1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
"""
ast
~~~
The `ast` module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with
each Python release; this module helps to find out programmatically what
the current grammar looks like and allows modifications of it.
An abstract syntax tree can be generated by passing `ast.PyCF_ONLY_AST` as
a flag to the `compile()` builtin function or by using the `parse()`
function from this module. The result will be a tree of objects whose
classes all inherit from `ast.AST`.
A modified abstract syntax tree can be compiled into a Python code object
using the built-in `compile()` function.
Additionally various helper functions are provided that make working with
the trees simpler. The main intention of the helper functions and this
module in general is to provide an easy to use interface for libraries
that work tightly with the python syntax (template engines for example).
:copyright: Copyright 2008 by Armin Ronacher.
:license: Python License.
"""
from _ast import *
def parse(source, filename='<unknown>', mode='exec', *,
type_comments=False, feature_version=None):
"""
Parse the source into an AST node.
Equivalent to compile(source, filename, mode, PyCF_ONLY_AST).
Pass type_comments=True to get back type comments where the syntax allows.
"""
flags = PyCF_ONLY_AST
if type_comments:
flags |= PyCF_TYPE_COMMENTS
if isinstance(feature_version, tuple):
major, minor = feature_version # Should be a 2-tuple.
assert major == 3
feature_version = minor
elif feature_version is None:
feature_version = -1
# Else it should be an int giving the minor version for 3.x.
return compile(source, filename, mode, flags,
_feature_version=feature_version)
def literal_eval(node_or_string):
"""
Safely evaluate an expression node or a string containing a Python
expression. The string or node provided may only consist of the following
Python literal structures: strings, bytes, numbers, tuples, lists, dicts,
sets, booleans, and None.
"""
if isinstance(node_or_string, str):
node_or_string = parse(node_or_string, mode='eval')
if isinstance(node_or_string, Expression):
node_or_string = node_or_string.body
def _convert_num(node):
if isinstance(node, Constant):
if type(node.value) in (int, float, complex):
return node.value
raise ValueError('malformed node or string: ' + repr(node))
def _convert_signed_num(node):
if isinstance(node, UnaryOp) and isinstance(node.op, (UAdd, USub)):
operand = _convert_num(node.operand)
if isinstance(node.op, UAdd):
return + operand
else:
return - operand
return _convert_num(node)
def _convert(node):
if isinstance(node, Constant):
return node.value
elif isinstance(node, Tuple):
return tuple(map(_convert, node.elts))
elif isinstance(node, List):
return list(map(_convert, node.elts))
elif isinstance(node, Set):
return set(map(_convert, node.elts))
elif isinstance(node, Dict):
return dict(zip(map(_convert, node.keys),
map(_convert, node.values)))
elif isinstance(node, BinOp) and isinstance(node.op, (Add, Sub)):
left = _convert_signed_num(node.left)
right = _convert_num(node.right)
if isinstance(left, (int, float)) and isinstance(right, complex):
if isinstance(node.op, Add):
return left + right
else:
return left - right
return _convert_signed_num(node)
return _convert(node_or_string)
def dump(node, annotate_fields=True, include_attributes=False):
"""
Return a formatted dump of the tree in *node*. This is mainly useful for
debugging purposes. The returned string will show the names and the values
for fields. This makes the code impossible to evaluate, so if evaluation is
wanted *annotate_fields* must be set to False. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted,
*include_attributes* can be set to True.
"""
def _format(node):
if isinstance(node, AST):
fields = [(a, _format(b)) for a, b in iter_fields(node)]
rv = '%s(%s' % (node.__class__.__name__, ', '.join(
('%s=%s' % field for field in fields)
if annotate_fields else
(b for a, b in fields)
))
if include_attributes and node._attributes:
rv += fields and ', ' or ' '
rv += ', '.join('%s=%s' % (a, _format(getattr(node, a)))
for a in node._attributes)
return rv + ')'
elif isinstance(node, list):
return '[%s]' % ', '.join(_format(x) for x in node)
return repr(node)
if not isinstance(node, AST):
raise TypeError('expected AST, got %r' % node.__class__.__name__)
return _format(node)
def copy_location(new_node, old_node):
"""
Copy source location (`lineno`, `col_offset`, `end_lineno`, and `end_col_offset`
attributes) from *old_node* to *new_node* if possible, and return *new_node*.
"""
for attr in 'lineno', 'col_offset', 'end_lineno', 'end_col_offset':
if attr in old_node._attributes and attr in new_node._attributes \
and hasattr(old_node, attr):
setattr(new_node, attr, getattr(old_node, attr))
return new_node
def fix_missing_locations(node):
"""
When you compile a node tree with compile(), the compiler expects lineno and
col_offset attributes for every node that supports them. This is rather
tedious to fill in for generated nodes, so this helper adds these attributes
recursively where not already set, by setting them to the values of the
parent node. It works recursively starting at *node*.
