summaryrefslogtreecommitdiffstats
path: root/Include/object.h
blob: 9058558e3cd4d9659cfdf68ea499e1462fb6af62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
#ifndef Py_OBJECT_H
#define Py_OBJECT_H
#ifdef __cplusplus
extern "C" {
#endif


/* Object and type object interface */

/*
Objects are structures allocated on the heap.  Special rules apply to
the use of objects to ensure they are properly garbage-collected.
Objects are never allocated statically or on the stack; they must be
accessed through special macros and functions only.  (Type objects are
exceptions to the first rule; the standard types are represented by
statically initialized type objects, although work on type/class unification
for Python 2.2 made it possible to have heap-allocated type objects too).

An object has a 'reference count' that is increased or decreased when a
pointer to the object is copied or deleted; when the reference count
reaches zero there are no references to the object left and it can be
removed from the heap.

An object has a 'type' that determines what it represents and what kind
of data it contains.  An object's type is fixed when it is created.
Types themselves are represented as objects; an object contains a
pointer to the corresponding type object.  The type itself has a type
pointer pointing to the object representing the type 'type', which
contains a pointer to itself!.

Objects do not float around in memory; once allocated an object keeps
the same size and address.  Objects that must hold variable-size data
can contain pointers to variable-size parts of the object.  Not all
objects of the same type have the same size; but the size cannot change
after allocation.  (These restrictions are made so a reference to an
object can be simply a pointer -- moving an object would require
updating all the pointers, and changing an object's size would require
moving it if there was another object right next to it.)

Objects are always accessed through pointers of the type 'PyObject *'.
The type 'PyObject' is a structure that only contains the reference count
and the type pointer.  The actual memory allocated for an object
contains other data that can only be accessed after casting the pointer
to a pointer to a longer structure type.  This longer type must start
with the reference count and type fields; the macro PyObject_HEAD should be
used for this (to accommodate for future changes).  The implementation
of a particular object type can cast the object pointer to the proper
type and back.

A standard interface exists for objects that contain an array of items
whose size is determined when the object is allocated.
*/

/* Py_DEBUG implies Py_REF_DEBUG. */
#if defined(Py_DEBUG) && !defined(Py_REF_DEBUG)
#  define Py_REF_DEBUG
#endif

/* PyObject_HEAD defines the initial segment of every PyObject. */
#define PyObject_HEAD                   PyObject ob_base;

/*
Immortalization:

The following indicates the immortalization strategy depending on the amount
of available bits in the reference count field. All strategies are backwards
compatible but the specific reference count value or immortalization check
might change depending on the specializations for the underlying system.

Proper deallocation of immortal instances requires distinguishing between
statically allocated immortal instances vs those promoted by the runtime to be
immortal. The latter should be the only instances that require
cleanup during runtime finalization.
*/

#if SIZEOF_VOID_P > 4
/*
In 64+ bit systems, an object will be marked as immortal by setting all of the
lower 32 bits of the reference count field, which is equal to: 0xFFFFFFFF

Using the lower 32 bits makes the value backwards compatible by allowing
C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely
increase and decrease the objects reference count. The object would lose its
immortality, but the execution would still be correct.

Reference count increases will use saturated arithmetic, taking advantage of
having all the lower 32 bits set, which will avoid the reference count to go
beyond the refcount limit. Immortality checks for reference count decreases will
be done by checking the bit sign flag in the lower 32 bits.
*/
#define _Py_IMMORTAL_REFCNT UINT_MAX

#else
/*
In 32 bit systems, an object will be marked as immortal by setting all of the
lower 30 bits of the reference count field, which is equal to: 0x3FFFFFFF

Using the lower 30 bits makes the value backwards compatible by allowing
C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely
increase and decrease the objects reference count. The object would lose its
immortality, but the execution would still be correct.

