summaryrefslogtreecommitdiffstats
path: root/Doc/tutorial/stdlib2.rst
blob: 3b9122fead985da316c49cd50102d2afe64d58f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
.. _tut-brieftourtwo:

*********************************************
Brief Tour of the Standard Library -- Part II
*********************************************

This second tour covers more advanced modules that support professional
programming needs.  These modules rarely occur in small scripts.


.. _tut-output-formatting:

Output Formatting
=================

The :mod:`reprlib` module provides a version of :func:`repr` customized for
abbreviated displays of large or deeply nested containers::

   >>> import reprlib
   >>> reprlib.repr(set('supercalifragilisticexpialidocious'))
   "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

The :mod:`pprint` module offers more sophisticated control over printing both
built-in and user defined objects in a way that is readable by the interpreter.
When the result is longer than one line, the "pretty printer" adds line breaks
and indentation to more clearly reveal data structure::

   >>> import pprint
   >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
   ...     'yellow'], 'blue']]]
   ...
   >>> pprint.pprint(t, width=30)
   [[[['black', 'cyan'],
      'white',
      ['green', 'red']],
     [['magenta', 'yellow'],
      'blue']]]

The :mod:`textwrap` module formats paragraphs of text to fit a given screen
width::

   >>> import textwrap
   >>> doc = """The wrap() method is just like fill() except that it returns
   ... a list of strings instead of one big string with newlines to separate
   ... the wrapped lines."""
   ...
   >>> print(textwrap.fill(doc, width=40))
   The wrap() method is just like fill()
   except that it returns a list of strings
   instead of one big string with newlines
   to separate the wrapped lines.

The :mod:`locale` module accesses a database of culture specific data formats.
The grouping attribute of locale's format function provides a direct way of
formatting numbers with group separators::

   >>> import locale
   >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
   'English_United States.1252'
   >>> conv = locale.localeconv()          # get a mapping of conventions
   >>> x = 1234567.8
   >>> locale.format("%d", x, grouping=True)
   '1,234,567'
   >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
   ...                      conv['frac_digits'], x), grouping=True)
   '$1,234,567.80'


.. _tut-templating:

Templating
==========

The :mod:`string` module includes a versatile :class:`Template` class with a
simplified syntax suitable for editing by end-users.  This allows users to
customize their applications without having to alter the application.

The format uses placeholder names formed by ``$`` with valid Python identifiers
(alphanumeric characters and underscores).  Surrounding the placeholder with
braces allows it to be followed by more alphanumeric letters with no intervening
spaces.  Writing ``$$`` creates a single escaped ``$``::

   >>> from string import Template
   >>> t = Template('${village}folk send $$10 to $cause.')
   >>> t.substitute(village='Nottingham', cause='the ditch fund')
   'Nottinghamfolk send $10 to the ditch fund.'

The :meth:`substitute` method raises a :exc:`KeyError` when a placeholder is not
supplied in a dictionary or a keyword argument. For mail-merge style
applications, user supplied data may be incomplete and the
:meth:`safe_substitute` method may be more appropriate --- it will leave
placeholders unchanged if data is missing::

   >>> t = Template('Return the $item to $owner.')
   >>> d = dict(item='unladen swallow')
   >>> t.substitute(d)
   Traceback (most recent call last):
     ...
   KeyError: 'owner'
   >>> t.safe_substitute(d)
   'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter.  For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format::

   >>> import time, os.path
   >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
   >>> class BatchRename(Template):
   ...     delimiter = '%'
   >>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):  ')
   Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f

   >>> t = BatchRename(fmt)
   >>> date = time.strftime('%d%b%y')
   >>> for i, filename in enumerate(photofiles):
   ...     base, ext = os.path.splitext(filename)
   ...     newname = t.substitute(d=date, n=i, f=ext)
   ...     print('{0} --> {1}'.format(filename, newname))

   img_1074.jpg --> Ashley_0.jpg
   img_1076.jpg --> Ashley_1.jpg
   img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details
of multiple output formats.  This makes it possible to substitute custom
templates for XML files, plain text reports, and HTML web reports.


