summaryrefslogtreecommitdiffstats
path: root/Lib/compiler/pyassem.py
blob: 26b900135c490f807fcb732be3a9b41c6074848b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
"""A flow graph representation for Python bytecode"""

import dis
import new
import string
import sys
import types

from compiler import misc
from compiler.consts import CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, \
     CO_VARKEYWORDS

def xxx_sort(l):
    l = l[:]
    def sorter(a, b):
        return cmp(a.bid, b.bid)
    l.sort(sorter)
    return l

class FlowGraph:
    def __init__(self):
        self.current = self.entry = Block()
        self.exit = Block("exit")
        self.blocks = misc.Set()
        self.blocks.add(self.entry)
        self.blocks.add(self.exit)

    def startBlock(self, block):
        if self._debug:
            if self.current:
                print "end", repr(self.current)
                print "    next", self.current.next
                print "   ", self.current.get_children()
            print repr(block)
        self.current = block

    def nextBlock(self, block=None):
        # XXX think we need to specify when there is implicit transfer
        # from one block to the next.  might be better to represent this
        # with explicit JUMP_ABSOLUTE instructions that are optimized
        # out when they are unnecessary.
        #
        # I think this strategy works: each block has a child
        # designated as "next" which is returned as the last of the
        # children.  because the nodes in a graph are emitted in
        # reverse post order, the "next" block will always be emitted
        # immediately after its parent.
        # Worry: maintaining this invariant could be tricky
        if block is None:
            block = self.newBlock()

        # Note: If the current block ends with an unconditional
        # control transfer, then it is incorrect to add an implicit
        # transfer to the block graph.  The current code requires
        # these edges to get the blocks emitted in the right order,
        # however. :-(  If a client needs to remove these edges, call
        # pruneEdges().

        self.current.addNext(block)
        self.startBlock(block)

    def newBlock(self):
        b = Block()
        self.blocks.add(b)
        return b

    def startExitBlock(self):
        self.startBlock(self.exit)

    _debug = 0

    def _enable_debug(self):
        self._debug = 1

    def _disable_debug(self):
        self._debug = 0

    def emit(self, *inst):
        if self._debug:
            print "\t", inst
        if inst[0] == 'RETURN_VALUE':
            self.current.addOutEdge(self.exit)
        if len(inst) == 2 and isinstance(inst[1], Block):
            self.current.addOutEdge(inst[1])
        self.current.emit(inst)

    def getBlocksInOrder(self):
        """Return the blocks in reverse postorder

        i.e. each node appears before all of its successors
        """
        # XXX make sure every node that doesn't have an explicit next
        # is set so that next points to exit
        for b in self.blocks.elements():
            if b is self.exit:
                continue
            if not b.next:
                b.addNext(self.exit)
        order = dfs_postorder(self.entry, {})
        order.reverse()
        self.fixupOrder(order, self.exit)
        # hack alert
        if not self.exit in order:
            order.append(self.exit)

        return order

    def fixupOrder(self, blocks, default_next):
        """Fixup bad order introduced by DFS."""

        # XXX This is a total mess.  There must be a better way to get
        # the code blocks in the right order.

        self.fixupOrderHonorNext(blocks, default_next)
        self.fixupOrderForward(blocks, default_next)

    def fixupOrderHonorNext(self, blocks, default_next):
        """Fix one problem with DFS.

        The DFS uses child block, but doesn't know about the special
        "next" block.  As a result, the DFS can order blocks so that a
        block isn't next to the right block for implicit control
        transfers.
        """
        index = {}
        for i in range(len(blocks)):
            index[blocks[i]] = i