Reference count increases and decreases will first go through an immortality
check by comparing the reference count field to the immortality reference count.
*/
#define _Py_IMMORTAL_REFCNT (UINT_MAX >> 2)
#endif

// Make all internal uses of PyObject_HEAD_INIT immortal while preserving the
// C-API expectation that the refcnt will be set to 1.
#ifdef Py_BUILD_CORE
#define PyObject_HEAD_INIT(type)    \
    {                               \
        { _Py_IMMORTAL_REFCNT },    \
        (type)                      \
    },
#else
#define PyObject_HEAD_INIT(type) \
    {                            \
        { 1 },                   \
        (type)                   \
    },
#endif /* Py_BUILD_CORE */

#define PyVarObject_HEAD_INIT(type, size) \
    {                                     \
        PyObject_HEAD_INIT(type)          \
        (size)                            \
    },

/* PyObject_VAR_HEAD defines the initial segment of all variable-size
 * container objects.  These end with a declaration of an array with 1
 * element, but enough space is malloc'ed so that the array actually
 * has room for ob_size elements.  Note that ob_size is an element count,
 * not necessarily a byte count.
 */
#define PyObject_VAR_HEAD      PyVarObject ob_base;
#define Py_INVALID_SIZE (Py_ssize_t)-1

/* Nothing is actually declared to be a PyObject, but every pointer to
 * a Python object can be cast to a PyObject*.  This is inheritance built
 * by hand.  Similarly every pointer to a variable-size Python object can,
 * in addition, be cast to PyVarObject*.
 */
struct _object {
#if (defined(__GNUC__) || defined(__clang__)) \
        && !(defined __STDC_VERSION__ && __STDC_VERSION__ >= 201112L)
    // On C99 and older, anonymous union is a GCC and clang extension
    __extension__
#endif
#ifdef _MSC_VER
    // Ignore MSC warning C4201: "nonstandard extension used:
    // nameless struct/union"
    __pragma(warning(push))
    __pragma(warning(disable: 4201))
#endif
    union {
       Py_ssize_t ob_refcnt;
#if SIZEOF_VOID_P > 4
       PY_UINT32_T ob_refcnt_split[2];
#endif
    };
#ifdef _MSC_VER
    __pragma(warning(pop))
#endif

    PyTypeObject *ob_type;
};

/* Cast argument to PyObject* type. */
#define _PyObject_CAST(op) _Py_CAST(PyObject*, (op))

typedef struct {
    PyObject ob_base;
    Py_ssize_t ob_size; /* Number of items in variable part */
} PyVarObject;

/* Cast argument to PyVarObject* type. */
#define _PyVarObject_CAST(op) _Py_CAST(PyVarObject*, (op))


// Test if the 'x' object is the 'y' object, the same as "x is y" in Python.
PyAPI_FUNC(int) Py_Is(PyObject *x, PyObject *y);
#define Py_Is(x, y) ((x) == (y))


static inline Py_ssize_t Py_REFCNT(PyObject *ob) {
    return ob->ob_refcnt;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_REFCNT(ob) Py_REFCNT(_PyObject_CAST(ob))
#endif


// bpo-39573: The Py_SET_TYPE() function must be used to set an object type.
static inline PyTypeObject* Py_TYPE(PyObject *ob) {
    return ob->ob_type;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_TYPE(ob) Py_TYPE(_PyObject_CAST(ob))
#endif

PyAPI_DATA(PyTypeObject) PyLong_Type;
PyAPI_DATA(PyTypeObject) PyBool_Type;

// bpo-39573: The Py_SET_SIZE() function must be used to set an object size.
static inline Py_ssize_t Py_SIZE(PyObject *ob) {
    assert(ob->ob_type != &PyLong_Type);
    assert(ob->ob_type != &PyBool_Type);
    PyVarObject *var_ob = _PyVarObject_CAST(ob);
    return var_ob->ob_size;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_SIZE(ob) Py_SIZE(_PyObject_CAST(ob))
#endif

static inline Py_ALWAYS_INLINE int _Py_IsImmortal(PyObject *op)
{
#if SIZEOF_VOID_P > 4
    return _Py_CAST(PY_INT32_T, op->ob_refcnt) < 0;
#else
    return op->ob_refcnt == _Py_IMMORTAL_REFCNT;
#endif
}
#define _Py_IsImmortal(op) _Py_IsImmortal(_PyObject_CAST(op))

