summaryrefslogtreecommitdiffstats
path: root/Doc/tutorial/modules.rst
blob: a4e1cefb26b71d33906692f8b124e401e14020f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
.. _tut-modules:

*******
Modules
*******

If you quit from the Python interpreter and enter it again, the definitions you
have made (functions and variables) are lost. Therefore, if you want to write a
somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead.  This
is known as creating a *script*.  As your program gets longer, you may want to
split it into several files for easier maintenance.  You may also want to use a
handy function that you've written in several programs without copying its
definition into each program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is called a
*module*; definitions from a module can be *imported* into other modules or into
the *main* module (the collection of variables that you have access to in a
script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements.  The file name
is the module name with the suffix :file:`.py` appended.  Within a module, the
module's name (as a string) is available as the value of the global variable
``__name__``.  For instance, use your favorite text editor to create a file
called :file:`fibo.py` in the current directory with the following contents::

   # Fibonacci numbers module

   def fib(n):    # write Fibonacci series up to n
       a, b = 0, 1
       while a < n:
           print(a, end=' ')
           a, b = b, a+b
       print()

   def fib2(n):   # return Fibonacci series up to n
       result = []
       a, b = 0, 1
       while a < n:
           result.append(a)
           a, b = b, a+b
       return result

Now enter the Python interpreter and import this module with the following
command::

   >>> import fibo

This does not enter the names of the functions defined in ``fibo``  directly in
the current symbol table; it only enters the module name ``fibo`` there. Using
the module name you can access the functions::

   >>> fibo.fib(1000)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
   >>> fibo.fib2(100)
   [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
   >>> fibo.__name__
   'fibo'

If you intend to use a function often you can assign it to a local name::

   >>> fib = fibo.fib
   >>> fib(500)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377


.. _tut-moremodules:

More on Modules
===============

A module can contain executable statements as well as function definitions.
These statements are intended to initialize the module. They are executed only
the *first* time the module name is encountered in an import statement. [#]_
(They are also run if the file is executed as a script.)

Each module has its own private symbol table, which is used as the global symbol
table by all functions defined in the module. Thus, the author of a module can
use global variables in the module without worrying about accidental clashes
with a user's global variables. On the other hand, if you know what you are
doing you can touch a module's global variables with the same notation used to
refer to its functions, ``modname.itemname``.

Modules can import other modules.  It is customary but not required to place all
:keyword:`import` statements at the beginning of a module (or script, for that
matter).  The imported module names are placed in the importing module's global
symbol table.

There is a variant of the :keyword:`import` statement that imports names from a
module directly into the importing module's symbol table.  For example::

   >>> from fibo import fib, fib2
   >>> fib(500)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the
local symbol table (so in the example, ``fibo`` is not defined).

There is even a variant to import all names that a module defines::

   >>> from fibo import *
   >>> fib(500)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (``_``).
In most cases Python programmers do not use this facility since it introduces
an unknown set of names into the interpreter, possibly hiding some things
you have already defined.

Note that in general the practice of importing ``*`` from a module or package is
frowned upon, since it often causes poorly readable code. However, it is okay to
use it to save typing in interactive sessions.

If the module name is followed by :keyword:`!as`, then the name
following :keyword:`!as` is bound directly to the imported module.

::

   >>> import fibo as fib
   >>> fib.fib(500)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that ``import fibo``
will do, with the only difference of it being available as ``fib``.

It can also be used when utilising :keyword:`from` with similar effects::

   >>> from fibo import fib as fibonacci
   >>> fibonacci(500)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377


.. note::

   For efficiency reasons, each module is only imported once per interpreter
   session.  Therefore, if you change your modules, you must restart the
   interpreter -- or, if it's just one module you want to test interactively,
   use :func:`importlib.reload`, e.g. ``import importlib;
   importlib.reload(modulename)``.


.. _tut-modulesasscripts:

Executing modules as scripts
----------------------------

When you run a Python module with ::

   python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with
the ``__name__`` set to ``"__main__"``.  That means that by adding this code at
the end of your module::

   if __name__ == "__main__":
       import sys
       fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module,
because the code that parses the command line only runs if the module is
executed as the "main" file:

.. code-block:: shell-session

   $ python fibo.py 50
   0 1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run::

   >>> import fibo
   >>>

This is often used either to provide a convenient user interface to a module, or
for testing purposes (running the module as a script executes a test suite).