        for i in range(0, len(blocks) - 1):
            b = blocks[i]
            n = blocks[i + 1]
            if not b.next or b.next[0] == default_next or b.next[0] == n:
                continue
            # The blocks are in the wrong order.  Find the chain of
            # blocks to insert where they belong.
            cur = b
            chain = []
            elt = cur
            while elt.next and elt.next[0] != default_next:
                chain.append(elt.next[0])
                elt = elt.next[0]
            # Now remove the blocks in the chain from the current
            # block list, so that they can be re-inserted.
            l = []
            for b in chain:
                assert index[b] > i
                l.append((index[b], b))
            l.sort()
            l.reverse()
            for j, b in l:
                del blocks[index[b]]
            # Insert the chain in the proper location
            blocks[i:i + 1] = [cur] + chain
            # Finally, re-compute the block indexes
            for i in range(len(blocks)):
                index[blocks[i]] = i

    def fixupOrderForward(self, blocks, default_next):
        """Make sure all JUMP_FORWARDs jump forward"""
        index = {}
        chains = []
        cur = []
        for b in blocks:
            index[b] = len(chains)
            cur.append(b)
            if b.next and b.next[0] == default_next:
                chains.append(cur)
                cur = []
        chains.append(cur)

        while 1:
            constraints = []

            for i in range(len(chains)):
                l = chains[i]
                for b in l:
                    for c in b.get_children():
                        if index[c] < i:
                            forward_p = 0
                            for inst in b.insts:
                                if inst[0] == 'JUMP_FORWARD':
                                    if inst[1] == c:
                                        forward_p = 1
                            if not forward_p:
                                continue
                            constraints.append((index[c], i))

            if not constraints:
                break

            # XXX just do one for now
            # do swaps to get things in the right order
            goes_before, a_chain = constraints[0]
            assert a_chain > goes_before
            c = chains[a_chain]
            chains.remove(c)
            chains.insert(goes_before, c)

        del blocks[:]
        for c in chains:
            for b in c:
                blocks.append(b)

    def getBlocks(self):
        return self.blocks.elements()

    def getRoot(self):
        """Return nodes appropriate for use with dominator"""
        return self.entry

    def getContainedGraphs(self):
        l = []
        for b in self.getBlocks():
            l.extend(b.getContainedGraphs())
        return l

def dfs_postorder(b, seen):
    """Depth-first search of tree rooted at b, return in postorder"""
    order = []
    seen[b] = b
    for c in b.get_children():
        if seen.has_key(c):
            continue
        order = order + dfs_postorder(c, seen)
    order.append(b)
    return order

class Block:
    _count = 0

    def __init__(self, label=''):
        self.insts = []
        self.inEdges = misc.Set()
        self.outEdges = misc.Set()
        self.label = label
        self.bid = Block._count
        self.next = []
        Block._count = Block._count + 1

    def __repr__(self):
        if self.label:
            return "<block %s id=%d>" % (self.label, self.bid)
        else:
            return "<block id=%d>" % (self.bid)

    def __str__(self):
        insts = map(str, self.insts)
        return "<block %s %d:\n%s>" % (self.label, self.bid,
                                       string.join(insts, '\n'))

    def emit(self, inst):
        op = inst[0]
        if op[:4] == 'JUMP':
            self.outEdges.add(inst[1])
        self.insts.append(inst)

    def getInstructions(self):
        return self.insts

    def addInEdge(self, block):
        self.inEdges.add(block)

    def addOutEdge(self, block):
        self.outEdges.add(block)

    def addNext(self, block):
        self.next.append(block)
        assert len(self.next) == 1, map(str, self.next)

    _uncond_transfer = ('RETURN_VALUE', 'RAISE_VARARGS',
                        'JUMP_ABSOLUTE', 'JUMP_FORWARD', 'CONTINUE_LOOP')

    def pruneNext(self):
        """Remove bogus edge for unconditional transfers

        Each block has a next edge that accounts for implicit control
        transfers, e.g. from a JUMP_IF_FALSE to the block that will be
        executed if the test is true.

        These edges must remain for the current assembler code to
        work. If they are removed, the dfs_postorder gets things in
        weird orders.  However, they shouldn't be there for other
        purposes, e.g. conversion to SSA form.  This method will
        remove the next edge when it follows an unconditional control
        transfer.
        """
        try:
            op, arg = self.insts[-1]
        except (IndexError, ValueError):
            return
        if op in self._uncond_transfer:
            self.next = []

    def get_children(self):
        if self.next and self.next[0] in self.outEdges:
            self.outEdges.remove(self.next[0])
        return self.outEdges.elements() + self.next

    def getContainedGraphs(self):
        """Return all graphs contained within this block.

