summaryrefslogtreecommitdiffstats
path: root/Lib/collections.py
blob: 93194e02bfb6242202543d2db2022d28a5791804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__

from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter
from keyword import iskeyword as _iskeyword
import sys as _sys

################################################################################
### namedtuple
################################################################################

def namedtuple(typename, field_names, verbose=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', 'x y')
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Parse and validate the field names.  Validation serves two purposes,
    # generating informative error messages and preventing template injection attacks.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
    field_names = tuple(field_names)
    for name in (typename,) + field_names:
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with a number: %r' % name)
    seen_names = set()
    for name in field_names:
        if name.startswith('_'):
            raise ValueError('Field names cannot start with an underscore: %r' % name)
        if name in seen_names:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen_names.add(name)

    # Create and fill-in the class template
    numfields = len(field_names)
    argtxt = repr(field_names).replace("'", "")[1:-1]   # tuple repr without parens or quotes
    reprtxt = ', '.join('%s=%%r' % name for name in field_names)
    dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names))
    template = '''class %(typename)s(tuple):
        '%(typename)s(%(argtxt)s)' \n
        __slots__ = () \n
        _fields = %(field_names)r \n
        def __new__(cls, %(argtxt)s):
            return tuple.__new__(cls, (%(argtxt)s)) \n
        @classmethod
        def _make(cls, iterable, new=tuple.__new__, len=len):
            'Make a new %(typename)s object from a sequence or iterable'
            result = new(cls, iterable)
            if len(result) != %(numfields)d:
                raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
            return result \n
        def __repr__(self):
            return '%(typename)s(%(reprtxt)s)' %% self \n
        def _asdict(t):
            'Return a new dict which maps field names to their values'
            return {%(dicttxt)s} \n
        def _replace(self, **kwds):
            'Return a new %(typename)s object replacing specified fields with new values'
            result = self._make(map(kwds.pop, %(field_names)r, self))
            if kwds:
                raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
            return result \n\n''' % locals()
    for i, name in enumerate(field_names):
        template += '        %s = property(itemgetter(%d))\n' % (name, i)
    if verbose:
        print(template)

    # Execute the template string in a temporary namespace
    namespace = dict(itemgetter=_itemgetter)
    try:
        exec(template, namespace)
    except SyntaxError as e:
        raise SyntaxError(e.msg + ':\n' + template) from e
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in enviroments where
    # sys._getframe is not defined (Jython for example).
    if hasattr(_sys, '_getframe'):
        result.__module__ = _sys._getframe(1).f_globals['__name__']

    return result



################################################################################
### UserDict
################################################################################

class UserDict(MutableMapping):

    # Start by filling-out the abstract methods
    def __init__(self, dict=None, **kwargs):
        self.data = {}
        if dict is not None:
            self.update(dict)
        if len(kwargs):
            self.update(kwargs)
    def __len__(self): return len(self.data)
    def __getitem__(self, key):
        if key in self.data:
            return self.data[key]
        if hasattr(self.__class__, "__missing__"):
            return self.__class__.__missing__(self, key)
        raise KeyError(key)
    def __setitem__(self, key, item): self.data[key] = item
    def __delitem__(self, key): del self.data[key]
    def __iter__(self):
        return iter(self.data)

    # Modify __contains__ to work correctly when __missing__ is present
    def __contains__(self, key):
        return key in self.data

    # Now, add the methods in dicts but not in MutableMapping
    def __repr__(self): return repr(self.data)
    def copy(self):
        if self.__class__ is UserDict:
            return UserDict(self.data.copy())
        import copy
        data = self.data
        try:
            self.data = {}
            c = copy.copy(self)
        finally:
            self.data = data
        c.update(self)
        return c
    @classmethod
    def fromkeys(cls, iterable, value=None):
        d = cls()
        for key in iterable:
            d[key] = value
        return d



################################################################################
### UserList
################################################################################

class UserList(MutableSequence):
    """A more or less complete user-defined wrapper around list objects."""
    def __init__(self, initlist=None):
        self.data = []
        if initlist is not None:
            # XXX should this accept an arbitrary sequence?
            if type(initlist) == type(self.data):
                self.data[:] = initlist
            elif isinstance(initlist, UserList):
                self.data[:] = initlist.data[:]
            else:
                self.data = list(initlist)
    def __repr__(self): return repr(self.data)
    def __lt__(self, other): return self.data <  self.__cast(other)
    def __le__(self, other): return self.data <= self.__cast(other)
    def __eq__(self, other): return self.data == self.__cast(other)
    def __ne__(self, other): return self.data != self.__cast(other)
    def __gt__(self, other): return self.data >  self.__cast(other)
    def __ge__(self, other): return self.data >= self.__cast(other)
    def __cast(self, other):
        return other.data if isinstance(other, UserList) else other
    def __cmp__(self, other):
        return cmp(self.data, self.__cast(other))
    def __contains__(self, item): return item in self.data
    def __len__(self): return len(self.data)
    def __getitem__(self, i): return self.data[i]
    def __setitem__(self, i, item): self.data[i] = item
    def __delitem__(self, i): del self.data[i]
    def __add__(self, other):
        if isinstance(other, UserList):
            return self.__class__(self.data + other.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(self.data + other)
        return self.__class__(self.data + list(other))
    def __radd__(self, other):
        if isinstance(other, UserList):
            return self.__class__(other.data + self.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(other + self.data)
        return self.__class__(list(other) + self.data)
    def __iadd__(self, other):
        if isinstance(other, UserList):
            self.data += other.data
        elif isinstance(other, type(self.data)):
            self.data += other
        else:
            self.data += list(other)
        return self
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __imul__(self, n):
        self.data *= n
        return self
    def append(self, item): self.data.append(item)
    def insert(self, i, item): self.data.insert(i, item)
    def pop(self, i=-1): return self.data.pop(i)
    def remove(self, item): self.data.remove(item)
    def count(self, item): return self.data.count(item)
    def index(self, item, *args): return self.data.index(item, *args)
    def reverse(self): self.data.reverse()
    def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
    def extend(self, other):
        if isinstance(other, UserList):
            self.data.extend(other.data)
        else:
            self.data.extend(other)



################################################################################
### Simple tests
################################################################################

if __name__ == '__main__':
    # verify that instances can be pickled
    from pickle import loads, dumps
    Point = namedtuple('Point', 'x, y', True)
    p = Point(x=10, y=20)
    assert p == loads(dumps(p))

    # test and demonstrate ability to override methods
    class Point(namedtuple('Point', 'x y')):
        __slots__ = ()
        @property
        def hypot(self):
            return (self.x ** 2 + self.y ** 2) ** 0.5
        def __str__(self):
            return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    for p in Point(3, 4), Point(14, 5/7.):
        print (p)

    class Point(namedtuple('Point', 'x y')):
        'Point class with optimized _make() and _replace() without error-checking'
        __slots__ = ()
        _make = classmethod(tuple.__new__)
        def _replace(self, _map=map, **kwds):
            return self._make(_map(kwds.get, ('x', 'y'), self))

    print(Point(11, 22)._replace(x=100))

    Point3D = namedtuple('Point3D', Point._fields + ('z',))
    print(Point3D.__doc__)

    import doctest
    TestResults = namedtuple('TestResults', 'failed attempted')
    print(TestResults(*doctest.testmod()))