.. _tut-searchpath:

The Module Search Path
----------------------

.. index:: triple: module; search; path

When a module named :mod:`spam` is imported, the interpreter first searches for
a built-in module with that name. If not found, it then searches for a file
named :file:`spam.py` in a list of directories given by the variable
:data:`sys.path`.  :data:`sys.path` is initialized from these locations:

* The directory containing the input script (or the current directory when no
  file is specified).
* :envvar:`PYTHONPATH` (a list of directory names, with the same syntax as the
  shell variable :envvar:`PATH`).
* The installation-dependent default (by convention including a
  ``site-packages`` directory, handled by the :mod:`site` module).

More details are at :ref:`sys-path-init`.

.. note::
   On file systems which support symlinks, the directory containing the input
   script is calculated after the symlink is followed. In other words the
   directory containing the symlink is **not** added to the module search path.

After initialization, Python programs can modify :data:`sys.path`.  The
directory containing the script being run is placed at the beginning of the
search path, ahead of the standard library path. This means that scripts in that
directory will be loaded instead of modules of the same name in the library
directory. This is an error unless the replacement is intended.  See section
:ref:`tut-standardmodules` for more information.

.. %
    Do we need stuff on zip files etc. ? DUBOIS

"Compiled" Python files
-----------------------

To speed up loading modules, Python caches the compiled version of each module
in the ``__pycache__`` directory under the name :file:`module.{version}.pyc`,
where the version encodes the format of the compiled file; it generally contains
the Python version number.  For example, in CPython release 3.3 the compiled
version of spam.py would be cached as ``__pycache__/spam.cpython-33.pyc``.  This
naming convention allows compiled modules from different releases and different
versions of Python to coexist.

Python checks the modification date of the source against the compiled version
to see if it's out of date and needs to be recompiled.  This is a completely
automatic process.  Also, the compiled modules are platform-independent, so the
same library can be shared among systems with different architectures.

Python does not check the cache in two circumstances.  First, it always
recompiles and does not store the result for the module that's loaded directly
from the command line.  Second, it does not check the cache if there is no
source module.  To support a non-source (compiled only) distribution, the
compiled module must be in the source directory, and there must not be a source
module.

Some tips for experts:

* You can use the :option:`-O` or :option:`-OO` switches on the Python command
  to reduce the size of a compiled module.  The ``-O`` switch removes assert
  statements, the ``-OO`` switch removes both assert statements and __doc__
  strings.  Since some programs may rely on having these available, you should
  only use this option if you know what you're doing.  "Optimized" modules have
  an ``opt-`` tag and are usually smaller.  Future releases may
  change the effects of optimization.

* A program doesn't run any faster when it is read from a ``.pyc``
  file than when it is read from a ``.py`` file; the only thing that's faster
  about ``.pyc`` files is the speed with which they are loaded.

* The module :mod:`compileall` can create .pyc files for all modules in a
  directory.

* There is more detail on this process, including a flow chart of the
  decisions, in :pep:`3147`.


.. _tut-standardmodules:

Standard Modules
================

.. index:: module: sys

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference ("Library Reference" hereafter).  Some
modules are built into the interpreter; these provide access to operations that
are not part of the core of the language but are nevertheless built in, either
for efficiency or to provide access to operating system primitives such as
system calls.  The set of such modules is a configuration option which also
depends on the underlying platform.  For example, the :mod:`winreg` module is only
provided on Windows systems. One particular module deserves some attention:
:mod:`sys`, which is built into every Python interpreter.  The variables
``sys.ps1`` and ``sys.ps2`` define the strings used as primary and secondary
prompts::

   >>> import sys
   >>> sys.ps1
   '>>> '
   >>> sys.ps2
   '... '
   >>> sys.ps1 = 'C> '
   C> print('Yuck!')
   Yuck!
   C>


These two variables are only defined if the interpreter is in interactive mode.