        For example, a MAKE_FUNCTION block will contain a reference to
        the graph for the function body.
        """
        contained = []
        for inst in self.insts:
            if len(inst) == 1:
                continue
            op = inst[1]
            if hasattr(op, 'graph'):
                contained.append(op.graph)
        return contained

# flags for code objects

# the FlowGraph is transformed in place; it exists in one of these states
RAW = "RAW"
FLAT = "FLAT"
CONV = "CONV"
DONE = "DONE"

class PyFlowGraph(FlowGraph):
    super_init = FlowGraph.__init__

    def __init__(self, name, filename, args=(), optimized=0, klass=None):
        self.super_init()
        self.name = name
        self.filename = filename
        self.docstring = None
        self.args = args # XXX
        self.argcount = getArgCount(args)
        self.klass = klass
        if optimized:
            self.flags = CO_OPTIMIZED | CO_NEWLOCALS
        else:
            self.flags = 0
        self.consts = []
        self.names = []
        # Free variables found by the symbol table scan, including
        # variables used only in nested scopes, are included here.
        self.freevars = []
        self.cellvars = []
        # The closure list is used to track the order of cell
        # variables and free variables in the resulting code object.
        # The offsets used by LOAD_CLOSURE/LOAD_DEREF refer to both
        # kinds of variables.
        self.closure = []
        self.varnames = list(args) or []
        for i in range(len(self.varnames)):
            var = self.varnames[i]
            if isinstance(var, TupleArg):
                self.varnames[i] = var.getName()
        self.stage = RAW

    def setDocstring(self, doc):
        self.docstring = doc

    def setFlag(self, flag):
        self.flags = self.flags | flag
        if flag == CO_VARARGS:
            self.argcount = self.argcount - 1

    def checkFlag(self, flag):
        if self.flags & flag:
            return 1

    def setFreeVars(self, names):
        self.freevars = list(names)

    def setCellVars(self, names):
        self.cellvars = names

    def getCode(self):
        """Get a Python code object"""
        if self.stage == RAW:
            self.computeStackDepth()
            self.flattenGraph()
        if self.stage == FLAT:
            self.convertArgs()
        if self.stage == CONV:
            self.makeByteCode()
        if self.stage == DONE:
            return self.newCodeObject()
        raise RuntimeError, "inconsistent PyFlowGraph state"

    def dump(self, io=None):
        if io:
            save = sys.stdout
            sys.stdout = io
        pc = 0
        for t in self.insts:
            opname = t[0]
            if opname == "SET_LINENO":
                print
            if len(t) == 1:
                print "\t", "%3d" % pc, opname
                pc = pc + 1
            else:
                print "\t", "%3d" % pc, opname, t[1]
                pc = pc + 3
        if io:
            sys.stdout = save

    def computeStackDepth(self):
        """Compute the max stack depth.

        Approach is to compute the stack effect of each basic block.
        Then find the path through the code with the largest total
        effect.
        """
        depth = {}
        exit = None
        for b in self.getBlocks():
            depth[b] = findDepth(b.getInstructions())

        seen = {}

        def max_depth(b, d):
            if seen.has_key(b):
                return d
            seen[b] = 1
            d = d + depth[b]
            children = b.get_children()
            if children:
                return max([max_depth(c, d) for c in children])
            else:
                if not b.label == "exit":
                    return max_depth(self.exit, d)
                else:
                    return d

        self.stacksize = max_depth(self.entry, 0)

