1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
"""Assembler for Python bytecode
The new module is used to create the code object. The following
attribute definitions are included from the reference manual:
co_name gives the function name
co_argcount is the number of positional arguments (including
arguments with default values)
co_nlocals is the number of local variables used by the function
(including arguments)
co_varnames is a tuple containing the names of the local variables
(starting with the argument names)
co_code is a string representing the sequence of bytecode instructions
co_consts is a tuple containing the literals used by the bytecode
co_names is a tuple containing the names used by the bytecode
co_filename is the filename from which the code was compiled
co_firstlineno is the first line number of the function
co_lnotab is a string encoding the mapping from byte code offsets
to line numbers. see LineAddrTable below.
co_stacksize is the required stack size (including local variables)
co_flags is an integer encoding a number of flags for the
interpreter. There are four flags:
CO_OPTIMIZED -- uses load fast
CO_NEWLOCALS -- everything?
CO_VARARGS -- use *args
CO_VARKEYWORDS -- uses **args
If a code object represents a function, the first item in co_consts is
the documentation string of the function, or None if undefined.
"""
import sys
import dis
import new
import string
import misc
# flags for code objects
CO_OPTIMIZED = 0x0001
CO_NEWLOCALS = 0x0002
CO_VARARGS = 0x0004
CO_VARKEYWORDS = 0x0008
class TupleArg:
def __init__(self, count, names):
self.count = count
self.names = names
def __repr__(self):
return "TupleArg(%s, %s)" % (self.count, self.names)
def getName(self):
return ".nested%d" % self.count
class PyAssembler:
"""Creates Python code objects
"""
# XXX this class needs to major refactoring
def __init__(self, args=(), name='?', filename='<?>',
docstring=None):
# XXX why is the default value for flags 3?
self.insts = []
# used by makeCodeObject
self._getArgCount(args)
self.code = ''
self.consts = [docstring]
self.filename = filename
self.flags = CO_NEWLOCALS
self.name = name
self.names = []
self.varnames = list(args) or []
for i in range(len(self.varnames)):
var = self.varnames[i]
if isinstance(var, TupleArg):
self.varnames[i] = var.getName()
# lnotab support
self.firstlineno = 0
self.lastlineno = 0
self.last_addr = 0
self.lnotab = ''
def _getArgCount(self, args):
self.argcount = len(args)
if args:
for arg in args:
if isinstance(arg, TupleArg):
numNames = len(misc.flatten(arg.names))
self.argcount = self.argcount - numNames
def __repr__(self):
return "<bytecode: %d instrs>" % len(self.insts)
def setFlags(self, val):
"""XXX for module's function"""
self.flags = val
def setOptimized(self):
self.flags = self.flags | CO_OPTIMIZED
def setVarArgs(self):
if not self.flags & CO_VARARGS:
self.flags = self.flags | CO_VARARGS
self.argcount = self.argcount - 1
def setKWArgs(self):
self.flags = self.flags | CO_VARKEYWORDS
def getCurInst(self):
return len(self.insts)
def getNextInst(self):
return len(self.insts) + 1
def dump(self, io=sys.stdout):
i = 0
for inst in self.insts:
if inst[0] == 'SET_LINENO':
io.write("\n")
io.write(" %3d " % i)
if len(inst) == 1:
io.write("%s\n" % inst)
else:
io.write("%-15.15s\t%s\n" % inst)
i = i + 1
def makeCodeObject(self):
"""Make a Python code object
This creates a Python code object using the new module. This
seems simpler than reverse-engineering the way marshal dumps
code objects into .pyc files. One of the key difficulties is
figuring out how to layout references to code objects that
appear on the VM stack; e.g.
3 SET_LINENO 1
6 LOAD_CONST 0 (<code object fact at 8115878 [...]
9 MAKE_FUNCTION 0
12 STORE_NAME 0 (fact)
"""
self._findOffsets()
lnotab = LineAddrTable()
for t in self.insts:
opname = t[0]
if len(t) == 1:
lnotab.addCode(self.opnum[opname])
elif len(t) == 2:
if opname == 'SET_LINENO':
oparg = t[1]
lnotab.nextLine(oparg)
else:
oparg = self._convertArg(opname, t[1])
try:
hi, lo = divmod(oparg, 256)
except TypeError:
raise TypeError, "untranslated arg: %s, %s" % (opname, oparg)
lnotab.addCode(self.opnum[opname], lo, hi)
