summaryrefslogtreecommitdiffstats
path: root/Lib/collections.py
blob: 8fb123fbc107be81a9d03396d846f16e95ea92ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
            'UserString', 'Counter', 'OrderedDict']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__

from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter
from keyword import iskeyword as _iskeyword
import sys as _sys
import heapq as _heapq
from weakref import proxy as _proxy
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap

################################################################################
### OrderedDict
################################################################################

class _Link(object):
    __slots__ = 'prev', 'next', 'key', '__weakref__'

class OrderedDict(dict, MutableMapping):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as for regular dictionaries.

    # The internal self.__map dictionary maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The prev/next links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.

    def __init__(self, *args, **kwds):
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__root = root = _Link()    # sentinel node for the doubly linked list
            root.prev = root.next = root
            self.__map = {}
        self.update(*args, **kwds)

    def clear(self):
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)

    def __setitem__(self, key, value):
        # Setting a new item creates a new link which goes at the end of the linked
        # list, and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            self.__map[key] = link = _Link()
            root = self.__root
            last = root.prev
            link.prev, link.next, link.key = last, root, key
            last.next = root.prev = _proxy(link)
        dict.__setitem__(self, key, value)

    def __delitem__(self, key):
        # Deleting an existing item uses self.__map to find the link which is
        # then removed by updating the links in the predecessor and successor nodes.
        dict.__delitem__(self, key)
        link = self.__map.pop(key)
        link.prev.next = link.next
        link.next.prev = link.prev

    def __iter__(self):
        # Traverse the linked list in order.
        root = self.__root
        curr = root.next
        while curr is not root:
            yield curr.key
            curr = curr.next

    def __reversed__(self):
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root.prev
        while curr is not root:
            yield curr.key
            curr = curr.prev

    def __reduce__(self):
        items = [[k, self[k]] for k in self]
        tmp = self.__map, self.__root
        del self.__map, self.__root
        inst_dict = vars(self).copy()
        self.__map, self.__root = tmp
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    setdefault = MutableMapping.setdefault
    update = MutableMapping.update
    pop = MutableMapping.pop
    keys = MutableMapping.keys
    values = MutableMapping.values
    items = MutableMapping.items

    def popitem(self, last=True):
        if not self:
            raise KeyError('dictionary is empty')
        key = next(reversed(self)) if last else next(iter(self))
        value = self.pop(key)
        return key, value

    def __repr__(self):
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))

    def copy(self):
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        d = cls()
        for key in iterable:
            d[key] = value
        return d

    def __eq__(self, other):
        if isinstance(other, OrderedDict):
            return len(self)==len(other) and \
                   all(p==q for p, q in zip(self.items(), other.items()))
        return dict.__eq__(self, other)

    def __ne__(self, other):
        return not self == other



################################################################################
### namedtuple
################################################################################

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', 'x y')
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Parse and validate the field names.  Validation serves two purposes,
    # generating informative error messages and preventing template injection attacks.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
    field_names = tuple(map(str, field_names))
    if rename:
        names = list(field_names)
        seen = set()
        for i, name in enumerate(names):
            if (not all(c.isalnum() or c=='_' for c in name) or _iskeyword(name)
                or not name or name[0].isdigit() or name.startswith('_')
                or name in seen):
                names[i] = '_%d' % i
            seen.add(name)
        field_names = tuple(names)
    for name in (typename,) + field_names:
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with a number: %r' % name)
    seen_names = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: %r' % name)
        if name in seen_names:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen_names.add(name)

    # Create and fill-in the class template
    numfields = len(field_names)
    argtxt = repr(field_names).replace("'", "")[1:-1]   # tuple repr without parens or quotes
    reprtxt = ', '.join('%s=%%r' % name for name in field_names)
    template = '''class %(typename)s(tuple):
        '%(typename)s(%(argtxt)s)' \n
        __slots__ = () \n
        _fields = %(field_names)r \n
        def __new__(cls, %(argtxt)s):
            return tuple.__new__(cls, (%(argtxt)s)) \n
        @classmethod
        def _make(cls, iterable, new=tuple.__new__, len=len):
            'Make a new %(typename)s object from a sequence or iterable'
            result = new(cls, iterable)
            if len(result) != %(numfields)d:
                raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
            return result \n
        def __repr__(self):
            return '%(typename)s(%(reprtxt)s)' %% self \n
        def _asdict(self):
            'Return a new OrderedDict which maps field names to their values'
            return OrderedDict(zip(self._fields, self)) \n
        def _replace(self, **kwds):
            'Return a new %(typename)s object replacing specified fields with new values'
            result = self._make(map(kwds.pop, %(field_names)r, self))
            if kwds:
                raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
            return result \n
        def __getnewargs__(self):
            return tuple(self) \n\n''' % locals()
    for i, name in enumerate(field_names):
        template += '        %s = property(itemgetter(%d))\n' % (name, i)
    if verbose:
        print(template)