    def flattenGraph(self):
        """Arrange the blocks in order and resolve jumps"""
        assert self.stage == RAW
        self.insts = insts = []
        pc = 0
        begin = {}
        end = {}
        for b in self.getBlocksInOrder():
            begin[b] = pc
            for inst in b.getInstructions():
                insts.append(inst)
                if len(inst) == 1:
                    pc = pc + 1
                else:
                    # arg takes 2 bytes
                    pc = pc + 3
            end[b] = pc
        pc = 0
        for i in range(len(insts)):
            inst = insts[i]
            if len(inst) == 1:
                pc = pc + 1
            else:
                pc = pc + 3
            opname = inst[0]
            if self.hasjrel.has_elt(opname):
                oparg = inst[1]
                offset = begin[oparg] - pc
                insts[i] = opname, offset
            elif self.hasjabs.has_elt(opname):
                insts[i] = opname, begin[inst[1]]
        self.stage = FLAT

    hasjrel = misc.Set()
    for i in dis.hasjrel:
        hasjrel.add(dis.opname[i])
    hasjabs = misc.Set()
    for i in dis.hasjabs:
        hasjabs.add(dis.opname[i])

    def convertArgs(self):
        """Convert arguments from symbolic to concrete form"""
        assert self.stage == FLAT
        self.consts.insert(0, self.docstring)
        self.sort_cellvars()
        for i in range(len(self.insts)):
            t = self.insts[i]
            if len(t) == 2:
                opname, oparg = t
                conv = self._converters.get(opname, None)
                if conv:
                    self.insts[i] = opname, conv(self, oparg)
        self.stage = CONV

    def sort_cellvars(self):
        """Sort cellvars in the order of varnames and prune from freevars.
        """
        cells = {}
        for name in self.cellvars:
            cells[name] = 1
        self.cellvars = [name for name in self.varnames
                         if cells.has_key(name)]
        for name in self.cellvars:
            del cells[name]
        self.cellvars = self.cellvars + cells.keys()
        self.closure = self.cellvars + self.freevars

    def _lookupName(self, name, list):
        """Return index of name in list, appending if necessary

        This routine uses a list instead of a dictionary, because a
        dictionary can't store two different keys if the keys have the
        same value but different types, e.g. 2 and 2L.  The compiler
        must treat these two separately, so it does an explicit type
        comparison before comparing the values.
        """
        t = type(name)
        for i in range(len(list)):
            if t == type(list[i]) and list[i] == name:
                return i
        end = len(list)
        list.append(name)
        return end

    _converters = {}
    def _convert_LOAD_CONST(self, arg):
        if hasattr(arg, 'getCode'):
            arg = arg.getCode()
        return self._lookupName(arg, self.consts)

    def _convert_LOAD_FAST(self, arg):
        self._lookupName(arg, self.names)
        return self._lookupName(arg, self.varnames)
    _convert_STORE_FAST = _convert_LOAD_FAST
    _convert_DELETE_FAST = _convert_LOAD_FAST

    def _convert_LOAD_NAME(self, arg):
        if self.klass is None:
            self._lookupName(arg, self.varnames)
        return self._lookupName(arg, self.names)

    def _convert_NAME(self, arg):
        if self.klass is None:
            self._lookupName(arg, self.varnames)
        return self._lookupName(arg, self.names)
    _convert_STORE_NAME = _convert_NAME
    _convert_DELETE_NAME = _convert_NAME
    _convert_IMPORT_NAME = _convert_NAME
    _convert_IMPORT_FROM = _convert_NAME
    _convert_STORE_ATTR = _convert_NAME
    _convert_LOAD_ATTR = _convert_NAME
    _convert_DELETE_ATTR = _convert_NAME
    _convert_LOAD_GLOBAL = _convert_NAME
    _convert_STORE_GLOBAL = _convert_NAME
    _convert_DELETE_GLOBAL = _convert_NAME

    def _convert_DEREF(self, arg):
        self._lookupName(arg, self.names)
        self._lookupName(arg, self.varnames)
        return self._lookupName(arg, self.closure)
    _convert_LOAD_DEREF = _convert_DEREF
    _convert_STORE_DEREF = _convert_DEREF

    def _convert_LOAD_CLOSURE(self, arg):
        self._lookupName(arg, self.varnames)
        return self._lookupName(arg, self.closure)

