summaryrefslogtreecommitdiffstats
path: root/Lib/cookielib.py
blob: e8fee0ee6b4671298fcf180ce615f6671b1d052d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
"""HTTP cookie handling for web clients.

This module has (now fairly distant) origins in Gisle Aas' Perl module
HTTP::Cookies, from the libwww-perl library.

Docstrings, comments and debug strings in this code refer to the
attributes of the HTTP cookie system as cookie-attributes, to distinguish
them clearly from Python attributes.

Class diagram (note that BSDDBCookieJar and the MSIE* classes are not
distributed with the Python standard library, but are available from
http://wwwsearch.sf.net/):

                        CookieJar____
                        /     \      \
            FileCookieJar      \      \
             /    |   \         \      \
 MozillaCookieJar | LWPCookieJar \      \
                  |               |      \
                  |   ---MSIEBase |       \
                  |  /      |     |        \
                  | /   MSIEDBCookieJar BSDDBCookieJar
                  |/
               MSIECookieJar

"""

__all__ = ['Cookie', 'CookieJar', 'CookiePolicy', 'DefaultCookiePolicy',
           'FileCookieJar', 'LWPCookieJar', 'LoadError', 'MozillaCookieJar']

import re, urlparse, copy, time, urllib
try:
    import threading as _threading
except ImportError:
    import dummy_threading as _threading
import httplib  # only for the default HTTP port
from calendar import timegm

debug = False   # set to True to enable debugging via the logging module
logger = None

def _debug(*args):
    if not debug:
        return
    global logger
    if not logger:
        import logging
        logger = logging.getLogger("cookielib")
    return logger.debug(*args)


DEFAULT_HTTP_PORT = str(httplib.HTTP_PORT)
MISSING_FILENAME_TEXT = ("a filename was not supplied (nor was the CookieJar "
                         "instance initialised with one)")

def _warn_unhandled_exception():
    # There are a few catch-all except: statements in this module, for
    # catching input that's bad in unexpected ways.  Warn if any
    # exceptions are caught there.
    import warnings, traceback, StringIO
    f = StringIO.StringIO()
    traceback.print_exc(None, f)
    msg = f.getvalue()
    warnings.warn("cookielib bug!\n%s" % msg, stacklevel=2)


# Date/time conversion
# -----------------------------------------------------------------------------

EPOCH_YEAR = 1970
def _timegm(tt):
    year, month, mday, hour, min, sec = tt[:6]
    if ((year >= EPOCH_YEAR) and (1 <= month <= 12) and (1 <= mday <= 31) and
        (0 <= hour <= 24) and (0 <= min <= 59) and (0 <= sec <= 61)):
        return timegm(tt)
    else:
        return None

DAYS = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
MONTHS = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
          "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
MONTHS_LOWER = []
for month in MONTHS: MONTHS_LOWER.append(month.lower())

def time2isoz(t=None):
    """Return a string representing time in seconds since epoch, t.

    If the function is called without an argument, it will use the current
    time.

    The format of the returned string is like "YYYY-MM-DD hh:mm:ssZ",
    representing Universal Time (UTC, aka GMT).  An example of this format is:

    1994-11-24 08:49:37Z

    """
    if t is None: t = time.time()
    year, mon, mday, hour, min, sec = time.gmtime(t)[:6]
    return "%04d-%02d-%02d %02d:%02d:%02dZ" % (
        year, mon, mday, hour, min, sec)

def time2netscape(t=None):
    """Return a string representing time in seconds since epoch, t.

    If the function is called without an argument, it will use the current
    time.