    # Execute the template string in a temporary namespace and
    # support tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict)
    try:
        exec(template, namespace)
    except SyntaxError as e:
        raise SyntaxError(e.msg + ':\n' + template) from e
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in enviroments where
    # sys._getframe is not defined (Jython for example).
    if hasattr(_sys, '_getframe'):
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')

    return result


########################################################################
###  Counter
########################################################################

class Counter(dict):
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abracadabra')      # count elements from a string

    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('r', 2), ('b', 2)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'r']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbcdrr'
    >>> sum(c.values())                 # total of all counts
    11

    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['r']                      # remove all 'r'
    >>> c['r']                          # now there are zero 'r'
    0

    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9

    >>> c.clear()                       # empty the counter
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]

    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3

    def __init__(self, iterable=None, **kwds):
        '''Create a new, empty Counter object.  And if given, count elements
        from an input iterable.  Or, initialize the count from another mapping
        of elements to their counts.

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args

        '''
        self.update(iterable, **kwds)

    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abracadabra').most_common(3)
        [('a', 5), ('r', 2), ('b', 2)]

        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

    def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))

    # Override dict methods where necessary

    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

    def update(self, iterable=None, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    for elem, count in iterable.items():
                        self[elem] += count
                else:
                    dict.update(self, iterable) # fast path when counter is empty
            else:
                for elem in iterable:
                    self[elem] += 1
        if kwds:
            self.update(kwds)

    def copy(self):
        'Like dict.copy() but returns a Counter instance instead of a dict.'
        return Counter(self)

    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            dict.__delitem__(self, elem)

    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
        return '%s({%s})' % (self.__class__.__name__, items)

    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()

    def __add__(self, other):
        '''Add counts from two counters.

        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem in set(self) | set(other):
            newcount = self[elem] + other[elem]
            if newcount > 0:
                result[elem] = newcount
        return result

    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.

        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem in set(self) | set(other):
            newcount = self[elem] - other[elem]
            if newcount > 0:
                result[elem] = newcount
        return result

    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.

        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem in set(self) | set(other):
            p, q = self[elem], other[elem]
            newcount = q if p < q else p
            if newcount > 0:
                result[elem] = newcount
        return result

    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.

        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        if len(self) < len(other):
            self, other = other, self
        for elem in filter(self.__contains__, other):
            p, q = self[elem], other[elem]
            newcount = p if p < q else q
            if newcount > 0:
                result[elem] = newcount
        return result


################################################################################
### UserDict
################################################################################

class UserDict(MutableMapping):

    # Start by filling-out the abstract methods
    def __init__(self, dict=None, **kwargs):
        self.data = {}
        if dict is not None:
            self.update(dict)
        if len(kwargs):
            self.update(kwargs)
    def __len__(self): return len(self.data)
    def __getitem__(self, key):
        if key in self.data:
            return self.data[key]
        if hasattr(self.__class__, "__missing__"):
            return self.__class__.__missing__(self, key)
        raise KeyError(key)
    def __setitem__(self, key, item): self.data[key] = item
    def __delitem__(self, key): del self.data[key]
    def __iter__(self):
        return iter(self.data)

    # Modify __contains__ to work correctly when __missing__ is present
    def __contains__(self, key):
        return key in self.data

    # Now, add the methods in dicts but not in MutableMapping
    def __repr__(self): return repr(self.data)
    def copy(self):
        if self.__class__ is UserDict:
            return UserDict(self.data.copy())
        import copy
        data = self.data
        try:
            self.data = {}
            c = copy.copy(self)
        finally:
            self.data = data
        c.update(self)
        return c
    @classmethod
    def fromkeys(cls, iterable, value=None):
        d = cls()
        for key in iterable:
            d[key] = value
        return d