static inline int Py_IS_TYPE(PyObject *ob, PyTypeObject *type) {
    return Py_TYPE(ob) == type;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_IS_TYPE(ob, type) Py_IS_TYPE(_PyObject_CAST(ob), (type))
#endif


static inline void Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) {
    // This immortal check is for code that is unaware of immortal objects.
    // The runtime tracks these objects and we should avoid as much
    // as possible having extensions inadvertently change the refcnt
    // of an immortalized object.
    if (_Py_IsImmortal(ob)) {
        return;
    }
    ob->ob_refcnt = refcnt;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_SET_REFCNT(ob, refcnt) Py_SET_REFCNT(_PyObject_CAST(ob), (refcnt))
#endif


static inline void Py_SET_TYPE(PyObject *ob, PyTypeObject *type) {
    ob->ob_type = type;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_SET_TYPE(ob, type) Py_SET_TYPE(_PyObject_CAST(ob), type)
#endif

static inline void Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) {
    assert(ob->ob_base.ob_type != &PyLong_Type);
    assert(ob->ob_base.ob_type != &PyBool_Type);
    ob->ob_size = size;
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_SET_SIZE(ob, size) Py_SET_SIZE(_PyVarObject_CAST(ob), (size))
#endif


/*
Type objects contain a string containing the type name (to help somewhat
in debugging), the allocation parameters (see PyObject_New() and
PyObject_NewVar()),
and methods for accessing objects of the type.  Methods are optional, a
nil pointer meaning that particular kind of access is not available for
this type.  The Py_DECREF() macro uses the tp_dealloc method without
checking for a nil pointer; it should always be implemented except if
the implementation can guarantee that the reference count will never
reach zero (e.g., for statically allocated type objects).

NB: the methods for certain type groups are now contained in separate
method blocks.
*/

typedef PyObject * (*unaryfunc)(PyObject *);
typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
typedef int (*inquiry)(PyObject *);
typedef Py_ssize_t (*lenfunc)(PyObject *);
typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);

typedef int (*objobjproc)(PyObject *, PyObject *);
typedef int (*visitproc)(PyObject *, void *);
typedef int (*traverseproc)(PyObject *, visitproc, void *);


typedef void (*freefunc)(void *);
typedef void (*destructor)(PyObject *);
typedef PyObject *(*getattrfunc)(PyObject *, char *);
typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
typedef PyObject *(*reprfunc)(PyObject *);
typedef Py_hash_t (*hashfunc)(PyObject *);
typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
typedef PyObject *(*getiterfunc) (PyObject *);
typedef PyObject *(*iternextfunc) (PyObject *);
typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *);
typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t);

#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030c0000 // 3.12
typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args,
                                    size_t nargsf, PyObject *kwnames);
#endif

typedef struct{
    int slot;    /* slot id, see below */
    void *pfunc; /* function pointer */
} PyType_Slot;

typedef struct{
    const char* name;
    int basicsize;
    int itemsize;
    unsigned int flags;
    PyType_Slot *slots; /* terminated by slot==0. */
} PyType_Spec;

PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*);
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*);
#endif
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000
PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int);
#endif
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000
PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *);
PyAPI_FUNC(PyObject *) PyType_GetModule(PyTypeObject *);
PyAPI_FUNC(void *) PyType_GetModuleState(PyTypeObject *);
#endif
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030B0000
PyAPI_FUNC(PyObject *) PyType_GetName(PyTypeObject *);
PyAPI_FUNC(PyObject *) PyType_GetQualName(PyTypeObject *);
#endif
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030C0000
PyAPI_FUNC(PyObject *) PyType_FromMetaclass(PyTypeObject*, PyObject*, PyType_Spec*, PyObject*);
PyAPI_FUNC(void *) PyObject_GetTypeData(PyObject *obj, PyTypeObject *cls);
PyAPI_FUNC(Py_ssize_t) PyType_GetTypeDataSize(PyTypeObject *cls);
#endif

/* Generic type check */
PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);

static inline int PyObject_TypeCheck(PyObject *ob, PyTypeObject *type) {
    return Py_IS_TYPE(ob, type) || PyType_IsSubtype(Py_TYPE(ob), type);
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define PyObject_TypeCheck(ob, type) PyObject_TypeCheck(_PyObject_CAST(ob), (type))
#endif

PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */

PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*);

PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
                                               PyObject *, PyObject *);
PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);

/* Generic operations on objects */
PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
PyAPI_FUNC(int) PyObject_DelAttrString(PyObject *v, const char *name);
PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030d0000
PyAPI_FUNC(int) PyObject_GetOptionalAttr(PyObject *, PyObject *, PyObject **);
PyAPI_FUNC(int) PyObject_GetOptionalAttrString(PyObject *, const char *, PyObject **);
#endif
PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_DelAttr(PyObject *v, PyObject *name);
PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030d0000
PyAPI_FUNC(int) PyObject_HasAttrWithError(PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_HasAttrStringWithError(PyObject *, const char *);
#endif
PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *);
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *);
#endif
PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *);
PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *);
PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
PyAPI_FUNC(int) PyObject_Not(PyObject *);
PyAPI_FUNC(int) PyCallable_Check(PyObject *);
PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);

/* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
   list of strings.  PyObject_Dir(NULL) is like builtins.dir(),
   returning the names of the current locals.  In this case, if there are
   no current locals, NULL is returned, and PyErr_Occurred() is false.
*/
PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);

/* Helpers for printing recursive container types */
PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
PyAPI_FUNC(void) Py_ReprLeave(PyObject *);

/* Flag bits for printing: */
#define Py_PRINT_RAW    1       /* No string quotes etc. */

/*
Type flags (tp_flags)

These flags are used to change expected features and behavior for a
particular type.

Arbitration of the flag bit positions will need to be coordinated among
all extension writers who publicly release their extensions (this will
be fewer than you might expect!).

Most flags were removed as of Python 3.0 to make room for new flags.  (Some
flags are not for backwards compatibility but to indicate the presence of an
optional feature; these flags remain of course.)

Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.

Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
given type object has a specified feature.
*/

#ifndef Py_LIMITED_API

/* Track types initialized using _PyStaticType_InitBuiltin(). */
#define _Py_TPFLAGS_STATIC_BUILTIN (1 << 1)

/* Placement of weakref pointers are managed by the VM, not by the type.
 * The VM will automatically set tp_weaklistoffset.
 */
#define Py_TPFLAGS_MANAGED_WEAKREF (1 << 3)

/* Placement of dict (and values) pointers are managed by the VM, not by the type.
 * The VM will automatically set tp_dictoffset.
 */
#define Py_TPFLAGS_MANAGED_DICT (1 << 4)

#define Py_TPFLAGS_PREHEADER (Py_TPFLAGS_MANAGED_WEAKREF | Py_TPFLAGS_MANAGED_DICT)

/* Set if instances of the type object are treated as sequences for pattern matching */
#define Py_TPFLAGS_SEQUENCE (1 << 5)
/* Set if instances of the type object are treated as mappings for pattern matching */
#define Py_TPFLAGS_MAPPING (1 << 6)
#endif

/* Disallow creating instances of the type: set tp_new to NULL and don't create
 * the "__new__" key in the type dictionary. */
#define Py_TPFLAGS_DISALLOW_INSTANTIATION (1UL << 7)

/* Set if the type object is immutable: type attributes cannot be set nor deleted */
#define Py_TPFLAGS_IMMUTABLETYPE (1UL << 8)

/* Set if the type object is dynamically allocated */
#define Py_TPFLAGS_HEAPTYPE (1UL << 9)

/* Set if the type allows subclassing */
#define Py_TPFLAGS_BASETYPE (1UL << 10)

/* Set if the type implements the vectorcall protocol (PEP 590) */
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030C0000
#define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11)
#ifndef Py_LIMITED_API
// Backwards compatibility alias for API that was provisional in Python 3.8
#define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL
#endif
#endif

/* Set if the type is 'ready' -- fully initialized */
#define Py_TPFLAGS_READY (1UL << 12)

/* Set while the type is being 'readied', to prevent recursive ready calls */
#define Py_TPFLAGS_READYING (1UL << 13)

/* Objects support garbage collection (see objimpl.h) */
#define Py_TPFLAGS_HAVE_GC (1UL << 14)

