, -2) == 100.0\. 

The function \verb\hash(x)\ returns a hash value for an object.
All object types acceptable as dictionary keys have a hash value (and
it is this hash value that the dictionary implementation uses).

The function \verb\id(x)\ return a unique identifier for an object.
For two objects x and y, \verb\id(x) == id(y)\ if and only if
\verb\x is y\.  (In fact the object's address is used.)

The function \verb\hasattr(x, name)\ returns whether an object has an
attribute with the given name (a string value).  The function
\verb\getattr(x, name)\ returns the object's attribute with the given
name.  The function \verb\setattr(x, name, value)\ assigns a value to
an object's attribute with the given name.  These three functions are
useful if the attribute names are not known beforehand.  Note that
\verb\getattr(x, 'spam')\ is equivalent to \verb\x.spam\, and
\verb\setattr(x, 'spam', y)\ is equivalent to \verb\x.spam = y\.  By
definition, \verb\hasattr(x, name)\ returns true if and only if
\verb\getattr(x, name)\ returns without raising an exception.

\section{Else Clause For Try Statement}

The \verb\try...except\ statement now has an optional \verb\else\
clause, which must follow all \verb\except\ clauses.  It is useful to
place code that must be executed if the \verb\try\ clause does not
raise an exception.  For example:

\begin{verbatim}
        for arg in sys.argv:
                try:
                        f = open(arg, 'r')
                except IOError:
                        print 'cannot open', arg
                else:
                        print arg, 'has', len(f.readlines()), 'lines'
                        f.close()
\end{verbatim}


\section{New Class Features in Release 1.1}

Some changes have been made to classes: the operator overloading
mechanism is more flexible, providing more support for non-numeric use
of operators (including calling an object as if it were a function),
and it is possible to trap attribute accesses.

\subsection{New Operator Overloading}

It is no longer necessary to coerce both sides of an operator to the
same class or type.  A class may still provide a \code{__coerce__}
method, but this method may return objects of different types or
classes if it feels like it.  If no \code{__coerce__} is defined, any
argument type or class is acceptable.

In order to make it possible to implement binary operators where the
right-hand side is a class instance but the left-hand side is not,
without using coercions, right-hand versions of all binary operators
may be defined.  These have an `r' prepended to their name,
e.g. \code{__radd__}.

For example, here's a very simple class for representing times.  Times
are initialized from a number of seconds (like time.time()).  Times
are printed like this: \code{Thu Oct 6 14:20:06 1994}.  Subtracting
two Times gives their difference in seconds.  Adding or subtracting a
Time and a number gives a new Time.  You can't add two times, nor can
you subtract a Time from a number.

\begin{verbatim}
import time

class Time:
    def __init__(self, seconds):
        self.seconds = seconds
    def __repr__(self):
        return time.ctime(self.seconds)
    def __add__(self, x):
        return Time(self.seconds + x)
    __radd__ = __add__            # support for x+t
    def __sub__(self, x):
        if hasattr(x, 'seconds'): # test if x could be a Time
            return self.seconds - x.seconds
        else:
            return self.seconds - x

now = Time(time.time())
tomorrow = 24*3600 + now
yesterday = now - today
print tomorrow - yesterday        # prints 172800
\end{verbatim}

\subsection{Trapping Attribute Access}

You can define three new ``magic'' methods in a class now:
\code{__getattr__(self, name)}, \code{__setattr__(self, name, value)}
and \code{__delattr__(self, name)}.

The \code{__getattr__} method is called when an attribute access fails,
i.e. when an attribute access would otherwise raise AttributeError ---
this is {\em after} the instance's dictionary and its class hierarchy
have been searched for the named attribute.  Note that if this method
attempts to access any undefined instance attribute it will be called
recursively!

The \code{__setattr__} and \code{__delattr__} methods are called when
assignment to, respectively deletion of an attribute are attempted.
They are called {\em instead} of the normal action (which is to insert
or delete the attribute in the instance dictionary).  If either of
these methods most set or delete any attribute, they can only do so by
using the instance dictionary directly --- \code{self.__dict__} --- else
they would be called recursively.