# why is a module a special case?
if self.flags == 0:
nlocals = 0
else:
nlocals = len(self.varnames)
# XXX danger! can't pass through here twice
if self.flags & CO_VARKEYWORDS:
self.argcount = self.argcount - 1
stacksize = findDepth(self.insts)
try:
co = new.code(self.argcount, nlocals, stacksize,
self.flags, lnotab.getCode(), self._getConsts(),
tuple(self.names), tuple(self.varnames),
self.filename, self.name, self.firstlineno,
lnotab.getTable())
except SystemError, err:
print err
print repr(self.argcount)
print repr(nlocals)
print repr(stacksize)
print repr(self.flags)
print repr(lnotab.getCode())
print repr(self._getConsts())
print repr(self.names)
print repr(self.varnames)
print repr(self.filename)
print repr(self.name)
print repr(self.firstlineno)
print repr(lnotab.getTable())
raise
return co
def _getConsts(self):
"""Return a tuple for the const slot of a code object
Converts PythonVMCode objects to code objects
"""
l = []
for elt in self.consts:
# XXX might be clearer to just as isinstance(CodeGen)
if hasattr(elt, 'asConst'):
l.append(elt.asConst())
else:
l.append(elt)
return tuple(l)
def _findOffsets(self):
"""Find offsets for use in resolving StackRefs"""
self.offsets = []
cur = 0
for t in self.insts:
self.offsets.append(cur)
l = len(t)
if l == 1:
cur = cur + 1
elif l == 2:
cur = cur + 3
arg = t[1]
# XXX this is a total hack: for a reference used
# multiple times, we create a list of offsets and
# expect that we when we pass through the code again
# to actually generate the offsets, we'll pass in the
# same order.
if isinstance(arg, StackRef):
try:
arg.__offset.append(cur)
except AttributeError:
arg.__offset = [cur]
def _convertArg(self, op, arg):
"""Convert the string representation of an arg to a number
The specific handling depends on the opcode.
XXX This first implementation isn't going to be very
efficient.
"""
if op == 'SET_LINENO':
return arg
if op == 'LOAD_CONST':
return self._lookupName(arg, self.consts)
if op in self.localOps:
# make sure it's in self.names, but use the bytecode offset
self._lookupName(arg, self.names)
return self._lookupName(arg, self.varnames)
if op in self.globalOps:
return self._lookupName(arg, self.names)
if op in self.nameOps:
return self._lookupName(arg, self.names)
if op == 'COMPARE_OP':
return self.cmp_op.index(arg)
if self.hasjrel.has_elt(op):
offset = arg.__offset[0]
del arg.__offset[0]
return self.offsets[arg.resolve()] - offset
if self.hasjabs.has_elt(op):
return self.offsets[arg.resolve()]
return arg
nameOps = ('STORE_NAME', 'IMPORT_NAME', 'IMPORT_FROM',
'STORE_ATTR', 'LOAD_ATTR', 'LOAD_NAME', 'DELETE_NAME',
'DELETE_ATTR')
localOps = ('LOAD_FAST', 'STORE_FAST', 'DELETE_FAST')
globalOps = ('LOAD_GLOBAL', 'STORE_GLOBAL', 'DELETE_GLOBAL')
def _lookupName(self, name, list):
"""Return index of name in list, appending if necessary"""
if name in list:
i = list.index(name)
# this is cheap, but incorrect in some cases, e.g 2 vs. 2L
if type(name) == type(list[i]):
return i
for i in range(len(list)):
elt = list[i]
if type(elt) == type(name) and elt == name:
return i
end = len(list)
list.append(name)
return end
# Convert some stuff from the dis module for local use
cmp_op = list(dis.cmp_op)
hasjrel = misc.Set()
for i in dis.hasjrel:
hasjrel.add(dis.opname[i])
hasjabs = misc.Set()
for i in dis.hasjabs:
hasjabs.add(dis.opname[i])
opnum = {}
for num in range(len(dis.opname)):
opnum[dis.opname[num]] = num
# this version of emit + arbitrary hooks might work, but it's damn
# messy.
def emit(self, *args):
self._emitDispatch(args[0], args[1:])
self.insts.append(args)
def _emitDispatch(self, type, args):
for func in self._emit_hooks.get(type, []):
func(self, args)
_emit_hooks = {}
class LineAddrTable:
"""lnotab
This class builds the lnotab, which is undocumented but described
by com_set_lineno in compile.c. Here's an attempt at explanation:
For each SET_LINENO instruction after the first one, two bytes are
added to lnotab. (In some cases, multiple two-byte entries are
added.) The first byte is the distance in bytes between the
instruction for the last SET_LINENO and the current SET_LINENO.