/* These two bits are preserved for Stackless Python, next after this is 17 */
#ifdef STACKLESS
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15)
#else
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
#endif

/* Objects behave like an unbound method */
#define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17)

/* Object has up-to-date type attribute cache */
#define Py_TPFLAGS_VALID_VERSION_TAG  (1UL << 19)

/* Type is abstract and cannot be instantiated */
#define Py_TPFLAGS_IS_ABSTRACT (1UL << 20)

// This undocumented flag gives certain built-ins their unique pattern-matching
// behavior, which allows a single positional subpattern to match against the
// subject itself (rather than a mapped attribute on it):
#define _Py_TPFLAGS_MATCH_SELF (1UL << 22)

/* Items (ob_size*tp_itemsize) are found at the end of an instance's memory */
#define Py_TPFLAGS_ITEMS_AT_END (1UL << 23)

/* These flags are used to determine if a type is a subclass. */
#define Py_TPFLAGS_LONG_SUBCLASS        (1UL << 24)
#define Py_TPFLAGS_LIST_SUBCLASS        (1UL << 25)
#define Py_TPFLAGS_TUPLE_SUBCLASS       (1UL << 26)
#define Py_TPFLAGS_BYTES_SUBCLASS       (1UL << 27)
#define Py_TPFLAGS_UNICODE_SUBCLASS     (1UL << 28)
#define Py_TPFLAGS_DICT_SUBCLASS        (1UL << 29)
#define Py_TPFLAGS_BASE_EXC_SUBCLASS    (1UL << 30)
#define Py_TPFLAGS_TYPE_SUBCLASS        (1UL << 31)

#define Py_TPFLAGS_DEFAULT  ( \
                 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
                0)

/* NOTE: Some of the following flags reuse lower bits (removed as part of the
 * Python 3.0 transition). */

/* The following flags are kept for compatibility; in previous
 * versions they indicated presence of newer tp_* fields on the
 * type struct.
 * Starting with 3.8, binary compatibility of C extensions across
 * feature releases of Python is not supported anymore (except when
 * using the stable ABI, in which all classes are created dynamically,
 * using the interpreter's memory layout.)
 * Note that older extensions using the stable ABI set these flags,
 * so the bits must not be repurposed.
 */
#define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0)
#define Py_TPFLAGS_HAVE_VERSION_TAG   (1UL << 18)


/*
The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
reference counts.  Py_DECREF calls the object's deallocator function when
the refcount falls to 0; for
objects that don't contain references to other objects or heap memory
this can be the standard function free().  Both macros can be used
wherever a void expression is allowed.  The argument must not be a
NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
The macro _Py_NewReference(op) initialize reference counts to 1, and
in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
bookkeeping appropriate to the special build.

We assume that the reference count field can never overflow; this can
be proven when the size of the field is the same as the pointer size, so
we ignore the possibility.  Provided a C int is at least 32 bits (which
is implicitly assumed in many parts of this code), that's enough for
about 2**31 references to an object.

XXX The following became out of date in Python 2.2, but I'm not sure
XXX what the full truth is now.  Certainly, heap-allocated type objects
XXX can and should be deallocated.
Type objects should never be deallocated; the type pointer in an object
is not considered to be a reference to the type object, to save
complications in the deallocation function.  (This is actually a
decision that's up to the implementer of each new type so if you want,
you can count such references to the type object.)
*/

#if defined(Py_REF_DEBUG) && !defined(Py_LIMITED_API)
PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno,
                                      PyObject *op);
PyAPI_FUNC(void) _Py_INCREF_IncRefTotal(void);
PyAPI_FUNC(void) _Py_DECREF_DecRefTotal(void);
#endif  // Py_REF_DEBUG && !Py_LIMITED_API

PyAPI_FUNC(void) _Py_Dealloc(PyObject *);

/*
These are provided as conveniences to Python runtime embedders, so that
they can have object code that is not dependent on Python compilation flags.
*/
PyAPI_FUNC(void) Py_IncRef(PyObject *);
PyAPI_FUNC(void) Py_DecRef(PyObject *);

