1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
# -*- Mode: Python; tab-width: 4 -*-
# $Id$
# Author: Sam Rushing <rushing@nightmare.com>
# ======================================================================
# Copyright 1996 by Sam Rushing
#
# All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================
import socket
import asyncore
import string
# This class adds support for 'chat' style protocols - where one side
# sends a 'command', and the other sends a response (examples would be
# the common internet protocols - smtp, nntp, ftp, etc..).
# The handle_read() method looks at the input stream for the current
# 'terminator' (usually '\r\n' for single-line responses, '\r\n.\r\n'
# for multi-line output), calling self.found_terminator() on its
# receipt.
# for example:
# Say you build an async nntp client using this class. At the start
# of the connection, you'll have self.terminator set to '\r\n', in
# order to process the single-line greeting. Just before issuing a
# 'LIST' command you'll set it to '\r\n.\r\n'. The output of the LIST
# command will be accumulated (using your own 'collect_incoming_data'
# method) up to the terminator, and then control will be returned to
# you - by calling your self.found_terminator() method
class async_chat (asyncore.dispatcher):
"""This is an abstract class. You must derive from this class, and add
the two methods collect_incoming_data() and found_terminator()"""
# these are overridable defaults
ac_in_buffer_size = 4096
ac_out_buffer_size = 4096
def __init__ (self, conn=None):
self.ac_in_buffer = ''
self.ac_out_buffer = ''
self.producer_fifo = fifo()
asyncore.dispatcher.__init__ (self, conn)
def set_terminator (self, term):
"Set the input delimiter. Can be a fixed string of any length, or None"
if term is None:
self.terminator = ''
else:
self.terminator = term
def get_terminator (self):
return self.terminator
# grab some more data from the socket,
# throw it to the collector method,
# check for the terminator,
# if found, transition to the next state.
def handle_read (self):
try:
data = self.recv (self.ac_in_buffer_size)
except socket.error, why:
import sys
self.handle_error (sys.exc_type, sys.exc_value, sys.exc_traceback)
return
self.ac_in_buffer = self.ac_in_buffer + data
# Continue to search for self.terminator in self.ac_in_buffer,
# while calling self.collect_incoming_data. The while loop
# is necessary because we might read several data+terminator
# combos with a single recv(1024).
while self.ac_in_buffer:
terminator = self.get_terminator()
terminator_len = len(terminator)
# 4 cases:
# 1) end of buffer matches terminator exactly:
# collect data, transition
# 2) end of buffer matches some prefix:
# collect data to the prefix
# 3) end of buffer does not match any prefix:
# collect data
# 4) no terminator, just collect the data
if terminator:
index = string.find (self.ac_in_buffer, terminator)
if index != -1:
# we found the terminator
self.collect_incoming_data (self.ac_in_buffer[:index])
self.ac_in_buffer = self.ac_in_buffer[index+terminator_len:]
# This does the Right Thing if the terminator is changed here.
self.found_terminator()
else:
# check for a prefix of the terminator
index = find_prefix_at_end (self.ac_in_buffer, terminator)
if index:
# we found a prefix, collect up to the prefix
self.collect_incoming_data (self.ac_in_buffer[:-index])
self.ac_in_buffer = self.ac_in_buffer[-index:]
break
else:
# no prefix, collect it all
self.collect_incoming_data (self.ac_in_buffer)
self.ac_in_buffer = ''
else:
# no terminator, collect it all
self.collect_incoming_data (self.ac_in_buffer)
self.ac_in_buffer = ''
def handle_write (self):
self.initiate_send ()
def handle_close (self):
self.close()
def push (self, data):
self.producer_fifo.push (simple_producer (data))
self.initiate_send()
def push_with_producer (self, producer):
self.producer_fifo.push (producer)
self.initiate_send()
def readable (self):
return (len(self.ac_in_buffer) <= self.ac_in_buffer_size)
def writable (self):
return len(self.ac_out_buffer) or len(self.producer_fifo) or (not self.connected)
def close_when_done (self):
self.producer_fifo.push (None)
# refill the outgoing buffer by calling the more() method
# of the first producer in the queue
def refill_buffer (self):
while 1:
if len(self.producer_fifo):
p = self.producer_fifo.first()
# a 'None' in the producer fifo is a sentinel,
# telling us to close the channel.
if p is None:
if not self.ac_out_buffer:
self.producer_fifo.pop()
self.close()
return
data = p.more()
if data:
self.ac_out_buffer = self.ac_out_buffer + data
return
else:
self.producer_fifo.pop()
else:
return
def initiate_send (self):
obs = self.ac_out_buffer_size
# try to refill the buffer
if (not self._push_mode) and (len (self.ac_out_buffer) < obs):
self.refill_buffer()
if self.ac_out_buffer and self.connected:
# try to send the buffer
num_sent = self.send (self.ac_out_buffer[:obs])
if num_sent:
self.ac_out_buffer = self.ac_out_buffer[num_sent:]
def discard_buffers (self):
# Emergencies only!
self.ac_in_buffer = ''
self.ac_out_buffer == ''
while self.producer_fifo:
self.producer_fifo.pop()
# ==================================================
# support for push mode.
# ==================================================
_push_mode = 0
def push_mode (self, boolean):
self._push_mode = boolean
def writable_push (self):
return self.connected and len(self.ac_out_buffer)
class simple_producer:
def __init__ (self, data, buffer_size=512):
self.data = data
self.buffer_size = buffer_size
def more (self):
if len (self.data) > self.buffer_size:
result = self.data[:self.buffer_size]
self.data = self.data[self.buffer_size:]
return result
else:
result = self.data
self.data = ''
return result
class fifo:
def __init__ (self, list=None):
if not list:
self.list = []
else:
self.list = list
def __len__ (self):
return len(self.list)
def first (self):
return self.list[0]
def push (self, data):
self.list.append (data)
def pop (self):
if self.list:
result = self.list[0]
del self.list[0]
return (1, result)
else:
return (0, None)
# Given 'haystack', see if any prefix of 'needle' is at its end. This
# assumes an exact match has already been checked. Return the number of
# characters matched.
# for example:
# f_p_a_e ("qwerty\r", "\r\n") => 1
# f_p_a_e ("qwerty\r\n", "\r\n") => 2
# f_p_a_e ("qwertydkjf", "\r\n") => 0
# this could maybe be made faster with a computed regex?
##def find_prefix_at_end (haystack, needle):
## nl = len(needle)
## result = 0
## for i in range (1,nl):
## if haystack[-(nl-i):] == needle[:(nl-i)]:
## result = nl-i
## break
## return result
# yes, this is about twice as fast, but still seems
# to be neglible CPU. The previous could do about 290
# searches/sec. the new one about 555/sec.
import regex
prefix_cache = {}
def prefix_regex (needle):
if prefix_cache.has_key (needle):
return prefix_cache[needle]
else:
reg = needle[-1]
for i in range(1,len(needle)):
reg = '%c\(%s\)?' % (needle[-(i+1)], reg)
reg = regex.compile (reg+'$')
prefix_cache[needle] = reg, len(needle)
return reg, len(needle)
def find_prefix_at_end (haystack, needle):
reg, length = prefix_regex (needle)
lh = len(haystack)
result = reg.search (haystack, max(0,lh-length))
if result >= 0:
return (lh - result)
else:
return 0
|