1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
|
\documentclass{howto}
\usepackage{distutils}
% $Id$
% Don't write extensive text for new sections; I'll do that.
% Feel free to add commented-out reminders of things that need
% to be covered. --amk
% XXX pydoc can display links to module docs -- but when?
%
\title{What's New in Python 2.4}
\release{0.3}
\author{A.M.\ Kuchling}
\authoraddress{
\strong{Python Software Foundation}\\
Email: \email{amk@amk.ca}
}
\begin{document}
\maketitle
\tableofcontents
This article explains the new features in Python 2.4 alpha3, scheduled
for release in early September. The final version of Python 2.4 is
expected to be released around December 2004.
Python 2.4 is a medium-sized release. It doesn't introduce as many
changes as the radical Python 2.2, but introduces more features than
the conservative 2.3 release did. The most significant new language
features (as of this writing) are function decorators and generator
expressions; most other changes are to the standard library.
This article doesn't attempt to provide a complete specification of
every single new feature, but instead provides a convenient overview.
For full details, you should refer to the documentation for Python
2.4, such as the \citetitle[../lib/lib.html]{Python Library Reference}
and the \citetitle[../ref/ref.html]{Python Reference Manual}. If you
want to understand the complete implementation and design rationale,
refer to the PEP for a particular new feature or to the module
documentation.
%======================================================================
\section{PEP 218: Built-In Set Objects}
Python 2.3 introduced the \module{sets} module. C implementations of
set data types have now been added to the Python core as two new
built-in types, \function{set(\var{iterable})} and
\function{frozenset(\var{iterable})}. They provide high speed
operations for membership testing, for eliminating duplicates from
sequences, and for mathematical operations like unions, intersections,
differences, and symmetric differences.
\begin{verbatim}
>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> ''.join(a) # convert back into a string
'arbcd'
>>> b = set('alacazam') # form a second set
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])
>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'x', 'z'])
>>> a.remove('x') # take one element out
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'z'])
\end{verbatim}
The \function{frozenset} type is an immutable version of \function{set}.
Since it is immutable and hashable, it may be used as a dictionary key or
as a member of another set.
The \module{sets} module remains in the standard library, and may be
useful if you wish to subclass the \class{Set} or \class{ImmutableSet}
classes. There are currently no plans to deprecate the module.
\begin{seealso}
\seepep{218}{Adding a Built-In Set Object Type}{Originally proposed by
Greg Wilson and ultimately implemented by Raymond Hettinger.}
\end{seealso}
%======================================================================
\section{PEP 237: Unifying Long Integers and Integers}
The lengthy transition process for this PEP, begun in Python 2.2,
takes another step forward in Python 2.4. In 2.3, certain integer
operations that would behave differently after int/long unification
triggered \exception{FutureWarning} warnings and returned values
limited to 32 or 64 bits (depending on your platform). In 2.4, these
expressions no longer produce a warning and instead produce a
different result that's usually a long integer.
The problematic expressions are primarily left shifts and lengthy
hexadecimal and octal constants. For example,
\code{2 \textless{}\textless{} 32} results
in a warning in 2.3, evaluating to 0 on 32-bit platforms. In Python
2.4, this expression now returns the correct answer, 8589934592.
\begin{seealso}
\seepep{237}{Unifying Long Integers and Integers}{Original PEP
written by Moshe Zadka and GvR. The changes for 2.4 were implemented by
Kalle Svensson.}
\end{seealso}
%======================================================================
\section{PEP 289: Generator Expressions}
The iterator feature introduced in Python 2.2 and the
\module{itertools} module make it easier to write programs that loop
through large data sets without having the entire data set in memory
at one time. List comprehensions don't fit into this picture very
well because they produce a Python list object containing all of the
items, unavoidably pulling them all into memory. When trying to write
a functionally-styled program, it would be natural to write something
like:
\begin{verbatim}
links = [link for link in get_all_links() if not link.followed]
for link in links:
...
\end{verbatim}
instead of
\begin{verbatim}
for link in get_all_links():
if link.followed:
continue
...
\end{verbatim}
The first form is more concise and perhaps more readable, but if
you're dealing with a large number of link objects the second form
would have to be used to avoid having all link objects in memory at
the same time.
Generator expressions work similarly to list comprehensions but don't
materialize the entire list; instead they create a generator that will
return elements one by one. The above example could be written as:
\begin{verbatim}
links = (link for link in get_all_links() if not link.followed)
for link in links:
...
\end{verbatim}
Generator expressions always have to be written inside parentheses, as
in the above example. The parentheses signalling a function call also
count, so if you want to create a iterator that will be immediately
passed to a function you could write:
\begin{verbatim}
print sum(obj.count for obj in list_all_objects())
\end{verbatim}
Generator expressions differ from list comprehensions in various small
ways. Most notably, the loop variable (\var{obj} in the above
example) is not accessible outside of the generator expression. List
comprehensions leave the variable assigned to its last value; future
versions of Python will change this, making list comprehensions match
generator expressions in this respect.
\begin{seealso}
\seepep{289}{Generator Expressions}{Proposed by Raymond Hettinger and
implemented by Jiwon Seo with early efforts steered by Hye-Shik Chang.}
\end{seealso}
%======================================================================
\section{PEP 292: Simpler String Substitutions}
Some new classes in the standard library provide a
alternative mechanism for substituting variables into strings that's
better-suited for applications where untrained users need to edit templates.