    The format of the returned string is like this:

    Wed, DD-Mon-YYYY HH:MM:SS GMT

    """
    if t is None: t = time.time()
    year, mon, mday, hour, min, sec, wday = time.gmtime(t)[:7]
    return "%s %02d-%s-%04d %02d:%02d:%02d GMT" % (
        DAYS[wday], mday, MONTHS[mon-1], year, hour, min, sec)


UTC_ZONES = {"GMT": None, "UTC": None, "UT": None, "Z": None}

TIMEZONE_RE = re.compile(r"^([-+])?(\d\d?):?(\d\d)?$")
def offset_from_tz_string(tz):
    offset = None
    if tz in UTC_ZONES:
        offset = 0
    else:
        m = TIMEZONE_RE.search(tz)
        if m:
            offset = 3600 * int(m.group(2))
            if m.group(3):
                offset = offset + 60 * int(m.group(3))
            if m.group(1) == '-':
                offset = -offset
    return offset

def _str2time(day, mon, yr, hr, min, sec, tz):
    # translate month name to number
    # month numbers start with 1 (January)
    try:
        mon = MONTHS_LOWER.index(mon.lower())+1
    except ValueError:
        # maybe it's already a number
        try:
            imon = int(mon)
        except ValueError:
            return None
        if 1 <= imon <= 12:
            mon = imon
        else:
            return None

    # make sure clock elements are defined
    if hr is None: hr = 0
    if min is None: min = 0
    if sec is None: sec = 0

    yr = int(yr)
    day = int(day)
    hr = int(hr)
    min = int(min)
    sec = int(sec)

    if yr < 1000:
        # find "obvious" year
        cur_yr = time.localtime(time.time())[0]
        m = cur_yr % 100
        tmp = yr
        yr = yr + cur_yr - m
        m = m - tmp
        if abs(m) > 50:
            if m > 0: yr = yr + 100
            else: yr = yr - 100

    # convert UTC time tuple to seconds since epoch (not timezone-adjusted)
    t = _timegm((yr, mon, day, hr, min, sec, tz))

    if t is not None:
        # adjust time using timezone string, to get absolute time since epoch
        if tz is None:
            tz = "UTC"
        tz = tz.upper()
        offset = offset_from_tz_string(tz)
        if offset is None:
            return None
        t = t - offset

    return t

STRICT_DATE_RE = re.compile(
    r"^[SMTWF][a-z][a-z], (\d\d) ([JFMASOND][a-z][a-z]) "
    "(\d\d\d\d) (\d\d):(\d\d):(\d\d) GMT$")
WEEKDAY_RE = re.compile(
    r"^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*", re.I)
LOOSE_HTTP_DATE_RE = re.compile(
    r"""^
    (\d\d?)            # day
       (?:\s+|[-\/])
    (\w+)              # month
        (?:\s+|[-\/])
    (\d+)              # year
    (?:
          (?:\s+|:)    # separator before clock
       (\d\d?):(\d\d)  # hour:min
       (?::(\d\d))?    # optional seconds
    )?                 # optional clock
       \s*
    ([-+]?\d{2,4}|(?![APap][Mm]\b)[A-Za-z]+)? # timezone
       \s*
    (?:\(\w+\))?       # ASCII representation of timezone in parens.
       \s*$""", re.X)
def http2time(text):
    """Returns time in seconds since epoch of time represented by a string.

    Return value is an integer.

    None is returned if the format of str is unrecognized, the time is outside
    the representable range, or the timezone string is not recognized.  If the
    string contains no timezone, UTC is assumed.

    The timezone in the string may be numerical (like "-0800" or "+0100") or a
    string timezone (like "UTC", "GMT", "BST" or "EST").  Currently, only the
    timezone strings equivalent to UTC (zero offset) are known to the function.

    The function loosely parses the following formats:

    Wed, 09 Feb 1994 22:23:32 GMT       -- HTTP format
    Tuesday, 08-Feb-94 14:15:29 GMT     -- old rfc850 HTTP format
    Tuesday, 08-Feb-1994 14:15:29 GMT   -- broken rfc850 HTTP format
    09 Feb 1994 22:23:32 GMT            -- HTTP format (no weekday)
    08-Feb-94 14:15:29 GMT              -- rfc850 format (no weekday)
    08-Feb-1994 14:15:29 GMT            -- broken rfc850 format (no weekday)

    The parser ignores leading and trailing whitespace.  The time may be
    absent.