The variable ``sys.path`` is a list of strings that determines the interpreter's
search path for modules. It is initialized to a default path taken from the
environment variable :envvar:`PYTHONPATH`, or from a built-in default if
:envvar:`PYTHONPATH` is not set.  You can modify it using standard list
operations::

   >>> import sys
   >>> sys.path.append('/ufs/guido/lib/python')


.. _tut-dir:

The :func:`dir` Function
========================

The built-in function :func:`dir` is used to find out which names a module
defines.  It returns a sorted list of strings::

   >>> import fibo, sys
   >>> dir(fibo)
   ['__name__', 'fib', 'fib2']
   >>> dir(sys)  # doctest: +NORMALIZE_WHITESPACE
   ['__breakpointhook__', '__displayhook__', '__doc__', '__excepthook__',
    '__interactivehook__', '__loader__', '__name__', '__package__', '__spec__',
    '__stderr__', '__stdin__', '__stdout__', '__unraisablehook__',
    '_clear_type_cache', '_current_frames', '_debugmallocstats', '_framework',
    '_getframe', '_git', '_home', '_xoptions', 'abiflags', 'addaudithook',
    'api_version', 'argv', 'audit', 'base_exec_prefix', 'base_prefix',
    'breakpointhook', 'builtin_module_names', 'byteorder', 'call_tracing',
    'callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_info',
    'excepthook', 'exec_prefix', 'executable', 'exit', 'flags', 'float_info',
    'float_repr_style', 'get_asyncgen_hooks', 'get_coroutine_origin_tracking_depth',
    'getallocatedblocks', 'getdefaultencoding', 'getdlopenflags',
    'getfilesystemencodeerrors', 'getfilesystemencoding', 'getprofile',
    'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval',
    'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
    'intern', 'is_finalizing', 'last_traceback', 'last_type', 'last_value',
    'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks',
    'path_importer_cache', 'platform', 'prefix', 'ps1', 'ps2', 'pycache_prefix',
    'set_asyncgen_hooks', 'set_coroutine_origin_tracking_depth', 'setdlopenflags',
    'setprofile', 'setrecursionlimit', 'setswitchinterval', 'settrace', 'stderr',
    'stdin', 'stdout', 'thread_info', 'unraisablehook', 'version', 'version_info',
    'warnoptions']

Without arguments, :func:`dir` lists the names you have defined currently::

   >>> a = [1, 2, 3, 4, 5]
   >>> import fibo
   >>> fib = fibo.fib
   >>> dir()
   ['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

.. index:: module: builtins

:func:`dir` does not list the names of built-in functions and variables.  If you
want a list of those, they are defined in the standard module
:mod:`builtins`::

   >>> import builtins
   >>> dir(builtins)  # doctest: +NORMALIZE_WHITESPACE
   ['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
    'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
    'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
    'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
    'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
    'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
    'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
    'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
    'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
    'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
    'NotImplementedError', 'OSError', 'OverflowError',
    'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
    'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
    'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
    'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
    'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
    'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
    'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
    '__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
    'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
    'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
    'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
    'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
    'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
    'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
    'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
    'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
    'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
    'zip']

.. _tut-packages:

Packages
========

Packages are a way of structuring Python's module namespace by using "dotted
module names".  For example, the module name :mod:`A.B` designates a submodule
named ``B`` in a package named ``A``.  Just like the use of modules saves the
authors of different modules from having to worry about each other's global
variable names, the use of dotted module names saves the authors of multi-module
packages like NumPy or Pillow from having to worry about
each other's module names.

Suppose you want to design a collection of modules (a "package") for the uniform
handling of sound files and sound data.  There are many different sound file
formats (usually recognized by their extension, for example: :file:`.wav`,
:file:`.aiff`, :file:`.au`), so you may need to create and maintain a growing
collection of modules for the conversion between the various file formats.
There are also many different operations you might want to perform on sound data
(such as mixing, adding echo, applying an equalizer function, creating an
artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations.  Here's a possible structure for
your package (expressed in terms of a hierarchical filesystem):

.. code-block:: text

   sound/                          Top-level package
         __init__.py               Initialize the sound package
         formats/                  Subpackage for file format conversions
                 __init__.py
                 wavread.py
                 wavwrite.py
                 aiffread.py
                 aiffwrite.py
                 auread.py
                 auwrite.py
                 ...
         effects/                  Subpackage for sound effects
                 __init__.py
                 echo.py
                 surround.py
                 reverse.py
                 ...
         filters/                  Subpackage for filters
                 __init__.py
                 equalizer.py
                 vocoder.py
                 karaoke.py
                 ...

When importing the package, Python searches through the directories on
``sys.path`` looking for the package subdirectory.

The :file:`__init__.py` files are required to make Python treat directories
containing the file as packages.  This prevents directories with a common name,
such as ``string``, unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, :file:`__init__.py` can just be
an empty file, but it can also execute initialization code for the package or
set the ``__all__`` variable, described later.