// Similar to Py_IncRef() and Py_DecRef() but the argument must be non-NULL.
// Private functions used by Py_INCREF() and Py_DECREF().
PyAPI_FUNC(void) _Py_IncRef(PyObject *);
PyAPI_FUNC(void) _Py_DecRef(PyObject *);

static inline Py_ALWAYS_INLINE void Py_INCREF(PyObject *op)
{
#if defined(Py_LIMITED_API) && (Py_LIMITED_API+0 >= 0x030c0000 || defined(Py_REF_DEBUG))
    // Stable ABI implements Py_INCREF() as a function call on limited C API
    // version 3.12 and newer, and on Python built in debug mode. _Py_IncRef()
    // was added to Python 3.10.0a7, use Py_IncRef() on older Python versions.
    // Py_IncRef() accepts NULL whereas _Py_IncRef() doesn't.
#  if Py_LIMITED_API+0 >= 0x030a00A7
    _Py_IncRef(op);
#  else
    Py_IncRef(op);
#  endif
#else
    // Non-limited C API and limited C API for Python 3.9 and older access
    // directly PyObject.ob_refcnt.
#if SIZEOF_VOID_P > 4
    // Portable saturated add, branching on the carry flag and set low bits
    PY_UINT32_T cur_refcnt = op->ob_refcnt_split[PY_BIG_ENDIAN];
    PY_UINT32_T new_refcnt = cur_refcnt + 1;
    if (new_refcnt == 0) {
        return;
    }
    op->ob_refcnt_split[PY_BIG_ENDIAN] = new_refcnt;
#else
    // Explicitly check immortality against the immortal value
    if (_Py_IsImmortal(op)) {
        return;
    }
    op->ob_refcnt++;
#endif
    _Py_INCREF_STAT_INC();
#ifdef Py_REF_DEBUG
    _Py_INCREF_IncRefTotal();
#endif
#endif
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_INCREF(op) Py_INCREF(_PyObject_CAST(op))
#endif

#if defined(Py_LIMITED_API) && (Py_LIMITED_API+0 >= 0x030c0000 || defined(Py_REF_DEBUG))
// Stable ABI implements Py_DECREF() as a function call on limited C API
// version 3.12 and newer, and on Python built in debug mode. _Py_DecRef() was
// added to Python 3.10.0a7, use Py_DecRef() on older Python versions.
// Py_DecRef() accepts NULL whereas _Py_IncRef() doesn't.
static inline void Py_DECREF(PyObject *op) {
#  if Py_LIMITED_API+0 >= 0x030a00A7
    _Py_DecRef(op);
#  else
    Py_DecRef(op);
#  endif
}
#define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op))

#elif defined(Py_REF_DEBUG)
static inline void Py_DECREF(const char *filename, int lineno, PyObject *op)
{
    if (op->ob_refcnt <= 0) {
        _Py_NegativeRefcount(filename, lineno, op);
    }
    if (_Py_IsImmortal(op)) {
        return;
    }
    _Py_DECREF_STAT_INC();
    _Py_DECREF_DecRefTotal();
    if (--op->ob_refcnt == 0) {
        _Py_Dealloc(op);
    }
}
#define Py_DECREF(op) Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))

#else
static inline Py_ALWAYS_INLINE void Py_DECREF(PyObject *op)
{
    // Non-limited C API and limited C API for Python 3.9 and older access
    // directly PyObject.ob_refcnt.
    if (_Py_IsImmortal(op)) {
        return;
    }
    _Py_DECREF_STAT_INC();
    if (--op->ob_refcnt == 0) {
        _Py_Dealloc(op);
    }
}
#define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op))
#endif