    If the year is given with only 2 digits, the function will select the
    century that makes the year closest to the current date.

    """
    # fast exit for strictly conforming string
    m = STRICT_DATE_RE.search(text)
    if m:
        g = m.groups()
        mon = MONTHS_LOWER.index(g[1].lower()) + 1
        tt = (int(g[2]), mon, int(g[0]),
              int(g[3]), int(g[4]), float(g[5]))
        return _timegm(tt)

    # No, we need some messy parsing...

    # clean up
    text = text.lstrip()
    text = WEEKDAY_RE.sub("", text, 1)  # Useless weekday

    # tz is time zone specifier string
    day, mon, yr, hr, min, sec, tz = [None]*7

    # loose regexp parse
    m = LOOSE_HTTP_DATE_RE.search(text)
    if m is not None:
        day, mon, yr, hr, min, sec, tz = m.groups()
    else:
        return None  # bad format

    return _str2time(day, mon, yr, hr, min, sec, tz)

ISO_DATE_RE = re.compile(
    """^
    (\d{4})              # year
       [-\/]?
    (\d\d?)              # numerical month
       [-\/]?
    (\d\d?)              # day
   (?:
         (?:\s+|[-:Tt])  # separator before clock
      (\d\d?):?(\d\d)    # hour:min
      (?::?(\d\d(?:\.\d*)?))?  # optional seconds (and fractional)
   )?                    # optional clock
      \s*
   ([-+]?\d\d?:?(:?\d\d)?
    |Z|z)?               # timezone  (Z is "zero meridian", i.e. GMT)
      \s*$""", re.X)
def iso2time(text):
    """
    As for http2time, but parses the ISO 8601 formats:

    1994-02-03 14:15:29 -0100    -- ISO 8601 format
    1994-02-03 14:15:29          -- zone is optional
    1994-02-03                   -- only date
    1994-02-03T14:15:29          -- Use T as separator
    19940203T141529Z             -- ISO 8601 compact format
    19940203                     -- only date

    """
    # clean up
    text = text.lstrip()

    # tz is time zone specifier string
    day, mon, yr, hr, min, sec, tz = [None]*7

    # loose regexp parse
    m = ISO_DATE_RE.search(text)
    if m is not None:
        # XXX there's an extra bit of the timezone I'm ignoring here: is
        #   this the right thing to do?
        yr, mon, day, hr, min, sec, tz, _ = m.groups()
    else:
        return None  # bad format

    return _str2time(day, mon, yr, hr, min, sec, tz)


# Header parsing
# -----------------------------------------------------------------------------

def unmatched(match):
    """Return unmatched part of re.Match object."""
    start, end = match.span(0)
    return match.string[:start]+match.string[end:]

HEADER_TOKEN_RE =        re.compile(r"^\s*([^=\s;,]+)")
HEADER_QUOTED_VALUE_RE = re.compile(r"^\s*=\s*\"([^\"\\]*(?:\\.[^\"\\]*)*)\"")
HEADER_VALUE_RE =        re.compile(r"^\s*=\s*([^\s;,]*)")
HEADER_ESCAPE_RE = re.compile(r"\\(.)")
def split_header_words(header_values):
    r"""Parse header values into a list of lists containing key,value pairs.

    The function knows how to deal with ",", ";" and "=" as well as quoted
    values after "=".  A list of space separated tokens are parsed as if they
    were separated by ";".

    If the header_values passed as argument contains multiple values, then they
    are treated as if they were a single value separated by comma ",".