For example, here's a near-universal ``Wrapper'' class that passes all
its attribute accesses to another object.  Note how the
\code{__init__} method inserts the wrapped object in
\code{self.__dict__} in order to avoid endless recursion
(\code{__setattr__} would call \code{__getattr__} which would call
itself recursively).

\begin{verbatim}
class Wrapper:
    def __init__(self, wrapped):
        self.__dict__['wrapped'] = wrapped
    def __getattr__(self, name):
        return getattr(self.wrapped, name)
    def __setattr__(self, name, value):
        setattr(self.wrapped, name, value)
    def __delattr__(self, name):
        delattr(self.wrapped, name)

import sys
f = Wrapper(sys.stdout)
f.write('hello world\n')          # prints 'hello world'
\end{verbatim}

A simpler example of \code{__getattr__} is an attribute that is
computed each time (or the first time) it it accessed.  For instance:

\begin{verbatim}
from math import pi

class Circle:
    def __init__(self, radius):
        self.radius = radius
    def __getattr__(self, name):
        if name == 'circumference':
            return 2 * pi * self.radius
        if name == 'diameter':
            return 2 * self.radius
        if name == 'area':
           return pi * pow(self.radius, 2)
        raise AttributeError, name
\end{verbatim}

\subsection{Calling a Class Instance}

If a class defines a method \code{__call__} it is possible to call its
instances as if they were functions.  For example:

\begin{verbatim}
class PresetSomeArguments:
    def __init__(self, func, *args):
        self.func, self.args = func, args
    def __call__(self, *args):
        return apply(self.func, self.args + args)

f = PresetSomeArguments(pow, 2)    # f(i) computes powers of 2
for i in range(10): print f(i),    # prints 1 2 4 8 16 32 64 128 256 512
print                              # append newline
\end{verbatim}


\chapter{New in Release 1.2}


This chapter describes even more recent additions to the Python
language and library.


\section{New Class Features}

The semantics of \code{__coerce__} have been changed to be more
reasonable.  As an example, the new standard module \code{Complex}
implements fairly complete complex numbers using this.  Additional
examples of classes with and without \code{__coerce__} methods can be
found in the \code{Demo/classes} subdirectory, modules \code{Rat} and
\code{Dates}.

If a class defines no \code{__coerce__} method, this is equivalent to
the following definition:

\begin{verbatim}
def __coerce__(self, other): return self, other
\end{verbatim}

If \code{__coerce__} coerces itself to an object of a different type,
the operation is carried out using that type --- in release 1.1, this
would cause an error.

Comparisons involving class instances now invoke \code{__coerce__}
exactly as if \code{cmp(x, y)} were a binary operator like \code{+}
(except if \code{x} and \code{y} are the same object).

\section{Unix Signal Handling}

On Unix, Python now supports signal handling.  The module
\code{signal} exports functions \code{signal}, \code{pause} and
\code{alarm}, which act similar to their Unix counterparts.  The
module also exports the conventional names for the various signal
classes (also usable with \code{os.kill()}) and \code{SIG_IGN} and
\code{SIG_DFL}.  See the section on \code{signal} in the Library
Reference Manual for more information.

\section{Exceptions Can Be Classes}

User-defined exceptions are no longer limited to being string objects
--- they can be identified by classes as well.  Using this mechanism it
is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

\begin{verbatim}
raise Class, instance

raise instance
\end{verbatim}

In the first form, \code{instance} must be an instance of \code{Class}
or of a class derived from it.  The second form is a shorthand for

\begin{verbatim}
raise instance.__class__, instance
\end{verbatim}

An except clause may list classes as well as string objects.  A class
in an except clause is compatible with an exception if it is the same
class or a base class thereof (but not the other way around --- an
except clause listing a derived class is not compatible with a base
class).  For example, the following code will print B, C, D in that
order:

\begin{verbatim}
class B:
    pass
class C(B):
    pass
class D(C):
    pass

for c in [B, C, D]:
    try:
        raise c()
    except D:
        print "D"
    except C:
        print "C"
    except B:
        print "B"
\end{verbatim}

Note that if the except clauses were reversed (with ``\code{except B}''
first), it would have printed B, B, B --- the first matching except
clause is triggered.

When an error message is printed for an unhandled exception which is a
class, the class name is printed, then a colon and a space, and
finally the instance converted to a string using the built-in function
\code{str()}.