The usual way of substituting variables by name is the \code{\%}
operator:
\begin{verbatim}
>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'
\end{verbatim}
When writing the template string, it can be easy to forget the
\samp{i} or \samp{s} after the closing parenthesis. This isn't a big
problem if the template is in a Python module, because you run the
code, get an ``Unsupported format character'' \exception{ValueError},
and fix the problem. However, consider an application such as Mailman
where template strings or translations are being edited by users who
aren't aware of the Python language; the syntax is complicated to
explain to such users, and if they make a mistake, it's difficult to
provide helpful feedback to them.
PEP 292 adds a \class{Template} class to the \module{string} module
that uses \samp{\$} to indicate a substitution. \class{Template} is a
subclass of the built-in Unicode type, so the result is always a
Unicode string:
\begin{verbatim}
>>> import string
>>> t = string.Template('$page: $title')
>>> t % {'page':2, 'title': 'The Best of Times'}
u'2: The Best of Times'
>>> t2 % {'cost':42.50, 'action':'polish'}
u'$ 42.5: polishing'
\end{verbatim}
% $ Terminate $-mode for Emacs
If a key is missing from the dictionary, the \class{Template} class
will raise a \exception{KeyError}. There's also a \class{SafeTemplate}
class that ignores missing keys:
\begin{verbatim}
>>> t = string.SafeTemplate('$page: $title')
>>> t % {'page':3}
u'3: $title'
\end{verbatim}
Because templates are Unicode strings, you can use a template with the
\module{gettext} module to look up translated versions of a message.
\begin{seealso}
\seepep{292}{Simpler String Substitutions}{Written and implemented
by Barry Warsaw.}
\end{seealso}
%======================================================================
\section{PEP 318: Decorators for Functions, Methods and Classes}
Python 2.2 extended Python's object model by adding static methods and
class methods, but it didn't extend Python's syntax to provide any new
way of defining static or class methods. Instead, you had to write a
\keyword{def} statement in the usual way, and pass the resulting
method to a \function{staticmethod()} or \function{classmethod()}
function that would wrap up the function as a method of the new type.
Your code would look like this:
\begin{verbatim}
class C:
def meth (cls):
...
meth = classmethod(meth) # Rebind name to wrapped-up class method
\end{verbatim}
If the method was very long, it would be easy to miss or forget the
\function{classmethod()} invocation after the function body.
The intention was always to add some syntax to make such definitions
more readable, but at the time of 2.2's release a good syntax was not
obvious. Years later, when Python 2.4 is coming out, a good syntax
\emph{still} isn't obvious but users are asking for easier access to
the feature, so a new syntactic feature has been added.
The feature is called ``function decorators''. The name comes from
the idea that \function{classmethod}, \function{staticmethod}, and
friends are storing additional information on a function object; they're
\emph{decorating} functions with more details.
The notation borrows from Java and uses the \character{@} character as an
indicator. Using the new syntax, the example above would be written:
\begin{verbatim}
class C:
@classmethod
def meth (cls):
...
\end{verbatim}
The \code{@classmethod} is shorthand for the
\code{meth=classmethod(meth)} assignment. More generally, if you have
the following:
\begin{verbatim}
@A @B @C
def f ():
...
\end{verbatim}
It's equivalent to:
\begin{verbatim}
def f(): ...
f = C(B(A(f)))
\end{verbatim}
Decorators must come on the line before a function definition, and
can't be on the same line, meaning that \code{@A def f(): ...} is
illegal. You can only decorate function definitions, either at the
module-level or inside a class; you can't decorate class definitions.
A decorator is just a function that takes the function to be decorated
as an argument and returns either the same function or some new
callable thing. It's easy to write your own decorators. The
following simple example just sets an attribute on the function
object:
\begin{verbatim}
>>> def deco(func):
... func.attr = 'decorated'
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
'decorated'
>>>
\end{verbatim}
As a slightly more realistic example, the following decorator checks
that the supplied argument is an integer:
\begin{verbatim}
def require_int (func):
def wrapper (arg):
assert isinstance(arg, int)
return func(arg)
return wrapper
@require_int
def p1 (arg):
print arg
@require_int
def p2(arg):
print arg*2
\end{verbatim}
An example in \pep{318} contains a fancier version of this idea that
lets you specify the required type and check the returned type as
well.
Decorator functions can take arguments. If arguments are supplied,
the decorator function is called with only those arguments and must
return a new decorator function; this new function must take a single
function and return a function, as previously described. In other
words, \code{@A @B @C(args)} becomes:
\begin{verbatim}
def f(): ...
_deco = C(args)
f = _deco(B(A(f)))
\end{verbatim}
Getting this right can be slightly brain-bending, but it's not too
difficult.
A small related change makes the \member{func_name} attribute of
functions writable. This attribute is used to display function names
in tracebacks, so decorators should change the name of any new
function that's constructed and returned.