    _cmp = list(dis.cmp_op)
    def _convert_COMPARE_OP(self, arg):
        return self._cmp.index(arg)

    # similarly for other opcodes...

    for name, obj in locals().items():
        if name[:9] == "_convert_":
            opname = name[9:]
            _converters[opname] = obj
    del name, obj, opname

    def makeByteCode(self):
        assert self.stage == CONV
        self.lnotab = lnotab = LineAddrTable()
        for t in self.insts:
            opname = t[0]
            if len(t) == 1:
                lnotab.addCode(self.opnum[opname])
            else:
                oparg = t[1]
                if opname == "SET_LINENO":
                    lnotab.nextLine(oparg)
                hi, lo = twobyte(oparg)
                try:
                    lnotab.addCode(self.opnum[opname], lo, hi)
                except ValueError:
                    print opname, oparg
                    print self.opnum[opname], lo, hi
                    raise
        self.stage = DONE

    opnum = {}
    for num in range(len(dis.opname)):
        opnum[dis.opname[num]] = num
    del num

    def newCodeObject(self):
        assert self.stage == DONE
        if (self.flags & CO_NEWLOCALS) == 0:
            nlocals = 0
        else:
            nlocals = len(self.varnames)
        argcount = self.argcount
        if self.flags & CO_VARKEYWORDS:
            argcount = argcount - 1
        return new.code(argcount, nlocals, self.stacksize, self.flags,
                        self.lnotab.getCode(), self.getConsts(),
                        tuple(self.names), tuple(self.varnames),
                        self.filename, self.name, self.lnotab.firstline,
                        self.lnotab.getTable(), tuple(self.freevars),
                        tuple(self.cellvars))

    def getConsts(self):
        """Return a tuple for the const slot of the code object

        Must convert references to code (MAKE_FUNCTION) to code
        objects recursively.
        """
        l = []
        for elt in self.consts:
            if isinstance(elt, PyFlowGraph):
                elt = elt.getCode()
            l.append(elt)
        return tuple(l)

def isJump(opname):
    if opname[:4] == 'JUMP':
        return 1

class TupleArg:
    """Helper for marking func defs with nested tuples in arglist"""
    def __init__(self, count, names):
        self.count = count
        self.names = names
    def __repr__(self):
        return "TupleArg(%s, %s)" % (self.count, self.names)
    def getName(self):
        return ".%d" % self.count

def getArgCount(args):
    argcount = len(args)
    if args:
        for arg in args:
            if isinstance(arg, TupleArg):
                numNames = len(misc.flatten(arg.names))
                argcount = argcount - numNames
    return argcount

def twobyte(val):
    """Convert an int argument into high and low bytes"""
    assert type(val) == types.IntType
    return divmod(val, 256)

class LineAddrTable:
    """lnotab

    This class builds the lnotab, which is documented in compile.c.
    Here's a brief recap:

    For each SET_LINENO instruction after the first one, two bytes are
    added to lnotab.  (In some cases, multiple two-byte entries are
    added.)  The first byte is the distance in bytes between the
    instruction for the last SET_LINENO and the current SET_LINENO.
    The second byte is offset in line numbers.  If either offset is
    greater than 255, multiple two-byte entries are added -- see
    compile.c for the delicate details.
    """

    def __init__(self):
        self.code = []
        self.codeOffset = 0
        self.firstline = 0
        self.lastline = 0
        self.lastoff = 0
        self.lnotab = []

    def addCode(self, *args):
        for arg in args:
            self.code.append(chr(arg))
        self.codeOffset = self.codeOffset + len(args)

    def nextLine(self, lineno):
        if self.firstline == 0:
            self.firstline = lineno
            self.lastline = lineno
        else:
            # compute deltas
            addr = self.codeOffset - self.lastoff
            line = lineno - self.lastline
            # Python assumes that lineno always increases with
            # increasing bytecode address (lnotab is unsigned char).
            # Depending on when SET_LINENO instructions are emitted
            # this is not always true.  Consider the code:
            #     a = (1,
            #          b)
            # In the bytecode stream, the assignment to "a" occurs
            # after the loading of "b".  This works with the C Python
            # compiler because it only generates a SET_LINENO instruction
            # for the assignment.
            if line > 0:
                push = self.lnotab.append
                while addr > 255:
                    push(255); push(0)
                    addr -= 255
                while line > 255:
                    push(addr); push(255)
                    line -= 255
                    addr = 0
                if addr > 0 or line > 0:
                    push(addr); push(line)
                self.lastline = lineno
                self.lastoff = self.codeOffset