In this release, the built-in exceptions are still strings.


\section{Object Persistency and Object Copying}

Two new modules, \code{pickle} and \code{shelve}, support storage and
retrieval of (almost) arbitrary Python objects on disk, using the
\code{dbm} package.  A third module, \code{copy}, provides flexible
object copying operations.  More information on these modules is
provided in the Library Reference Manual.

\subsection{Persistent Objects}

The module \code{pickle} provides a general framework for objects to
disassemble themselves into a stream of bytes and to reassemble such a
stream back into an object.  It copes with reference sharing,
recursive objects and instances of user-defined classes, but not
(directly) with objects that have ``magical'' links into the operating
system such as open files, sockets or windows.

The \code{pickle} module defines a simple protocol whereby
user-defined classes can control how they are disassembled and
assembled.  The method \code{__getinitargs__()}, if defined, returns
the argument list for the constructor to be used at assembly time (by
default the constructor is called without arguments).  The methods
\code{__getstate__()} and \code{__setstate__()} are used to pass
additional state from disassembly to assembly; by default the
instance's \code{__dict__} is passed and restored.

Note that \code{pickle} does not open or close any files --- it can be
used equally well for moving objects around on a network or store them
in a database.  For ease of debugging, and the inevitable occasional
manual patch-up, the constructed byte streams consist of printable
ASCII characters only (though it's not designed to be pretty).

The module \code{shelve} provides a simple model for storing objects
on files.  The operation \code{shelve.open(filename)} returns a
``shelf'', which is a simple persistent database with a
dictionary-like interface.  Database keys are strings, objects stored
in the database can be anything that \code{pickle} will handle.

\subsection{Copying Objects}

The module \code{copy} exports two functions: \code{copy()} and
\code{deepcopy()}.  The \code{copy()} function returns a ``shallow''
copy of an object; \code{deepcopy()} returns a ``deep'' copy.  The
difference between shallow and deep copying is only relevant for
compound objects (objects that contain other objects, like lists or
class instances):

\begin{itemize}

\item
A shallow copy constructs a new compound object and then (to the
extent possible) inserts {\em the same objects} into in that the
original contains.

\item
A deep copy constructs a new compound object and then, recursively,
inserts {\em copies} into it of the objects found in the original.

\end{itemize}

Both functions have the same restrictions and use the same protocols
as \code{pickle} --- user-defined classes can control how they are
copied by providing methods named \code{__getinitargs__()},
\code{__getstate__()} and \code{__setstate__()}.


\section{Documentation Strings}

A variety of objects now have a new attribute, \code{__doc__}, which
is supposed to contain a documentation string (if no documentation is
present, the attribute is \code{None}).  New syntax, compatible with
the old interpreter, allows for convenient initialization of the
\code{__doc__} attribute of modules, classes and functions by placing
a string literal by itself as the first statement in the suite.  It
must be a literal --- an expression yielding a string object is not
accepted as a documentation string, since future tools may need to
derive documentation from source by parsing.

Here is a hypothetical, amply documented module called \code{Spam}:

\begin{verbatim}
"""Spam operations.

This module exports two classes, a function and an exception:

class Spam: full Spam functionality --- three can sizes
class SpamLight: limited Spam functionality --- only one can size

def open(filename): open a file and return a corresponding Spam or
SpamLight object

GoneOff: exception raised for errors; should never happen

Note that it is always possible to convert a SpamLight object to a
Spam object by a simple method call, but that the reverse operation is
generally costly and may fail for a number of reasons.
"""

class SpamLight:
    """Limited spam functionality.

    Supports a single can size, no flavor, and only hard disks.
    """

    def __init__(self, size=12):
        """Construct a new SpamLight instance.

        Argument is the can size.
        """
        # etc.

    # etc.

class Spam(SpamLight):
    """Full spam functionality.

    Supports three can sizes, two flavor varieties, and all floppy
    disk formats still supported by current hardware.
    """

    def __init__(self, size1=8, size2=12, size3=20):
        """Construct a new Spam instance.

        Arguments are up to three can sizes.
        """
        # etc.

    # etc.

def open(filename = "/dev/null"):
    """Open a can of Spam.

    Argument must be an existing file.
    """
    # etc.

class GoneOff:
    """Class used for Spam exceptions.