The new syntax was provisionally added in 2.4alpha2, and is subject to
change during the 2.4alpha release cycle depending on the Python
community's reaction. Post-2.4 versions of Python will preserve
compatibility with whatever syntax is used in 2.4final.
\begin{seealso}
\seepep{318}{Decorators for Functions, Methods and Classes}{Written
by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people
wrote patches implementing function decorators, but the one that was
actually checked in was patch \#979728, written by Mark Russell.}
\end{seealso}
%======================================================================
\section{PEP 322: Reverse Iteration}
A new built-in function, \function{reversed(\var{seq})}, takes a sequence
and returns an iterator that loops over the elements of the sequence
in reverse order.
\begin{verbatim}
>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1
\end{verbatim}
Compared to extended slicing, such as \code{range(1,4)[::-1]},
\function{reversed()} is easier to read, runs faster, and uses
substantially less memory.
Note that \function{reversed()} only accepts sequences, not arbitrary
iterators. If you want to reverse an iterator, first convert it to
a list with \function{list()}.
\begin{verbatim}
>>> input= open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
...
\end{verbatim}
\begin{seealso}
\seepep{322}{Reverse Iteration}{Written and implemented by Raymond Hettinger.}
\end{seealso}
%======================================================================
\section{PEP 327: Decimal Data Type}
Python has always supported floating-point (FP) numbers as a data
type, based on the underlying C \ctype{double} type. However, while
most programming languages provide a floating-point type, most people
(even programmers) are unaware that computing with floating-point
numbers entails certain unavoidable inaccuracies. The new decimal
type provides a way to avoid these inaccuracies.
\subsection{Why is Decimal needed?}
The limitations arise from the representation used for floating-point numbers.
FP numbers are made up of three components:
\begin{itemize}
\item The sign, which is positive or negative.
\item The mantissa, which is a single-digit binary number
followed by a fractional part. For example, \code{1.01} in base-2 notation
is \code{1 + 0/2 + 1/4}, or 1.25 in decimal notation.
\item The exponent, which tells where the decimal point is located in the number represented.
\end{itemize}
For example, the number 1.25 has positive sign, a mantissa value of
1.01 (in binary), and an exponent of 0 (the decimal point doesn't need
to be shifted). The number 5 has the same sign and mantissa, but the
exponent is 2 because the mantissa is multiplied by 4 (2 to the power
of the exponent 2).
Modern systems usually provide floating-point support that conforms to
a relevant standard called IEEE 754. C's \ctype{double} type is
usually implemented as a 64-bit IEEE 754 number, which uses 52 bits of
space for the mantissa. This means that numbers can only be specified
to 52 bits of precision. If you're trying to represent numbers whose
expansion repeats endlessly, the expansion is cut off after 52 bits.
Unfortunately, most software needs to produce output in base 10, and
base 10 often gives rise to such repeating decimals in the binary
expansion. For example, 1.1 decimal is binary \code{1.0001100110011
...}; .1 = 1/16 + 1/32 + 1/256 plus an infinite number of additional
terms. IEEE 754 has to chop off that infinitely repeated decimal
after 52 digits, so the representation is slightly inaccurate.
Sometimes you can see this inaccuracy when the number is printed:
\begin{verbatim}
>>> 1.1
1.1000000000000001
\end{verbatim}
The inaccuracy isn't always visible when you print the number because
the FP-to-decimal-string conversion is provided by the C library, and
most C libraries try to produce sensible output. Even if it's not
displayed, however, the inaccuracy is still there and subsequent
operations can magnify the error.
For many applications this doesn't matter. If I'm plotting points and
displaying them on my monitor, the difference between 1.1 and
1.1000000000000001 is too small to be visible. Reports often limit
output to a certain number of decimal places, and if you round the
number to two or three or even eight decimal places, the error is
never apparent. However, for applications where it does matter,
it's a lot of work to implement your own custom arithmetic routines.
Hence, the \class{Decimal} type was created.
\subsection{The \class{Decimal} type}
A new module, \module{decimal}, was added to Python's standard library.
It contains two classes, \class{Decimal} and \class{Context}.
\class{Decimal} instances represent numbers, and
\class{Context} instances are used to wrap up various settings such as the precision and default rounding mode.
\class{Decimal} instances, like regular Python integers and FP
numbers, are immutable; once they've been created, you can't change
the value it represents. \class{Decimal} instances can be created
from integers or strings:
\begin{verbatim}
>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")
\end{verbatim}
You can also provide tuples containing the sign, the mantissa represented
as a tuple of decimal digits, and the exponent:
\begin{verbatim}
>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")
\end{verbatim}
Cautionary note: the sign bit is a Boolean value, so 0 is positive and
1 is negative.
Converting from floating-point numbers poses a bit of a problem:
should the FP number representing 1.1 turn into the decimal number for
exactly 1.1, or for 1.1 plus whatever inaccuracies are introduced?
The decision was to leave such a conversion out of the API. Instead,
you should convert the floating-point number into a string using the
desired precision and pass the string to the \class{Decimal}
constructor:
\begin{verbatim}
>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal('%.12f' % f)
Decimal("1.100000000000")
\end{verbatim}
Once you have \class{Decimal} instances, you can perform the usual
mathematical operations on them. One limitation: exponentiation
requires an integer exponent:
\begin{verbatim}
>>> a = decimal.Decimal('35.72')
>>> b = decimal.Decimal('1.73')
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
...
decimal.InvalidOperation: x ** (non-integer)
\end{verbatim}
You can combine \class{Decimal} instances with integers, but not with
floating-point numbers:
\begin{verbatim}
>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
...
TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>
\end{verbatim}
\class{Decimal} numbers can be used with the \module{math} and
\module{cmath} modules, but note that they'll be immediately converted to
floating-point numbers before the operation is performed, resulting in
a possible loss of precision and accuracy. You'll also get back a
regular floating-point number and not a \class{Decimal}.
\begin{verbatim}
>>> import math, cmath
>>> d = decimal.Decimal('123456789012.345')
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j
\end{verbatim}
Instances also have a \method{sqrt()} method that returns a
\class{Decimal}, but if you need other things such as trigonometric
functions you'll have to implement them.
\begin{verbatim}
>>> d.sqrt()
Decimal("351364.1828820134592177245001")
\end{verbatim}
\subsection{The \class{Context} type}
Instances of the \class{Context} class encapsulate several settings for
decimal operations:
\begin{itemize}
\item \member{prec} is the precision, the number of decimal places.
\item \member{rounding} specifies the rounding mode. The \module{decimal}
module has constants for the various possibilities:
\constant{ROUND_DOWN}, \constant{ROUND_CEILING}, \constant{ROUND_HALF_EVEN}, and various others.
\item \member{traps} is a dictionary specifying what happens on
encountering certain error conditions: either an exception is raised or
a value is returned. Some examples of error conditions are
division by zero, loss of precision, and overflow.
\end{itemize}
There's a thread-local default context available by calling
\function{getcontext()}; you can change the properties of this context
to alter the default precision, rounding, or trap handling.
\begin{verbatim}
>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")
\end{verbatim}
The default action for error conditions is selectable; the module can
either return a special value such as infinity or not-a-number, or
exceptions can be raised:
\begin{verbatim}
>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
...
decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>
\end{verbatim}
The \class{Context} instance also has various methods for formatting
numbers such as \method{to_eng_string()} and \method{to_sci_string()}.
For more information, see the documentation for the \module{decimal}
module, which includes a quick-start tutorial and a reference.
\begin{seealso}
\seepep{327}{Decimal Data Type}{Written by Facundo Batista and implemented
by Facundo Batista, Eric Price, Raymond Hettinger, Aahz, and Tim Peters.}
\seeurl{http://research.microsoft.com/\textasciitilde hollasch/cgindex/coding/ieeefloat.html}
{A more detailed overview of the IEEE-754 representation.}
\seeurl{http://www.lahey.com/float.htm}
{The article uses Fortran code to illustrate many of the problems
that floating-point inaccuracy can cause.}
\seeurl{http://www2.hursley.ibm.com/decimal/}
{A description of a decimal-based representation. This representation
is being proposed as a standard, and underlies the new Python decimal
type. Much of this material was written by Mike Cowlishaw, designer of the
Rexx language.}
\end{seealso}
%======================================================================
\section{PEP 328: Multi-line Imports}
One language change is a small syntactic tweak aimed at making it
easier to import many names from a module. In a
\code{from \var{module} import \var{names}} statement,
\var{names} is a sequence of names separated by commas. If the sequence is
very long, you can either write multiple imports from the same module,
or you can use backslashes to escape the line endings:
\begin{verbatim}
from SimpleXMLRPCServer import SimpleXMLRPCServer,\
SimpleXMLRPCRequestHandler,\
CGIXMLRPCRequestHandler,\
resolve_dotted_attribute
\end{verbatim}
The syntactic change simply allows putting the names within
parentheses. Python ignores newlines within a parenthesized
expression, so the backslashes are no longer needed:
\begin{verbatim}
from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler,
CGIXMLRPCRequestHandler,
resolve_dotted_attribute)
\end{verbatim}
The PEP also proposes that all \keyword{import} statements be
absolute imports, with a leading \samp{.} character to indicate a
relative import. This part of the PEP is not yet implemented.
\begin{seealso}
\seepep{328}{Imports: Multi-Line and Absolute/Relative}{Written by Aahz. Multi-line imports were implemented by Dima Dorfman.}
%======================================================================
\section{PEP 331: Locale-Independent Float/String Conversions}
The \module{locale} modules lets Python software select various
conversions and display conventions that are localized to a particular
country or language. However, the module was careful to not change
the numeric locale because various functions in Python's
implementation required that the numeric locale remain set to the
\code{'C'} locale. Often this was because the code was using the C library's
\cfunction{atof()} function.
Not setting the numeric locale caused trouble for extensions that used
third-party C libraries, however, because they wouldn't have the
correct locale set. The motivating example was GTK+, whose user
interface widgets weren't displaying numbers in the current locale.
The solution described in the PEP is to add three new functions to the
Python API that perform ASCII-only conversions, ignoring the locale
setting:
\begin{itemize}
\item \cfunction{PyOS_ascii_strtod(\var{str}, \var{ptr})}
and \cfunction{PyOS_ascii_atof(\var{str}, \var{ptr})}
both convert a string to a C \ctype{double}.
\item \cfunction{PyOS_ascii_formatd(\var{buffer}, \var{buf_len}, \var{format}, \var{d})} converts a \ctype{double} to an ASCII string.