.. _tut-binary-formats:

Working with Binary Data Record Layouts
=======================================

The :mod:`struct` module provides :func:`pack` and :func:`unpack` functions for
working with variable length binary record formats.  The following example shows
how to loop through header information in a ZIP file without using the
:mod:`zipfile` module.  Pack codes ``"H"`` and ``"I"`` represent two and four
byte unsigned numbers respectively.  The ``"<"`` indicates that they are
standard size and in little-endian byte order::

   import struct

   with open('myfile.zip', 'rb') as f:
       data = f.read()

   start = 0
   for i in range(3):                      # show the first 3 file headers
       start += 14
       fields = struct.unpack('<IIIHH', data[start:start+16])
       crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

       start += 16
       filename = data[start:start+filenamesize]
       start += filenamesize
       extra = data[start:start+extra_size]
       print(filename, hex(crc32), comp_size, uncomp_size)

       start += extra_size + comp_size     # skip to the next header


.. _tut-multi-threading:

Multi-threading
===============

Threading is a technique for decoupling tasks which are not sequentially
dependent.  Threads can be used to improve the responsiveness of applications
that accept user input while other tasks run in the background.  A related use
case is running I/O in parallel with computations in another thread.

The following code shows how the high level :mod:`threading` module can run
tasks in background while the main program continues to run::

   import threading, zipfile

   class AsyncZip(threading.Thread):
       def __init__(self, infile, outfile):
           threading.Thread.__init__(self)
           self.infile = infile
           self.outfile = outfile
       def run(self):
           f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
           f.write(self.infile)
           f.close()
           print('Finished background zip of:', self.infile)

   background = AsyncZip('mydata.txt', 'myarchive.zip')
   background.start()
   print('The main program continues to run in foreground.')

   background.join()    # Wait for the background task to finish
   print('Main program waited until background was done.')

The principal challenge of multi-threaded applications is coordinating threads
that share data or other resources.  To that end, the threading module provides
a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that
are difficult to reproduce.  So, the preferred approach to task coordination is
to concentrate all access to a resource in a single thread and then use the
:mod:`queue` module to feed that thread with requests from other threads.
Applications using :class:`Queue` objects for inter-thread communication and
coordination are easier to design, more readable, and more reliable.


.. _tut-logging:

Logging
=======

The :mod:`logging` module offers a full featured and flexible logging system.
At its simplest, log messages are sent to a file or to ``sys.stderr``::

   import logging
   logging.debug('Debugging information')
   logging.info('Informational message')
   logging.warning('Warning:config file %s not found', 'server.conf')
   logging.error('Error occurred')
   logging.critical('Critical error -- shutting down')

This produces the following output:

.. code-block:: none

   WARNING:root:Warning:config file server.conf not found
   ERROR:root:Error occurred
   CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output
is sent to standard error.  Other output options include routing messages
through email, datagrams, sockets, or to an HTTP Server.  New filters can select
different routing based on message priority: :const:`DEBUG`, :const:`INFO`,
:const:`WARNING`, :const:`ERROR`, and :const:`CRITICAL`.

The logging system can be configured directly from Python or can be loaded from
a user editable configuration file for customized logging without altering the
application.


.. _tut-weak-references:

Weak References
===============

Python does automatic memory management (reference counting for most objects and
:term:`garbage collection` to eliminate cycles).  The memory is freed shortly
after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need
to track objects only as long as they are being used by something else.
Unfortunately, just tracking them creates a reference that makes them permanent.
The :mod:`weakref` module provides tools for tracking objects without creating a
reference.  When the object is no longer needed, it is automatically removed
from a weakref table and a callback is triggered for weakref objects.  Typical
applications include caching objects that are expensive to create::