Users of the package can import individual modules from the package, for
example::

   import sound.effects.echo

This loads the submodule :mod:`sound.effects.echo`.  It must be referenced with
its full name. ::

   sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is::

   from sound.effects import echo

This also loads the submodule :mod:`echo`, and makes it available without its
package prefix, so it can be used as follows::

   echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly::

   from sound.effects.echo import echofilter

Again, this loads the submodule :mod:`echo`, but this makes its function
:func:`echofilter` directly available::

   echofilter(input, output, delay=0.7, atten=4)

Note that when using ``from package import item``, the item can be either a
submodule (or subpackage) of the package, or some  other name defined in the
package, like a function, class or variable.  The ``import`` statement first
tests whether the item is defined in the package; if not, it assumes it is a
module and attempts to load it.  If it fails to find it, an :exc:`ImportError`
exception is raised.

Contrarily, when using syntax like ``import item.subitem.subsubitem``, each item
except for the last must be a package; the last item can be a module or a
package but can't be a class or function or variable defined in the previous
item.


.. _tut-pkg-import-star:

Importing \* From a Package
---------------------------

.. index:: single: __all__

Now what happens when the user writes ``from sound.effects import *``?  Ideally,
one would hope that this somehow goes out to the filesystem, finds which
submodules are present in the package, and imports them all.  This could take a
long time and importing sub-modules might have unwanted side-effects that should
only happen when the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the
package.  The :keyword:`import` statement uses the following convention: if a package's
:file:`__init__.py` code defines a list named ``__all__``, it is taken to be the
list of module names that should be imported when ``from package import *`` is
encountered.  It is up to the package author to keep this list up-to-date when a
new version of the package is released.  Package authors may also decide not to
support it, if they don't see a use for importing \* from their package.  For
example, the file :file:`sound/effects/__init__.py` could contain the following
code::

   __all__ = ["echo", "surround", "reverse"]

This would mean that ``from sound.effects import *`` would import the three
named submodules of the :mod:`sound` package.

If ``__all__`` is not defined, the statement ``from sound.effects import *``
does *not* import all submodules from the package :mod:`sound.effects` into the
current namespace; it only ensures that the package :mod:`sound.effects` has
been imported (possibly running any initialization code in :file:`__init__.py`)
and then imports whatever names are defined in the package.  This includes any
names defined (and submodules explicitly loaded) by :file:`__init__.py`.  It
also includes any submodules of the package that were explicitly loaded by
previous :keyword:`import` statements.  Consider this code::

   import sound.effects.echo
   import sound.effects.surround
   from sound.effects import *

In this example, the :mod:`echo` and :mod:`surround` modules are imported in the
current namespace because they are defined in the :mod:`sound.effects` package
when the ``from...import`` statement is executed.  (This also works when
``__all__`` is defined.)

Although certain modules are designed to export only names that follow certain
patterns when you use ``import *``, it is still considered bad practice in
production code.

Remember, there is nothing wrong with using ``from package import
specific_submodule``!  In fact, this is the recommended notation unless the
importing module needs to use submodules with the same name from different
packages.


.. _intra-package-references:

Intra-package References
------------------------

When packages are structured into subpackages (as with the :mod:`sound` package
in the example), you can use absolute imports to refer to submodules of siblings
packages.  For example, if the module :mod:`sound.filters.vocoder` needs to use
the :mod:`echo` module in the :mod:`sound.effects` package, it can use ``from
sound.effects import echo``.

You can also write relative imports, with the ``from module import name`` form
of import statement.  These imports use leading dots to indicate the current and
parent packages involved in the relative import.  From the :mod:`surround`
module for example, you might use::

   from . import echo
   from .. import formats
   from ..filters import equalizer

Note that relative imports are based on the name of the current module.  Since
the name of the main module is always ``"__main__"``, modules intended for use
as the main module of a Python application must always use absolute imports.


Packages in Multiple Directories
--------------------------------

Packages support one more special attribute, :attr:`__path__`.  This is
initialized to be a list containing the name of the directory holding the
package's :file:`__init__.py` before the code in that file is executed.  This
variable can be modified; doing so affects future searches for modules and
subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of
modules found in a package.


.. rubric:: Footnotes

.. [#] In fact function definitions are also 'statements' that are 'executed'; the
   execution of a module-level function definition enters the function name in
   the module's global symbol table.