\end{itemize}
The code for these functions came from the GLib library
(\url{http://developer.gnome.org/arch/gtk/glib.html}), whose
developers kindly relicensed the relevant functions and donated them
to the Python Software Foundation. The \module{locale} module
can now change the numeric locale, letting extensions such as GTK+
produce the correct results.
\begin{seealso}
\seepep{331}{Locale-Independent Float/String Conversions}{Written by Christian R. Reis, and implemented by Gustavo Carneiro.}
\end{seealso}
%======================================================================
\section{Other Language Changes}
Here are all of the changes that Python 2.4 makes to the core Python
language.
\begin{itemize}
\item The \method{dict.update()} method now accepts the same
argument forms as the \class{dict} constructor. This includes any
mapping, any iterable of key/value pairs, and keyword arguments.
\item The string methods \method{ljust()}, \method{rjust()}, and
\method{center()} now take an optional argument for specifying a
fill character other than a space.
\item Strings also gained an \method{rsplit()} method that
works like the \method{split()} method but splits from the end of
the string.
\begin{verbatim}
>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
'www.python.org'.rsplit('.', 1)
['www.python', 'org']
\end{verbatim}
\item The \method{sort()} method of lists gained three keyword
arguments: \var{cmp}, \var{key}, and \var{reverse}. These arguments
make some common usages of \method{sort()} simpler. All are optional.
\var{cmp} is the same as the previous single argument to
\method{sort()}; if provided, the value should be a comparison
function that takes two arguments and returns -1, 0, or +1 depending
on how the arguments compare.
\var{key} should be a single-argument function that takes a list
element and returns a comparison key for the element. The list is
then sorted using the comparison keys. The following example sorts a
list case-insensitively:
\begin{verbatim}
>>> L = ['A', 'b', 'c', 'D']
>>> L.sort() # Case-sensitive sort
>>> L
['A', 'D', 'b', 'c']
>>> L.sort(key=lambda x: x.lower())
>>> L
['A', 'b', 'c', 'D']
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
['A', 'b', 'c', 'D']
\end{verbatim}
The last example, which uses the \var{cmp} parameter, is the old way
to perform a case-insensitive sort. It works but is slower than
using a \var{key} parameter. Using \var{key} results in calling the
\method{lower()} method once for each element in the list while using
\var{cmp} will call it twice for each comparison.
For simple key functions and comparison functions, it is often
possible to avoid a \keyword{lambda} expression by using an unbound
method instead. For example, the above case-insensitive sort is best
coded as:
\begin{verbatim}
>>> L.sort(key=str.lower)
>>> L
['A', 'b', 'c', 'D']
\end{verbatim}
The \var{reverse} parameter should have a Boolean value. If the value
is \constant{True}, the list will be sorted into reverse order.
Instead of \code{L.sort(lambda x,y: cmp(x.score, y.score)) ;
L.reverse()}, you can now write: \code{L.sort(key = lambda x: x.score,
reverse=True)}.
The results of sorting are now guaranteed to be stable. This means
that two entries with equal keys will be returned in the same order as
they were input. For example, you can sort a list of people by name,
and then sort the list by age, resulting in a list sorted by age where
people with the same age are in name-sorted order.
\item There is a new built-in function
\function{sorted(\var{iterable})} that works like the in-place
\method{list.sort()} method but can be used in
expressions. The differences are:
\begin{itemize}
\item the input may be any iterable;
\item a newly formed copy is sorted, leaving the original intact; and
\item the expression returns the new sorted copy
\end{itemize}
\begin{verbatim}
>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted('Monty Python') # any iterable may be an input
[' ', 'M', 'P', 'h', 'n', 'n', 'o', 'o', 't', 't', 'y', 'y']
>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5
\end{verbatim}
\item Integer operations will no longer trigger an \exception{OverflowWarning}.
The \exception{OverflowWarning} warning will disappear in Python 2.5.
\item The \function{eval(\var{expr}, \var{globals}, \var{locals})}
and \function{execfile(\var{filename}, \var{globals}, \var{locals})}
functions and the \keyword{exec} statement now accept any mapping type
for the \var{locals} argument. Previously this had to be a regular
Python dictionary. (Contributed by Raymond Hettinger.)
\item The \function{zip()} built-in function and \function{itertools.izip()}
now return an empty list if called with no arguments.
Previously they raised a \exception{TypeError}
exception. This makes them more
suitable for use with variable length argument lists:
\begin{verbatim}
>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]
\end{verbatim}
\item Encountering a failure while importing a module no longer leaves
a partially-initialized module object in \code{sys.modules}. The
incomplete module object left behind would fool further imports of the
same module into succeeding, leading to confusing errors.
\item \constant{None} is now a constant; code that binds a new value to
the name \samp{None} is now a syntax error.
\end{itemize}
%======================================================================
\subsection{Optimizations}
\begin{itemize}
\item The inner loops for list and tuple slicing
were optimized and now run about one-third faster. The inner loops
were also optimized for dictionaries, resulting in performance boosts for
\method{keys()}, \method{values()}, \method{items()},
\method{iterkeys()}, \method{itervalues()}, and \method{iteritems()}.
\item The machinery for growing and shrinking lists was optimized for
speed and for space efficiency. Appending and popping from lists now
runs faster due to more efficient code paths and less frequent use of
the underlying system \cfunction{realloc()}. List comprehensions
also benefit. \method{list.extend()} was also optimized and no
longer converts its argument into a temporary list before extending
the base list.
\item \function{list()}, \function{tuple()}, \function{map()},
\function{filter()}, and \function{zip()} now run several times
faster with non-sequence arguments that supply a \method{__len__()}
method.