    This means that this function is useful for parsing header fields that
    follow this syntax (BNF as from the HTTP/1.1 specification, but we relax
    the requirement for tokens).

      headers           = #header
      header            = (token | parameter) *( [";"] (token | parameter))

      token             = 1*<any CHAR except CTLs or separators>
      separators        = "(" | ")" | "<" | ">" | "@"
                        | "," | ";" | ":" | "\" | <">
                        | "/" | "[" | "]" | "?" | "="
                        | "{" | "}" | SP | HT

      quoted-string     = ( <"> *(qdtext | quoted-pair ) <"> )
      qdtext            = <any TEXT except <">>
      quoted-pair       = "\" CHAR

      parameter         = attribute "=" value
      attribute         = token
      value             = token | quoted-string

    Each header is represented by a list of key/value pairs.  The value for a
    simple token (not part of a parameter) is None.  Syntactically incorrect
    headers will not necessarily be parsed as you would want.

    This is easier to describe with some examples:

    >>> split_header_words(['foo="bar"; port="80,81"; discard, bar=baz'])
    [[('foo', 'bar'), ('port', '80,81'), ('discard', None)], [('bar', 'baz')]]
    >>> split_header_words(['text/html; charset="iso-8859-1"'])
    [[('text/html', None), ('charset', 'iso-8859-1')]]
    >>> split_header_words([r'Basic realm="\"foo\bar\""'])
    [[('Basic', None), ('realm', '"foobar"')]]

    """
    assert not isinstance(header_values, basestring)
    result = []
    for text in header_values:
        orig_text = text
        pairs = []
        while text:
            m = HEADER_TOKEN_RE.search(text)
            if m:
                text = unmatched(m)
                name = m.group(1)
                m = HEADER_QUOTED_VALUE_RE.search(text)
                if m:  # quoted value
                    text = unmatched(m)
                    value = m.group(1)
                    value = HEADER_ESCAPE_RE.sub(r"\1", value)
                else:
                    m = HEADER_VALUE_RE.search(text)
                    if m:  # unquoted value
                        text = unmatched(m)
                        value = m.group(1)
                        value = value.rstrip()
                    else:
                        # no value, a lone token
                        value = None
                pairs.append((name, value))
            elif text.lstrip().startswith(","):
                # concatenated headers, as per RFC 2616 section 4.2
                text = text.lstrip()[1:]
                if pairs: result.append(pairs)
                pairs = []
            else:
                # skip junk
                non_junk, nr_junk_chars = re.subn("^[=\s;]*", "", text)
                assert nr_junk_chars > 0, (
                    "split_header_words bug: '%s', '%s', %s" %
                    (orig_text, text, pairs))
                text = non_junk
        if pairs: result.append(pairs)
    return result

HEADER_JOIN_ESCAPE_RE = re.compile(r"([\"\\])")
def join_header_words(lists):
    """Do the inverse (almost) of the conversion done by split_header_words.

    Takes a list of lists of (key, value) pairs and produces a single header
    value.  Attribute values are quoted if needed.

    >>> join_header_words([[("text/plain", None), ("charset", "iso-8859/1")]])
    'text/plain; charset="iso-8859/1"'
    >>> join_header_words([[("text/plain", None)], [("charset", "iso-8859/1")]])
    'text/plain, charset="iso-8859/1"'

    """
    headers = []
    for pairs in lists:
        attr = []
        for k, v in pairs:
            if v is not None:
                if not re.search(r"^\w+$", v):
                    v = HEADER_JOIN_ESCAPE_RE.sub(r"\\\1", v)  # escape " and \
                    v = '"%s"' % v
                k = "%s=%s" % (k, v)
            attr.append(k)
        if attr: headers.append("; ".join(attr))
    return ", ".join(headers)

def parse_ns_headers(ns_headers):
    """Ad-hoc parser for Netscape protocol cookie-attributes.

    The old Netscape cookie format for Set-Cookie can for instance contain
    an unquoted "," in the expires field, so we have to use this ad-hoc
    parser instead of split_header_words.

    XXX This may not make the best possible effort to parse all the crap
    that Netscape Cookie headers contain.  Ronald Tschalar's HTTPClient
    parser is probably better, so could do worse than following that if
    this ever gives any trouble.

    Currently, this is also used for parsing RFC 2109 cookies.