/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
 * and tp_dealloc implementations.
 *
 * Note that "the obvious" code can be deadly:
 *
 *     Py_XDECREF(op);
 *     op = NULL;
 *
 * Typically, `op` is something like self->containee, and `self` is done
 * using its `containee` member.  In the code sequence above, suppose
 * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
 * 0 on the first line, which can trigger an arbitrary amount of code,
 * possibly including finalizers (like __del__ methods or weakref callbacks)
 * coded in Python, which in turn can release the GIL and allow other threads
 * to run, etc.  Such code may even invoke methods of `self` again, or cause
 * cyclic gc to trigger, but-- oops! --self->containee still points to the
 * object being torn down, and it may be in an insane state while being torn
 * down.  This has in fact been a rich historic source of miserable (rare &
 * hard-to-diagnose) segfaulting (and other) bugs.
 *
 * The safe way is:
 *
 *      Py_CLEAR(op);
 *
 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
 * triggered as a side-effect of `op` getting torn down no longer believes
 * `op` points to a valid object.
 *
 * There are cases where it's safe to use the naive code, but they're brittle.
 * For example, if `op` points to a Python integer, you know that destroying
 * one of those can't cause problems -- but in part that relies on that
 * Python integers aren't currently weakly referencable.  Best practice is
 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
 *
 * gh-98724: Use a temporary variable to only evaluate the macro argument once,
 * to avoid the duplication of side effects if the argument has side effects.
 *
 * gh-99701: If the PyObject* type is used with casting arguments to PyObject*,
 * the code can be miscompiled with strict aliasing because of type punning.
 * With strict aliasing, a compiler considers that two pointers of different
 * types cannot read or write the same memory which enables optimization
 * opportunities.
 *
 * If available, use _Py_TYPEOF() to use the 'op' type for temporary variables,
 * and so avoid type punning. Otherwise, use memcpy() which causes type erasure
 * and so prevents the compiler to reuse an old cached 'op' value after
 * Py_CLEAR().
 */
#ifdef _Py_TYPEOF
#define Py_CLEAR(op) \
    do { \
        _Py_TYPEOF(op)* _tmp_op_ptr = &(op); \
        _Py_TYPEOF(op) _tmp_old_op = (*_tmp_op_ptr); \
        if (_tmp_old_op != NULL) { \
            *_tmp_op_ptr = _Py_NULL; \
            Py_DECREF(_tmp_old_op); \
        } \
    } while (0)
#else
#define Py_CLEAR(op) \
    do { \
        PyObject **_tmp_op_ptr = _Py_CAST(PyObject**, &(op)); \
        PyObject *_tmp_old_op = (*_tmp_op_ptr); \
        if (_tmp_old_op != NULL) { \
            PyObject *_null_ptr = _Py_NULL; \
            memcpy(_tmp_op_ptr, &_null_ptr, sizeof(PyObject*)); \
            Py_DECREF(_tmp_old_op); \
        } \
    } while (0)
#endif


/* Function to use in case the object pointer can be NULL: */
static inline void Py_XINCREF(PyObject *op)
{
    if (op != _Py_NULL) {
        Py_INCREF(op);
    }
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_XINCREF(op) Py_XINCREF(_PyObject_CAST(op))
#endif

static inline void Py_XDECREF(PyObject *op)
{
    if (op != _Py_NULL) {
        Py_DECREF(op);
    }
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_XDECREF(op) Py_XDECREF(_PyObject_CAST(op))
#endif

// Create a new strong reference to an object:
// increment the reference count of the object and return the object.
PyAPI_FUNC(PyObject*) Py_NewRef(PyObject *obj);

// Similar to Py_NewRef(), but the object can be NULL.
PyAPI_FUNC(PyObject*) Py_XNewRef(PyObject *obj);

static inline PyObject* _Py_NewRef(PyObject *obj)
{
    Py_INCREF(obj);
    return obj;
}

static inline PyObject* _Py_XNewRef(PyObject *obj)
{
    Py_XINCREF(obj);
    return obj;
}

// Py_NewRef() and Py_XNewRef() are exported as functions for the stable ABI.
// Names overridden with macros by static inline functions for best
// performances.
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define Py_NewRef(obj) _Py_NewRef(_PyObject_CAST(obj))
#  define Py_XNewRef(obj) _Py_XNewRef(_PyObject_CAST(obj))
#else
#  define Py_NewRef(obj) _Py_NewRef(obj)
#  define Py_XNewRef(obj) _Py_XNewRef(obj)
#endif


/*
_Py_NoneStruct is an object of undefined type which can be used in contexts
where NULL (nil) is not suitable (since NULL often means 'error').
*/
PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
#define Py_None (&_Py_NoneStruct)