"""
def _fix(node, lineno, col_offset, end_lineno, end_col_offset):
if 'lineno' in node._attributes:
if not hasattr(node, 'lineno'):
node.lineno = lineno
else:
lineno = node.lineno
if 'end_lineno' in node._attributes:
if not hasattr(node, 'end_lineno'):
node.end_lineno = end_lineno
else:
end_lineno = node.end_lineno
if 'col_offset' in node._attributes:
if not hasattr(node, 'col_offset'):
node.col_offset = col_offset
else:
col_offset = node.col_offset
if 'end_col_offset' in node._attributes:
if not hasattr(node, 'end_col_offset'):
node.end_col_offset = end_col_offset
else:
end_col_offset = node.end_col_offset
for child in iter_child_nodes(node):
_fix(child, lineno, col_offset, end_lineno, end_col_offset)
_fix(node, 1, 0, 1, 0)
return node
def increment_lineno(node, n=1):
"""
Increment the line number and end line number of each node in the tree
starting at *node* by *n*. This is useful to "move code" to a different
location in a file.
"""
for child in walk(node):
if 'lineno' in child._attributes:
child.lineno = getattr(child, 'lineno', 0) + n
if 'end_lineno' in child._attributes:
child.end_lineno = getattr(child, 'end_lineno', 0) + n
return node
def iter_fields(node):
"""
Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
that is present on *node*.
"""
for field in node._fields:
try:
yield field, getattr(node, field)
except AttributeError:
pass
def iter_child_nodes(node):
"""
Yield all direct child nodes of *node*, that is, all fields that are nodes
and all items of fields that are lists of nodes.
"""
for name, field in iter_fields(node):
if isinstance(field, AST):
yield field
elif isinstance(field, list):
for item in field:
if isinstance(item, AST):
yield item
def get_docstring(node, clean=True):
"""
Return the docstring for the given node or None if no docstring can
be found. If the node provided does not have docstrings a TypeError
will be raised.
If *clean* is `True`, all tabs are expanded to spaces and any whitespace
that can be uniformly removed from the second line onwards is removed.
"""
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
raise TypeError("%r can't have docstrings" % node.__class__.__name__)
if not(node.body and isinstance(node.body[0], Expr)):
return None
node = node.body[0].value
if isinstance(node, Str):
text = node.s
elif isinstance(node, Constant) and isinstance(node.value, str):
text = node.value
else:
return None
if clean:
import inspect
text = inspect.cleandoc(text)
return text
def _splitlines_no_ff(source):
"""Split a string into lines ignoring form feed and other chars.
This mimics how the Python parser splits source code.
"""
idx = 0
lines = []
next_line = ''
while idx < len(source):
c = source[idx]
next_line += c
idx += 1
# Keep \r\n together
if c == '\r' and idx < len(source) and source[idx] == '\n':
next_line += '\n'
idx += 1
if c in '\r\n':
lines.append(next_line)
next_line = ''
if next_line:
lines.append(next_line)
return lines
def _pad_whitespace(source):
"""Replace all chars except '\f\t' in a line with spaces."""
result = ''
for c in source:
if c in '\f\t':
result += c
else:
result += ' '
return result
def get_source_segment(source, node, *, padded=False):
"""Get source code segment of the *source* that generated *node*.
If some location information (`lineno`, `end_lineno`, `col_offset`,
or `end_col_offset`) is missing, return None.
If *padded* is `True`, the first line of a multi-line statement will
be padded with spaces to match its original position.
"""
try:
lineno = node.lineno - 1
end_lineno = node.end_lineno - 1
col_offset = node.col_offset
end_col_offset = node.end_col_offset
except AttributeError:
return None
lines = _splitlines_no_ff(source)
if end_lineno == lineno:
return lines[lineno].encode()[col_offset:end_col_offset].decode()
if padded:
padding = _pad_whitespace(lines[lineno].encode()[:col_offset].decode())
else:
padding = ''
first = padding + lines[lineno].encode()[col_offset:].decode()
last = lines[end_lineno].encode()[:end_col_offset].decode()
lines = lines[lineno+1:end_lineno]
lines.insert(0, first)
lines.append(last)
return ''.join(lines)
def walk(node):
"""
Recursively yield all descendant nodes in the tree starting at *node*
(including *node* itself), in no specified order. This is useful if you
only want to modify nodes in place and don't care about the context.
"""
from collections import deque
todo = deque([node])
while todo:
node = todo.popleft()
todo.extend(iter_child_nodes(node))
yield node
class NodeVisitor(object):
"""
A node visitor base class that walks the abstract syntax tree and calls a
visitor function for every node found. This function may return a value
which is forwarded by the `visit` method.