    """
    known_attrs = ("expires", "domain", "path", "secure",
                   # RFC 2109 attrs (may turn up in Netscape cookies, too)
                   "port", "max-age")

    result = []
    for ns_header in ns_headers:
        pairs = []
        version_set = False
        for ii, param in enumerate(re.split(r";\s*", ns_header)):
            param = param.rstrip()
            if param == "": continue
            if "=" not in param:
                k, v = param, None
            else:
                k, v = re.split(r"\s*=\s*", param, 1)
                k = k.lstrip()
            if ii != 0:
                lc = k.lower()
                if lc in known_attrs:
                    k = lc
                if k == "version":
                    # This is an RFC 2109 cookie.
                    version_set = True
                if k == "expires":
                    # convert expires date to seconds since epoch
                    if v.startswith('"'): v = v[1:]
                    if v.endswith('"'): v = v[:-1]
                    v = http2time(v)  # None if invalid
            pairs.append((k, v))

        if pairs:
            if not version_set:
                pairs.append(("version", "0"))
            result.append(pairs)

    return result


IPV4_RE = re.compile(r"\.\d+$")
def is_HDN(text):
    """Return True if text is a host domain name."""
    # XXX
    # This may well be wrong.  Which RFC is HDN defined in, if any (for
    #  the purposes of RFC 2965)?
    # For the current implementation, what about IPv6?  Remember to look
    #  at other uses of IPV4_RE also, if change this.
    if IPV4_RE.search(text):
        return False
    if text == "":
        return False
    if text[0] == "." or text[-1] == ".":
        return False
    return True

def domain_match(A, B):
    """Return True if domain A domain-matches domain B, according to RFC 2965.

    A and B may be host domain names or IP addresses.

    RFC 2965, section 1:

    Host names can be specified either as an IP address or a HDN string.
    Sometimes we compare one host name with another.  (Such comparisons SHALL
    be case-insensitive.)  Host A's name domain-matches host B's if

         *  their host name strings string-compare equal; or

         * A is a HDN string and has the form NB, where N is a non-empty
            name string, B has the form .B', and B' is a HDN string.  (So,
            x.y.com domain-matches .Y.com but not Y.com.)

    Note that domain-match is not a commutative operation: a.b.c.com
    domain-matches .c.com, but not the reverse.

    """
    # Note that, if A or B are IP addresses, the only relevant part of the
    # definition of the domain-match algorithm is the direct string-compare.
    A = A.lower()
    B = B.lower()
    if A == B:
        return True
    if not is_HDN(A):
        return False
    i = A.rfind(B)
    if i == -1 or i == 0:
        # A does not have form NB, or N is the empty string
        return False
    if not B.startswith("."):
        return False
    if not is_HDN(B[1:]):
        return False
    return True

def liberal_is_HDN(text):
    """Return True if text is a sort-of-like a host domain name.

    For accepting/blocking domains.

    """
    if IPV4_RE.search(text):
        return False
    return True

def user_domain_match(A, B):
    """For blocking/accepting domains.

    A and B may be host domain names or IP addresses.

    """
    A = A.lower()
    B = B.lower()
    if not (liberal_is_HDN(A) and liberal_is_HDN(B)):
        if A == B:
            # equal IP addresses
            return True
        return False
    initial_dot = B.startswith(".")
    if initial_dot and A.endswith(B):
        return True
    if not initial_dot and A == B:
        return True
    return False

cut_port_re = re.compile(r":\d+$")
def request_host(request):
    """Return request-host, as defined by RFC 2965.

    Variation from RFC: returned value is lowercased, for convenient
    comparison.

    """
    url = request.get_full_url()
    host = urlparse.urlparse(url)[1]
    if host == "":
        host = request.get_header("Host", "")

    # remove port, if present
    host = cut_port_re.sub("", host, 1)
    return host.lower()

def eff_request_host(request):
    """Return a tuple (request-host, effective request-host name).

    As defined by RFC 2965, except both are lowercased.