\item The methods \method{list.__getitem__()},
\method{dict.__getitem__()}, and \method{dict.__contains__()} are
are now implemented as \class{method_descriptor} objects rather
than \class{wrapper_descriptor} objects. This form of optimized
access doubles their performance and makes them more suitable for
use as arguments to functionals:
\samp{map(mydict.__getitem__, keylist)}.
\item Added a new opcode, \code{LIST_APPEND}, that simplifies
the generated bytecode for list comprehensions and speeds them up
by about a third.
\item String concatenations in statements of the form \code{s = s +
"abc"} and \code{s += "abc"} are now performed more efficiently in
certain circumstances. This optimization won't be present in other
Python implementations such as Jython, so you shouldn't rely on it;
using the \method{join()} method of strings is still recommended when
you want to efficiently glue a large number of strings together.
\end{itemize}
The net result of the 2.4 optimizations is that Python 2.4 runs the
pystone benchmark around XX\% faster than Python 2.3 and YY\% faster
than Python 2.2.
%======================================================================
\section{New, Improved, and Deprecated Modules}
As usual, Python's standard library received a number of enhancements and
bug fixes. Here's a partial list of the most notable changes, sorted
alphabetically by module name. Consult the
\file{Misc/NEWS} file in the source tree for a more
complete list of changes, or look through the CVS logs for all the
details.
\begin{itemize}
% XXX new email parser
\item The \module{asyncore} module's \function{loop()} now has a
\var{count} parameter that lets you perform a limited number
of passes through the polling loop. The default is still to loop
forever.
\item The \module{curses} modules now supports the ncurses extension
\function{use_default_colors()}. On platforms where the terminal
supports transparency, this makes it possible to use a transparent
background. (Contributed by J\"org Lehmann.)
\item The \module{bisect} module now has an underlying C implementation
for improved performance.
(Contributed by Dmitry Vasiliev.)
\item The CJKCodecs collections of East Asian codecs, maintained
by Hye-Shik Chang, was integrated into 2.4.
The new encodings are:
\begin{itemize}
\item Chinese (PRC): gb2312, gbk, gb18030, big5hkscs, hz
\item Chinese (ROC): big5, cp950
\item Japanese: cp932, euc-jis-2004, euc-jp,
euc-jisx0213, iso-2022-jp, iso-2022-jp-1, iso-2022-jp-2,
iso-2022-jp-3, iso-2022-jp-ext, iso-2022-jp-2004,
shift-jis, shift-jisx0213, shift-jis-2004
\item Korean: cp949, euc-kr, johab, iso-2022-kr
\end{itemize}
\item Some other new encodings were added: HP Roman8,
ISO_8859-11, ISO_8859-16, PCTP-154,
and TIS-620.
\item There is a new \module{collections} module for
various specialized collection datatypes.
Currently it contains just one type, \class{deque},
a double-ended queue that supports efficiently adding and removing
elements from either end.
\begin{verbatim}
>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> 'h' in d # search the deque
True
\end{verbatim}
Several modules now take advantage of \class{collections.deque} for
improved performance, such as the \module{Queue} and
\module{threading} modules.
\item The \module{ConfigParser} classes have been enhanced slightly.
The \method{read()} method now returns a list of the files that
were successfully parsed, and the \method{set()} method raises
\exception{TypeError} if passed a \var{value} argument that isn't a
string.
\item The \module{heapq} module has been converted to C. The resulting
tenfold improvement in speed makes the module suitable for handling
high volumes of data. In addition, the module has two new functions
\function{nlargest()} and \function{nsmallest()} that use heaps to
find the N largest or smallest values in a dataset without the
expense of a full sort.
\item The \module{imaplib} module now supports IMAP's THREAD command
(contributed by Yves Dionne) and new \method{deleteacl()} and
\method{myrights()} methods (contributed by Arnaud Mazin).
\item The \module{itertools} module gained a
\function{groupby(\var{iterable}\optional{, \var{func}})} function.
\var{iterable} returns a succession of elements, and the optional
\var{func} is a function that takes an element and returns a key
value; if omitted, the key is simply the element itself.
\function{groupby()} then groups the elements into subsequences
which have matching values of the key, and returns a series of 2-tuples
containing the key value and an iterator over the subsequence.
Here's an example. The \var{key} function simply returns whether a
number is even or odd, so the result of \function{groupby()} is to
return consecutive runs of odd or even numbers.
\begin{verbatim}
>>> import itertools
>>> L = [2,4,6, 7,8,9,11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>
\end{verbatim}
\function{groupby()} is typically used with sorted input. The logic
for \function{groupby()} is similar to the \UNIX{} \code{uniq} filter
which makes it handy for eliminating, counting, or identifying
duplicate elements:
\begin{verbatim}
>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'c', 'd', 'r', 'r']
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a ['a', 'a', 'a', 'a', 'a']
b ['b', 'b']
c ['c']
d ['d']
r ['r', 'r']
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
['a', 'b', 'c', 'd', 'r']
>>> # Count letter occurences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[('a', 5), ('b', 2), ('c', 1), ('d', 1), ('r', 2)]
\end{verbatim}
\item \module{itertools} also gained a function named
\function{tee(\var{iterator}, \var{N})} that returns \var{N} independent
iterators that replicate \var{iterator}. If \var{N} is omitted, the
default is 2.
\begin{verbatim}
>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]
>\end{verbatim}
Note that \function{tee()} has to keep copies of the values returned
by the iterator; in the worst case, it may need to keep all of them.