   >>> import weakref, gc
   >>> class A:
   ...     def __init__(self, value):
   ...         self.value = value
   ...     def __repr__(self):
   ...         return str(self.value)
   ...
   >>> a = A(10)                   # create a reference
   >>> d = weakref.WeakValueDictionary()
   >>> d['primary'] = a            # does not create a reference
   >>> d['primary']                # fetch the object if it is still alive
   10
   >>> del a                       # remove the one reference
   >>> gc.collect()                # run garbage collection right away
   0
   >>> d['primary']                # entry was automatically removed
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
       d['primary']                # entry was automatically removed
     File "C:/python34/lib/weakref.py", line 46, in __getitem__
       o = self.data[key]()
   KeyError: 'primary'


.. _tut-list-tools:

Tools for Working with Lists
============================

Many data structure needs can be met with the built-in list type. However,
sometimes there is a need for alternative implementations with different
performance trade-offs.

The :mod:`array` module provides an :class:`array()` object that is like a list
that stores only homogeneous data and stores it more compactly.  The following
example shows an array of numbers stored as two byte unsigned binary numbers
(typecode ``"H"``) rather than the usual 16 bytes per entry for regular lists of
Python int objects::

   >>> from array import array
   >>> a = array('H', [4000, 10, 700, 22222])
   >>> sum(a)
   26932
   >>> a[1:3]
   array('H', [10, 700])

The :mod:`collections` module provides a :class:`deque()` object that is like a
list with faster appends and pops from the left side but slower lookups in the
middle. These objects are well suited for implementing queues and breadth first
tree searches::

   >>> from collections import deque
   >>> d = deque(["task1", "task2", "task3"])
   >>> d.append("task4")
   >>> print("Handling", d.popleft())
   Handling task1

::

   unsearched = deque([starting_node])
   def breadth_first_search(unsearched):
       node = unsearched.popleft()
       for m in gen_moves(node):
           if is_goal(m):
               return m
           unsearched.append(m)

In addition to alternative list implementations, the library also offers other
tools such as the :mod:`bisect` module with functions for manipulating sorted
lists::

   >>> import bisect
   >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
   >>> bisect.insort(scores, (300, 'ruby'))
   >>> scores
   [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The :mod:`heapq` module provides functions for implementing heaps based on
regular lists.  The lowest valued entry is always kept at position zero.  This
is useful for applications which repeatedly access the smallest element but do
not want to run a full list sort::

   >>> from heapq import heapify, heappop, heappush
   >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
   >>> heapify(data)                      # rearrange the list into heap order
   >>> heappush(data, -5)                 # add a new entry
   >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
   [-5, 0, 1]


.. _tut-decimal-fp:

Decimal Floating Point Arithmetic
=================================

The :mod:`decimal` module offers a :class:`Decimal` datatype for decimal
floating point arithmetic.  Compared to the built-in :class:`float`
implementation of binary floating point, the class is especially helpful for

* financial applications and other uses which require exact decimal
  representation,
* control over precision,
* control over rounding to meet legal or regulatory requirements,
* tracking of significant decimal places, or
* applications where the user expects the results to match calculations done by
  hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different
results in decimal floating point and binary floating point. The difference
becomes significant if the results are rounded to the nearest cent::

   >>> from decimal import *
   >>> round(Decimal('0.70') * Decimal('1.05'), 2)
   Decimal('0.74')
   >>> round(.70 * 1.05, 2)
   0.73

The :class:`Decimal` result keeps a trailing zero, automatically inferring four
place significance from multiplicands with two place significance.  Decimal
reproduces mathematics as done by hand and avoids issues that can arise when
binary floating point cannot exactly represent decimal quantities.

Exact representation enables the :class:`Decimal` class to perform modulo
calculations and equality tests that are unsuitable for binary floating point::

   >>> Decimal('1.00') % Decimal('.10')
   Decimal('0.00')
   >>> 1.00 % 0.10
   0.09999999999999995

   >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
   True
   >>> sum([0.1]*10) == 1.0
   False

The :mod:`decimal` module provides arithmetic with as much precision as needed::

   >>> getcontext().prec = 36
   >>> Decimal(1) / Decimal(7)
   Decimal('0.142857142857142857142857142857142857')