################################################################################
### UserList
################################################################################

class UserList(MutableSequence):
    """A more or less complete user-defined wrapper around list objects."""
    def __init__(self, initlist=None):
        self.data = []
        if initlist is not None:
            # XXX should this accept an arbitrary sequence?
            if type(initlist) == type(self.data):
                self.data[:] = initlist
            elif isinstance(initlist, UserList):
                self.data[:] = initlist.data[:]
            else:
                self.data = list(initlist)
    def __repr__(self): return repr(self.data)
    def __lt__(self, other): return self.data <  self.__cast(other)
    def __le__(self, other): return self.data <= self.__cast(other)
    def __eq__(self, other): return self.data == self.__cast(other)
    def __ne__(self, other): return self.data != self.__cast(other)
    def __gt__(self, other): return self.data >  self.__cast(other)
    def __ge__(self, other): return self.data >= self.__cast(other)
    def __cast(self, other):
        return other.data if isinstance(other, UserList) else other
    def __contains__(self, item): return item in self.data
    def __len__(self): return len(self.data)
    def __getitem__(self, i): return self.data[i]
    def __setitem__(self, i, item): self.data[i] = item
    def __delitem__(self, i): del self.data[i]
    def __add__(self, other):
        if isinstance(other, UserList):
            return self.__class__(self.data + other.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(self.data + other)
        return self.__class__(self.data + list(other))
    def __radd__(self, other):
        if isinstance(other, UserList):
            return self.__class__(other.data + self.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(other + self.data)
        return self.__class__(list(other) + self.data)
    def __iadd__(self, other):
        if isinstance(other, UserList):
            self.data += other.data
        elif isinstance(other, type(self.data)):
            self.data += other
        else:
            self.data += list(other)
        return self
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __imul__(self, n):
        self.data *= n
        return self
    def append(self, item): self.data.append(item)
    def insert(self, i, item): self.data.insert(i, item)
    def pop(self, i=-1): return self.data.pop(i)
    def remove(self, item): self.data.remove(item)
    def count(self, item): return self.data.count(item)
    def index(self, item, *args): return self.data.index(item, *args)
    def reverse(self): self.data.reverse()
    def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
    def extend(self, other):
        if isinstance(other, UserList):
            self.data.extend(other.data)
        else:
            self.data.extend(other)



################################################################################
### UserString
################################################################################

class UserString(Sequence):
    def __init__(self, seq):
        if isinstance(seq, str):
            self.data = seq
        elif isinstance(seq, UserString):
            self.data = seq.data[:]
        else:
            self.data = str(seq)
    def __str__(self): return str(self.data)
    def __repr__(self): return repr(self.data)
    def __int__(self): return int(self.data)
    def __float__(self): return float(self.data)
    def __complex__(self): return complex(self.data)
    def __hash__(self): return hash(self.data)

    def __eq__(self, string):
        if isinstance(string, UserString):
            return self.data == string.data
        return self.data == string
    def __ne__(self, string):
        if isinstance(string, UserString):
            return self.data != string.data
        return self.data != string
    def __lt__(self, string):
        if isinstance(string, UserString):
            return self.data < string.data
        return self.data < string
    def __le__(self, string):
        if isinstance(string, UserString):
            return self.data <= string.data
        return self.data <= string
    def __gt__(self, string):
        if isinstance(string, UserString):
            return self.data > string.data
        return self.data > string
    def __ge__(self, string):
        if isinstance(string, UserString):
            return self.data >= string.data
        return self.data >= string

    def __contains__(self, char):
        if isinstance(char, UserString):
            char = char.data
        return char in self.data

    def __len__(self): return len(self.data)
    def __getitem__(self, index): return self.__class__(self.data[index])
    def __add__(self, other):
        if isinstance(other, UserString):
            return self.__class__(self.data + other.data)
        elif isinstance(other, str):
            return self.__class__(self.data + other)
        return self.__class__(self.data + str(other))
    def __radd__(self, other):
        if isinstance(other, str):
            return self.__class__(other + self.data)
        return self.__class__(str(other) + self.data)
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __mod__(self, args):
        return self.__class__(self.data % args)