This should therefore be used carefully if the leading iterator
can run far ahead of the trailing iterator in a long stream of inputs.
If the separation is large, then you might as well use
\function{list()} instead. When the iterators track closely with one
another, \function{tee()} is ideal. Possible applications include
bookmarking, windowing, or lookahead iterators.
\item A number of functions were added to the \module{locale}
module, such as \function{bind_textdomain_codeset()} to specify a
particular encoding, and a family of \function{l*gettext()} functions
that return messages in the chosen encoding.
(Contributed by Gustavo Niemeyer.)
\item The \module{logging} package's \function{basicConfig} function
gained some keyword arguments to simplify log configuration. The
default behavior is to log messages to standard error, but
various keyword arguments can be specified to log to a particular file,
change the logging format, or set the logging level. For example:
\begin{verbatim}
import logging
logging.basicConfig(filename = '/var/log/application.log',
level=0, # Log all messages, including debugging,
format='%(levelname):%(process):%(thread):%(message)')
\end{verbatim}
Another addition to \module{logging} is a
\class{TimedRotatingFileHandler} class which rotates its log files at
a timed interval. The module already had \class{RotatingFileHandler},
which rotated logs once the file exceeded a certain size. Both
classes derive from a new \class{BaseRotatingHandler} class that can
be used to implement other rotating handlers.
\item The \module{nntplib} module's \class{NNTP} class gained
\method{description()} and \method{descriptions()} methods to retrieve
newsgroup descriptions for a single group or for a range of groups.
(Contributed by J\"urgen A. Erhard.)
\item The \module{operator} module gained two new functions,
\function{attrgetter(\var{attr})} and \function{itemgetter(\var{index})}.
Both functions return callables that take a single argument and return
the corresponding attribute or item; these callables make excellent
data extractors when used with \function{map()} or
\function{sorted()}. For example:
\begin{verbatim}
>>> L = [('c', 2), ('d', 1), ('a', 4), ('b', 3)]
>>> map(operator.itemgetter(0), L)
['c', 'd', 'a', 'b']
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]
\end{verbatim}
\item The \module{optparse} module was updated. The module now passes
its messages through \function{gettext.gettext()}, making it possible
to internationalize Optik's help and error messages. Help messages
for options can now include the string \code{'\%default'}, which will
be replaced by the option's default value.
\item A new \function{urandom(\var{n})} function
was added to the \module{os} module, providing access to
platform-specific sources of randomness such as
\file{/dev/urandom} on Linux or the Windows CryptoAPI. The
function returns a string containing \var{n} bytes of random data.
(Contributed by Trevor Perrin.)
\item Another new function: \function{os.path.lexists(\var{path})}
returns true if the file specified by \var{path} exists, whether or
not it's a symbolic link. This differs from the existing
\function{os.path.exists(\var{path})} function, which returns false if
\var{path} is a symlink that points to a destination that doesn't exist.
(Contributed by Beni Cherniavsky.)
\item A new \function{getsid()} function was added to the
\module{posix} module that underlies the \module{os} module.
(Contributed by J. Raynor.)
\item The \module{poplib} module now supports POP over SSL.
\item The \module{profile} module can now profile C extension functions.
% XXX more to say about this?
\item The \module{random} module has a new method called \method{getrandbits(N)}
which returns an N-bit long integer. This method supports the existing
\method{randrange()} method, making it possible to efficiently generate
arbitrarily large random numbers.
\item The regular expression language accepted by the \module{re} module
was extended with simple conditional expressions, written as
\regexp{(?(\var{group})\var{A}|\var{B})}. \var{group} is either a
numeric group ID or a group name defined with \regexp{(?P<group>...)}
earlier in the expression. If the specified group matched, the
regular expression pattern \var{A} will be tested against the string; if
the group didn't match, the pattern \var{B} will be used instead.
\item The \module{re} module is also no longer recursive, thanks
to a massive amount of work by Gustavo Niemeyer. In a recursive
regular expression engine, certain patterns result in a large amount
of C stack space being consumed, and it was possible to overflow the
stack. For example, if you matched a 30000-byte string of \samp{a}
characters against the expression \regexp{(a|b)+}, one stack frame was
consumed per character. Python 2.3 tried to check for stack overflow
and raise a \exception{RuntimeError} exception, but if you were
unlucky Python could dump core. Python 2.4's regular expression
engine can match this pattern without problems.
\item A new \function{socketpair()} function was added to the
\module{socket} module, returning a pair of connected sockets.
(Contributed by Dave Cole.)
\item The \function{sys.exitfunc()} function has been deprecated. Code
should be using the existing \module{atexit} module, which correctly
handles calling multiple exit functions. Eventually
\function{sys.exitfunc()} will become a purely internal interface,
accessed only by \module{atexit}.
\item The \module{tarfile} module now generates GNU-format tar files
by default.
\item The \module{threading} module now has an elegantly simple way to support
thread-local data. The module contains a \class{local} class whose
attribute values are local to different threads.
\begin{verbatim}
import threading
data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)
\end{verbatim}
Other threads can assign and retrieve their own values for the
\member{number} and \member{url} attributes. You can subclass
\class{local} to initialize attributes or to add methods.