This class is meant to be subclassed, with the subclass adding visitor
methods.
Per default the visitor functions for the nodes are ``'visit_'`` +
class name of the node. So a `TryFinally` node visit function would
be `visit_TryFinally`. This behavior can be changed by overriding
the `visit` method. If no visitor function exists for a node
(return value `None`) the `generic_visit` visitor is used instead.
Don't use the `NodeVisitor` if you want to apply changes to nodes during
traversing. For this a special visitor exists (`NodeTransformer`) that
allows modifications.
"""
def visit(self, node):
"""Visit a node."""
method = 'visit_' + node.__class__.__name__
visitor = getattr(self, method, self.generic_visit)
return visitor(node)
def generic_visit(self, node):
"""Called if no explicit visitor function exists for a node."""
for field, value in iter_fields(node):
if isinstance(value, list):
for item in value:
if isinstance(item, AST):
self.visit(item)
elif isinstance(value, AST):
self.visit(value)
def visit_Constant(self, node):
value = node.value
type_name = _const_node_type_names.get(type(value))
if type_name is None:
for cls, name in _const_node_type_names.items():
if isinstance(value, cls):
type_name = name
break
if type_name is not None:
method = 'visit_' + type_name
try:
visitor = getattr(self, method)
except AttributeError:
pass
else:
import warnings
warnings.warn(f"{method} is deprecated; add visit_Constant",
DeprecationWarning, 2)
return visitor(node)
return self.generic_visit(node)
class NodeTransformer(NodeVisitor):
"""
A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
allows modification of nodes.
The `NodeTransformer` will walk the AST and use the return value of the
visitor methods to replace or remove the old node. If the return value of
the visitor method is ``None``, the node will be removed from its location,
otherwise it is replaced with the return value. The return value may be the
original node in which case no replacement takes place.
Here is an example transformer that rewrites all occurrences of name lookups
(``foo``) to ``data['foo']``::
class RewriteName(NodeTransformer):
def visit_Name(self, node):
return copy_location(Subscript(
value=Name(id='data', ctx=Load()),
slice=Index(value=Str(s=node.id)),
ctx=node.ctx
), node)
Keep in mind that if the node you're operating on has child nodes you must
either transform the child nodes yourself or call the :meth:`generic_visit`
method for the node first.
For nodes that were part of a collection of statements (that applies to all
statement nodes), the visitor may also return a list of nodes rather than
just a single node.
Usually you use the transformer like this::
node = YourTransformer().visit(node)
"""
def generic_visit(self, node):
for field, old_value in iter_fields(node):
if isinstance(old_value, list):
new_values = []
for value in old_value:
if isinstance(value, AST):
value = self.visit(value)
if value is None:
continue
elif not isinstance(value, AST):
new_values.extend(value)
continue
new_values.append(value)
old_value[:] = new_values
elif isinstance(old_value, AST):
new_node = self.visit(old_value)
if new_node is None:
delattr(node, field)
else:
setattr(node, field, new_node)
return node
# The following code is for backward compatibility.
# It will be removed in future.
def _getter(self):
return self.value
def _setter(self, value):
self.value = value
Constant.n = property(_getter, _setter)
Constant.s = property(_getter, _setter)
class _ABC(type):
def __instancecheck__(cls, inst):
if not isinstance(inst, Constant):
return False
if cls in _const_types:
try:
value = inst.value
except AttributeError:
return False
else:
return (
isinstance(value, _const_types[cls]) and
not isinstance(value, _const_types_not.get(cls, ()))
)
return type.__instancecheck__(cls, inst)
def _new(cls, *args, **kwargs):
if cls in _const_types:
return Constant(*args, **kwargs)
return Constant.__new__(cls, *args, **kwargs)
class Num(Constant, metaclass=_ABC):
_fields = ('n',)
__new__ = _new
class Str(Constant, metaclass=_ABC):
_fields = ('s',)
__new__ = _new
class Bytes(Constant, metaclass=_ABC):
_fields = ('s',)
__new__ = _new
class NameConstant(Constant, metaclass=_ABC):
__new__ = _new
class Ellipsis(Constant, metaclass=_ABC):
_fields = ()
def __new__(cls, *args, **kwargs):
if cls is Ellipsis:
return Constant(..., *args, **kwargs)
return Constant.__new__(cls, *args, **kwargs)
_const_types = {
Num: (int, float, complex),
Str: (str,),
Bytes: (bytes,),
NameConstant: (type(None), bool),
Ellipsis: (type(...),),
}
_const_types_not = {
Num: (bool,),
}
_const_node_type_names = {
bool: 'NameConstant', # should be before int
type(None): 'NameConstant',
int: 'Num',
float: 'Num',
complex: 'Num',
str: 'Str',
bytes: 'Bytes',
type(...): 'Ellipsis',
}
|