    There shouldn't be any.
    """
    pass
\end{verbatim}

After executing ``\code{import Spam}'', the following expressions
return the various documentation strings from the module:

\begin{verbatim}
Spam.__doc__
Spam.SpamLight.__doc__
Spam.SpamLight.__init__.__doc__
Spam.Spam.__doc__
Spam.Spam.__init__.__doc__
Spam.open.__doc__
Spam.GoneOff.__doc__
\end{verbatim}

There are emerging conventions about the content and formatting of
documentation strings.

The first line should always be a short, concise summary of the
object's purpose.  For brevity, it should not explicitly state the
object's name or type, since these are available by other means
(except if the name happens to be a verb describing a function's
operation).  This line should begin with a capital letter and end with
a period.

If there are more lines in the documentation string, the second line
should be blank, visually separating the summary from the rest of the
description.  The following lines should be one of more of paragraphs
describing the objects calling conventions, its side effects, etc.

Some people like to copy the Emacs convention of using UPPER CASE for
function parameters --- this often saves a few words or lines.

The Python parser does not strip indentation from multi-line string
literals in Python, so tools that process documentation have to strip
indentation.  This is done using the following convention.  The first
non-blank line {\em after} the first line of the string determines the
amount of indentation for the entire documentation string.  (We can't
use the first line since it is generally adjacent to the string's
opening quotes so its indentation is not apparent in the string
literal.)  Whitespace ``equivalent'' to this indentation is then
stripped from the start of all lines of the string.  Lines that are
indented less should not occur, but if they occur all their leading
whitespace should be stripped.  Equivalence of whitespace should be
tested after expansion of tabs (to 8 spaces, normally).

In this release, few of the built-in or standard functions and modules
have documentation strings.


\section{Customizing Import and Built-Ins}

In preparation for a ``restricted execution mode'' which will be
usable to run code received from an untrusted source (such as a WWW
server or client), the mechanism by which modules are imported has
been redesigned.  It is now possible to provide your own function
\code{__import__} which is called whenever an \code{import} statement
is executed.  There's a built-in function \code{__import__} which
provides the default implementation, but more interesting, the various
steps it takes are available separately from the new built-in module
\code{imp}.  (See the section on \code{imp} in the Library Reference
Manual for more information on this module.)

When you do \code{dir()} in a fresh interactive interpreter you will
see another ``secret'' object that's present in every module:
\code{__builtins__}.  This is either a dictionary or a module
containing the set of built-in objects used by functions defined in
current module.  Although normally all modules are initialized with a
reference to the same dictionary, it is now possible to use a
different set of built-ins on a per-module basis.  Together with the
fact that the \code{import} statement uses the \code{__import__}
function it finds in the importing modules' dictionary of built-ins,
this forms the basis for a future restricted execution mode.


\section{Python and the World-Wide Web}

There is a growing number of modules available for writing WWW tools.
The previous release already sported modules \code{gopherlib},
\code{ftplib}, \code{httplib} and \code{urllib} (which unifies the
other three) for accessing data through the commonest WWW protocols.
This release also provides \code{cgi}, to ease the writing of
server-side scripts that use the Common Gateway Interface protocol,
supported by most WWW servers.  The module \code{urlparse} provides
precise parsing of a URL string into its components (address scheme,
network location, path, parameters, query, and fragment identifier).

A rudimentary, parser for HTML files is available in the module
\code{htmllib}.  It currently supports a subset of HTML 1.0 (if you
bring it up to date, I'd love to receive your fixes!).  Unfortunately
Python seems to be too slow for real-time parsing and formatting of
HTML such as required by interactive WWW browsers --- but it's good
enough to write a ``robot'' (an automated WWW browser that searches
the web for information).


\section{Miscellaneous}

\begin{itemize}

\item
The \code{socket} module now exports all the needed constants used for
socket operations, such as \code{SO_BROADCAST}.

\item
The functions \code{popen()} and \code{fdopen()} in the \code{os}
module now follow the pattern of the built-in function \code{open()}:
the default mode argument is \code{'r'} and the optional third
argument specifies the buffer size, where \code{0} means unbuffered,
\code{1} means line-buffered, and any larger number means the size of
the buffer in bytes.

\end{itemize}


\end{document}