(Contributed by Jim Fulton.)
\item The \module{weakref} module now supports a wider variety of objects
including Python functions, class instances, sets, frozensets, deques,
arrays, files, sockets, and regular expression pattern objects.
\item The \module{xmlrpclib} module now supports a multi-call extension for
transmitting multiple XML-RPC calls in a single HTTP operation.
\item The \module{mpz}, \module{rotor}, and \module{xreadlines} modules have
been removed.
\end{itemize}
%======================================================================
% whole new modules get described in subsections here
\subsection{cookielib}
The \module{cookielib} library supports client-side handling for HTTP
cookies, just as the \module{Cookie} provides server-side cookie
support in CGI scripts. Cookies are stored in cookie jars; the library
transparently stores cookies offered by the web server in the cookie
jar, and fetches the cookie from the jar when connecting to the
server. Similar to web browsers, policy objects control whether
cookies are accepted or not.
In order to store cookies across sessions, two implementations of
cookie jars are provided: one that stores cookies in the Netscape
format, so applications can use the Mozilla or Lynx cookie jars, and
one that stores cookies in the same format as the Perl libwww libary.
\module{urllib2} has been changed to interact with \module{cookielib}:
\class{HTTPCookieProcessor} manages a cookie jar that is used when
accessing URLs.
\subsection{doctest}
The \module{doctest} module underwent considerable refactoring thanks
to Edward Loper and Tim Peters.
% XXX describe this
% ======================================================================
\section{Build and C API Changes}
Changes to Python's build process and to the C API include:
\begin{itemize}
\item Three new convenience macros were added for common return
values from extension functions: \csimplemacro{Py_RETURN_NONE},
\csimplemacro{Py_RETURN_TRUE}, and \csimplemacro{Py_RETURN_FALSE}.
\item Another new macro, \csimplemacro{Py_CLEAR(\var{obj})},
decreases the reference count of \var{obj} and sets \var{obj} to the
null pointer.
\item A new function, \cfunction{PyTuple_Pack(\var{N}, \var{obj1},
\var{obj2}, ..., \var{objN})}, constructs tuples from a variable
length argument list of Python objects.
\item A new function, \cfunction{PyDict_Contains(\var{d}, \var{k})},
implements fast dictionary lookups without masking exceptions raised
during the look-up process.
\item A new function, \cfunction{PyArg_VaParseTupleAndKeywords()},
is the same as \cfunction{PyArg_ParseTupleAndKeywords()} but takes a
\ctype{va_list} instead of a number of arguments.
(Contributed by Greg Chapman.)
\item A new method flag, \constant{METH_COEXISTS}, allows a function
defined in slots to co-exist with a \ctype{PyCFunction} having the
same name. This can halve the access time for a method such as
\method{set.__contains__()}.
\item Python can now be built with additional profiling for the
interpreter itself. This is intended for people developing on the
Python core. Providing \longprogramopt{--enable-profiling} to the
\program{configure} script will let you profile the interpreter with
\program{gprof}, and providing the \longprogramopt{--with-tsc}
switch enables profiling using the Pentium's Time-Stamp-Counter
register. The switch is slightly misnamed, because the profiling
feature also works on the PowerPC platform, though that processor
architecture doesn't called that register the TSC.
\item The \ctype{tracebackobject} type has been renamed to \ctype{PyTracebackObject}.
\end{itemize}
%======================================================================
\subsection{Port-Specific Changes}
\begin{itemize}
\item The Windows port now builds under MSVC++ 7.1 as well as version 6.
\end{itemize}
%======================================================================
\section{Other Changes and Fixes \label{section-other}}
% XXX update these figures as we go
As usual, there were a bunch of other improvements and bugfixes
scattered throughout the source tree. A search through the CVS change
logs finds there were 421 patches applied and 413 bugs fixed between
Python 2.3 and 2.4. Both figures are likely to be underestimates.
Some of the more notable changes are:
\begin{itemize}
\item The \module{timeit} module now automatically disables periodic
garbarge collection during the timing loop. This change makes
consecutive timings more comparable.
\item The \module{base64} module now has more complete RFC 3548 support
for Base64, Base32, and Base16 encoding and decoding, including
optional case folding and optional alternative alphabets.
(Contributed by Barry Warsaw.)
\end{itemize}
%======================================================================
\section{Porting to Python 2.4}
This section lists previously described changes that may require
changes to your code:
\begin{itemize}
\item The \function{zip()} built-in function and \function{itertools.izip()}
now return an empty list instead of raising a \exception{TypeError}
exception if called with no arguments.
\item \function{dircache.listdir()} now passes exceptions to the caller
instead of returning empty lists.
\item \function{LexicalHandler.startDTD()} used to receive the public and
system IDs in the wrong order. This has been corrected; applications
relying on the wrong order need to be fixed.
\item \function{fcntl.ioctl} now warns if the \var{mutate}
argument is omitted and relevant.
\item The \module{tarfile} module now generates GNU-format tar files
by default.
\end{itemize}
%======================================================================
\section{Acknowledgements \label{acks}}
The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Hye-Shik Chang, Michael Dyck, Raymond Hettinger.
\end{document}
|