    def getCode(self):
        return string.join(self.code, '')

    def getTable(self):
        return string.join(map(chr, self.lnotab), '')

class StackDepthTracker:
    # XXX 1. need to keep track of stack depth on jumps
    # XXX 2. at least partly as a result, this code is broken

    def findDepth(self, insts, debug=0):
        depth = 0
        maxDepth = 0
        for i in insts:
            opname = i[0]
            if debug:
                print i,
            delta = self.effect.get(opname, None)
            if delta is not None:
                depth = depth + delta
            else:
                # now check patterns
                for pat, pat_delta in self.patterns:
                    if opname[:len(pat)] == pat:
                        delta = pat_delta
                        depth = depth + delta
                        break
                # if we still haven't found a match
                if delta is None:
                    meth = getattr(self, opname, None)
                    if meth is not None:
                        depth = depth + meth(i[1])
            if depth > maxDepth:
                maxDepth = depth
            if debug:
                print depth, maxDepth
        return maxDepth

    effect = {
        'POP_TOP': -1,
        'DUP_TOP': 1,
        'SLICE+1': -1,
        'SLICE+2': -1,
        'SLICE+3': -2,
        'STORE_SLICE+0': -1,
        'STORE_SLICE+1': -2,
        'STORE_SLICE+2': -2,
        'STORE_SLICE+3': -3,
        'DELETE_SLICE+0': -1,
        'DELETE_SLICE+1': -2,
        'DELETE_SLICE+2': -2,
        'DELETE_SLICE+3': -3,
        'STORE_SUBSCR': -3,
        'DELETE_SUBSCR': -2,
        # PRINT_EXPR?
        'PRINT_ITEM': -1,
        'RETURN_VALUE': -1,
        'EXEC_STMT': -3,
        'BUILD_CLASS': -2,
        'STORE_NAME': -1,
        'STORE_ATTR': -2,
        'DELETE_ATTR': -1,
        'STORE_GLOBAL': -1,
        'BUILD_MAP': 1,
        'COMPARE_OP': -1,
        'STORE_FAST': -1,
        'IMPORT_STAR': -1,
        'IMPORT_NAME': 0,
        'IMPORT_FROM': 1,
        'LOAD_ATTR': 0, # unlike other loads
        # close enough...
        'SETUP_EXCEPT': 3,
        'SETUP_FINALLY': 3,
        'FOR_ITER': 1,
        }
    # use pattern match
    patterns = [
        ('BINARY_', -1),
        ('LOAD_', 1),
        ]

    def UNPACK_SEQUENCE(self, count):
        return count-1
    def BUILD_TUPLE(self, count):
        return -count+1
    def BUILD_LIST(self, count):
        return -count+1
    def CALL_FUNCTION(self, argc):
        hi, lo = divmod(argc, 256)
        return -(lo + hi * 2)
    def CALL_FUNCTION_VAR(self, argc):
        return self.CALL_FUNCTION(argc)-1
    def CALL_FUNCTION_KW(self, argc):
        return self.CALL_FUNCTION(argc)-1
    def CALL_FUNCTION_VAR_KW(self, argc):
        return self.CALL_FUNCTION(argc)-2
    def MAKE_FUNCTION(self, argc):
        return -argc
    def MAKE_CLOSURE(self, argc):
        # XXX need to account for free variables too!
        return -argc
    def BUILD_SLICE(self, argc):
        if argc == 2:
            return -1
        elif argc == 3:
            return -2
    def DUP_TOPX(self, argc):
        return argc

findDepth = StackDepthTracker().findDepth