    # the following methods are defined in alphabetical order:
    def capitalize(self): return self.__class__(self.data.capitalize())
    def center(self, width, *args):
        return self.__class__(self.data.center(width, *args))
    def count(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.count(sub, start, end)
    def encode(self, encoding=None, errors=None): # XXX improve this?
        if encoding:
            if errors:
                return self.__class__(self.data.encode(encoding, errors))
            return self.__class__(self.data.encode(encoding))
        return self.__class__(self.data.encode())
    def endswith(self, suffix, start=0, end=_sys.maxsize):
        return self.data.endswith(suffix, start, end)
    def expandtabs(self, tabsize=8):
        return self.__class__(self.data.expandtabs(tabsize))
    def find(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.find(sub, start, end)
    def format(self, *args, **kwds):
        return self.data.format(*args, **kwds)
    def index(self, sub, start=0, end=_sys.maxsize):
        return self.data.index(sub, start, end)
    def isalpha(self): return self.data.isalpha()
    def isalnum(self): return self.data.isalnum()
    def isdecimal(self): return self.data.isdecimal()
    def isdigit(self): return self.data.isdigit()
    def isidentifier(self): return self.data.isidentifier()
    def islower(self): return self.data.islower()
    def isnumeric(self): return self.data.isnumeric()
    def isspace(self): return self.data.isspace()
    def istitle(self): return self.data.istitle()
    def isupper(self): return self.data.isupper()
    def join(self, seq): return self.data.join(seq)
    def ljust(self, width, *args):
        return self.__class__(self.data.ljust(width, *args))
    def lower(self): return self.__class__(self.data.lower())
    def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
    def partition(self, sep):
        return self.data.partition(sep)
    def replace(self, old, new, maxsplit=-1):
        if isinstance(old, UserString):
            old = old.data
        if isinstance(new, UserString):
            new = new.data
        return self.__class__(self.data.replace(old, new, maxsplit))
    def rfind(self, sub, start=0, end=_sys.maxsize):
        return self.data.rfind(sub, start, end)
    def rindex(self, sub, start=0, end=_sys.maxsize):
        return self.data.rindex(sub, start, end)
    def rjust(self, width, *args):
        return self.__class__(self.data.rjust(width, *args))
    def rpartition(self, sep):
        return self.data.rpartition(sep)
    def rstrip(self, chars=None):
        return self.__class__(self.data.rstrip(chars))
    def split(self, sep=None, maxsplit=-1):
        return self.data.split(sep, maxsplit)
    def rsplit(self, sep=None, maxsplit=-1):
        return self.data.rsplit(sep, maxsplit)
    def splitlines(self, keepends=0): return self.data.splitlines(keepends)
    def startswith(self, prefix, start=0, end=_sys.maxsize):
        return self.data.startswith(prefix, start, end)
    def strip(self, chars=None): return self.__class__(self.data.strip(chars))
    def swapcase(self): return self.__class__(self.data.swapcase())
    def title(self): return self.__class__(self.data.title())
    def translate(self, *args):
        return self.__class__(self.data.translate(*args))
    def upper(self): return self.__class__(self.data.upper())
    def zfill(self, width): return self.__class__(self.data.zfill(width))



################################################################################
### Simple tests
################################################################################

if __name__ == '__main__':
    # verify that instances can be pickled
    from pickle import loads, dumps
    Point = namedtuple('Point', 'x, y', True)
    p = Point(x=10, y=20)
    assert p == loads(dumps(p))

    # test and demonstrate ability to override methods
    class Point(namedtuple('Point', 'x y')):
        __slots__ = ()
        @property
        def hypot(self):
            return (self.x ** 2 + self.y ** 2) ** 0.5
        def __str__(self):
            return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    for p in Point(3, 4), Point(14, 5/7.):
        print (p)

    class Point(namedtuple('Point', 'x y')):
        'Point class with optimized _make() and _replace() without error-checking'
        __slots__ = ()
        _make = classmethod(tuple.__new__)
        def _replace(self, _map=map, **kwds):
            return self._make(_map(kwds.get, ('x', 'y'), self))

    print(Point(11, 22)._replace(x=100))

    Point3D = namedtuple('Point3D', Point._fields + ('z',))
    print(Point3D.__doc__)

    import doctest
    TestResults = namedtuple('TestResults', 'failed attempted')
    print(TestResults(*doctest.testmod()))