// Test if an object is the None singleton, the same as "x is None" in Python.
PyAPI_FUNC(int) Py_IsNone(PyObject *x);
#define Py_IsNone(x) Py_Is((x), Py_None)

/* Macro for returning Py_None from a function */
#define Py_RETURN_NONE return Py_None

/*
Py_NotImplemented is a singleton used to signal that an operation is
not implemented for a given type combination.
*/
PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
#define Py_NotImplemented (&_Py_NotImplementedStruct)

/* Macro for returning Py_NotImplemented from a function */
#define Py_RETURN_NOTIMPLEMENTED return Py_NotImplemented

/* Rich comparison opcodes */
#define Py_LT 0
#define Py_LE 1
#define Py_EQ 2
#define Py_NE 3
#define Py_GT 4
#define Py_GE 5

#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030A0000
/* Result of calling PyIter_Send */
typedef enum {
    PYGEN_RETURN = 0,
    PYGEN_ERROR = -1,
    PYGEN_NEXT = 1,
} PySendResult;
#endif

/*
 * Macro for implementing rich comparisons
 *
 * Needs to be a macro because any C-comparable type can be used.
 */
#define Py_RETURN_RICHCOMPARE(val1, val2, op)                               \
    do {                                                                    \
        switch (op) {                                                       \
        case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;  \
        case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;  \
        case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;   \
        case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;   \
        case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;  \
        case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;  \
        default:                                                            \
            Py_UNREACHABLE();                                               \
        }                                                                   \
    } while (0)


/*
More conventions
================

Argument Checking
-----------------

Functions that take objects as arguments normally don't check for nil
arguments, but they do check the type of the argument, and return an
error if the function doesn't apply to the type.

Failure Modes
-------------

Functions may fail for a variety of reasons, including running out of
memory.  This is communicated to the caller in two ways: an error string
is set (see errors.h), and the function result differs: functions that
normally return a pointer return NULL for failure, functions returning
an integer return -1 (which could be a legal return value too!), and
other functions return 0 for success and -1 for failure.
Callers should always check for errors before using the result.  If
an error was set, the caller must either explicitly clear it, or pass
the error on to its caller.

Reference Counts
----------------

It takes a while to get used to the proper usage of reference counts.

Functions that create an object set the reference count to 1; such new
objects must be stored somewhere or destroyed again with Py_DECREF().
Some functions that 'store' objects, such as PyTuple_SetItem() and
PyList_SetItem(),
don't increment the reference count of the object, since the most
frequent use is to store a fresh object.  Functions that 'retrieve'
objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
don't increment
the reference count, since most frequently the object is only looked at
quickly.  Thus, to retrieve an object and store it again, the caller
must call Py_INCREF() explicitly.

NOTE: functions that 'consume' a reference count, like
PyList_SetItem(), consume the reference even if the object wasn't
successfully stored, to simplify error handling.

It seems attractive to make other functions that take an object as
argument consume a reference count; however, this may quickly get
confusing (even the current practice is already confusing).  Consider
it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
times.
*/

#ifndef Py_LIMITED_API
#  define Py_CPYTHON_OBJECT_H
#  include "cpython/object.h"
#  undef Py_CPYTHON_OBJECT_H
#endif


static inline int
PyType_HasFeature(PyTypeObject *type, unsigned long feature)
{
    unsigned long flags;
#ifdef Py_LIMITED_API
    // PyTypeObject is opaque in the limited C API
    flags = PyType_GetFlags(type);
#else
    flags = type->tp_flags;
#endif
    return ((flags & feature) != 0);
}

#define PyType_FastSubclass(type, flag) PyType_HasFeature((type), (flag))

static inline int PyType_Check(PyObject *op) {
    return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS);
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define PyType_Check(op) PyType_Check(_PyObject_CAST(op))
#endif

#define _PyType_CAST(op) \
    (assert(PyType_Check(op)), _Py_CAST(PyTypeObject*, (op)))

static inline int PyType_CheckExact(PyObject *op) {
    return Py_IS_TYPE(op, &PyType_Type);
}
#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
#  define PyType_CheckExact(op) PyType_CheckExact(_PyObject_CAST(op))
#endif

#ifdef __cplusplus
}
#endif
#endif   // !Py_OBJECT_H