The second byte is offset in line numbers. If either offset is
greater than 255, multiple two-byte entries are added -- one entry
for each factor of 255.
"""
def __init__(self):
self.code = []
self.codeOffset = 0
self.firstline = 0
self.lastline = 0
self.lastoff = 0
self.lnotab = []
def addCode(self, *args):
for arg in args:
self.code.append(chr(arg))
self.codeOffset = self.codeOffset + len(args)
def nextLine(self, lineno):
if self.firstline == 0:
self.firstline = lineno
self.lastline = lineno
else:
# compute deltas
addr = self.codeOffset - self.lastoff
line = lineno - self.lastline
while addr > 0 or line > 0:
# write the values in 1-byte chunks that sum
# to desired value
trunc_addr = addr
trunc_line = line
if trunc_addr > 255:
trunc_addr = 255
if trunc_line > 255:
trunc_line = 255
self.lnotab.append(trunc_addr)
self.lnotab.append(trunc_line)
addr = addr - trunc_addr
line = line - trunc_line
self.lastline = lineno
self.lastoff = self.codeOffset
def getCode(self):
return string.join(self.code, '')
def getTable(self):
return string.join(map(chr, self.lnotab), '')
class StackRef:
"""Manage stack locations for jumps, loops, etc."""
count = 0
def __init__(self, id=None, val=None):
if id is None:
id = StackRef.count
StackRef.count = StackRef.count + 1
self.id = id
self.val = val
def __repr__(self):
if self.val:
return "StackRef(val=%d)" % self.val
else:
return "StackRef(id=%d)" % self.id
def bind(self, inst):
self.val = inst
def resolve(self):
if self.val is None:
print "UNRESOLVE REF", self
return 0
return self.val
class StackDepthTracker:
# XXX need to keep track of stack depth on jumps
def findDepth(self, insts):
depth = 0
maxDepth = 0
for i in insts:
opname = i[0]
delta = self.effect.get(opname, 0)
if delta > 1:
depth = depth + delta
elif delta < 0:
if depth > maxDepth:
maxDepth = depth
depth = depth + delta
else:
if depth > maxDepth:
maxDepth = depth
# now check patterns
for pat, delta in self.patterns:
if opname[:len(pat)] == pat:
depth = depth + delta
break
# if we still haven't found a match
if delta == 0:
meth = getattr(self, opname)
depth = depth + meth(i[1])
if depth < 0:
depth = 0
return maxDepth
effect = {
'POP_TOP': -1,
'DUP_TOP': 1,
'SLICE+1': -1,
'SLICE+2': -1,
'SLICE+3': -2,
'STORE_SLICE+0': -1,
'STORE_SLICE+1': -2,
'STORE_SLICE+2': -2,
'STORE_SLICE+3': -3,
'DELETE_SLICE+0': -1,
'DELETE_SLICE+1': -2,
'DELETE_SLICE+2': -2,
'DELETE_SLICE+3': -3,
'STORE_SUBSCR': -3,
'DELETE_SUBSCR': -2,
# PRINT_EXPR?
'PRINT_ITEM': -1,
'LOAD_LOCALS': 1,
'RETURN_VALUE': -1,
'EXEC_STMT': -2,
'BUILD_CLASS': -2,
'STORE_NAME': -1,
'STORE_ATTR': -2,
'DELETE_ATTR': -1,
'STORE_GLOBAL': -1,
'BUILD_MAP': 1,
'COMPARE_OP': -1,
'STORE_FAST': -1,
}
# use pattern match
patterns = [
('BINARY_', -1),
('LOAD_', 1),
('IMPORT_', 1),
]
# special cases:
# UNPACK_TUPLE, UNPACK_LIST, BUILD_TUPLE,
# BUILD_LIST, CALL_FUNCTION, MAKE_FUNCTION, BUILD_SLICE
def UNPACK_TUPLE(self, count):
return count
def UNPACK_LIST(self, count):
return count
def BUILD_TUPLE(self, count):
return -count
def BUILD_LIST(self, count):
return -count
def CALL_FUNCTION(self, argc):
hi, lo = divmod(argc, 256)
return lo + hi * 2
def MAKE_FUNCTION(self, argc):
return -argc
def BUILD_SLICE(self, argc):
if argc == 2:
return -1
elif argc == 3:
return -2
findDepth = StackDepthTracker().findDepth
|