    """
    erhn = req_host = request_host(request)
    if req_host.find(".") == -1 and not IPV4_RE.search(req_host):
        erhn = req_host + ".local"
    return req_host, erhn

def request_path(request):
    """request-URI, as defined by RFC 2965."""
    url = request.get_full_url()
    #scheme, netloc, path, parameters, query, frag = urlparse.urlparse(url)
    #req_path = escape_path("".join(urlparse.urlparse(url)[2:]))
    path, parameters, query, frag = urlparse.urlparse(url)[2:]
    if parameters:
        path = "%s;%s" % (path, parameters)
    path = escape_path(path)
    req_path = urlparse.urlunparse(("", "", path, "", query, frag))
    if not req_path.startswith("/"):
        # fix bad RFC 2396 absoluteURI
        req_path = "/"+req_path
    return req_path

def request_port(request):
    host = request.get_host()
    i = host.find(':')
    if i >= 0:
        port = host[i+1:]
        try:
            int(port)
        except ValueError:
            _debug("nonnumeric port: '%s'", port)
            return None
    else:
        port = DEFAULT_HTTP_PORT
    return port

# Characters in addition to A-Z, a-z, 0-9, '_', '.', and '-' that don't
# need to be escaped to form a valid HTTP URL (RFCs 2396 and 1738).
HTTP_PATH_SAFE = "%/;:@&=+$,!~*'()"
ESCAPED_CHAR_RE = re.compile(r"%([0-9a-fA-F][0-9a-fA-F])")
def uppercase_escaped_char(match):
    return "%%%s" % match.group(1).upper()
def escape_path(path):
    """Escape any invalid characters in HTTP URL, and uppercase all escapes."""
    # There's no knowing what character encoding was used to create URLs
    # containing %-escapes, but since we have to pick one to escape invalid
    # path characters, we pick UTF-8, as recommended in the HTML 4.0
    # specification:
    # http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.1
    # And here, kind of: draft-fielding-uri-rfc2396bis-03
    # (And in draft IRI specification: draft-duerst-iri-05)
    # (And here, for new URI schemes: RFC 2718)
    if isinstance(path, unicode):
        path = path.encode("utf-8")
    path = urllib.quote(path, HTTP_PATH_SAFE)
    path = ESCAPED_CHAR_RE.sub(uppercase_escaped_char, path)
    return path

def reach(h):
    """Return reach of host h, as defined by RFC 2965, section 1.

    The reach R of a host name H is defined as follows:

       *  If

          -  H is the host domain name of a host; and,

          -  H has the form A.B; and

          -  A has no embedded (that is, interior) dots; and

          -  B has at least one embedded dot, or B is the string "local".
             then the reach of H is .B.

       *  Otherwise, the reach of H is H.

    >>> reach("www.acme.com")
    '.acme.com'
    >>> reach("acme.com")
    'acme.com'
    >>> reach("acme.local")
    '.local'

    """
    i = h.find(".")
    if i >= 0:
        #a = h[:i]  # this line is only here to show what a is
        b = h[i+1:]
        i = b.find(".")
        if is_HDN(h) and (i >= 0 or b == "local"):
            return "."+b
    return h

def is_third_party(request):
    """

    RFC 2965, section 3.3.6:

        An unverifiable transaction is to a third-party host if its request-
        host U does not domain-match the reach R of the request-host O in the
        origin transaction.

    """
    req_host = request_host(request)
    if not domain_match(req_host, reach(request.get_origin_req_host())):
        return True
    else:
        return False


class Cookie:
    """HTTP Cookie.

    This class represents both Netscape and RFC 2965 cookies.

    This is deliberately a very simple class.  It just holds attributes.  It's
    possible to construct Cookie instances that don't comply with the cookie
    standards.  CookieJar.make_cookies is the factory function for Cookie
    objects -- it deals with cookie parsing, supplying defaults, and
    normalising to the representation used in this class.  CookiePolicy is
    responsible for checking them to see whether they should be accepted from
    and returned to the server.

    Note that the port may be present in the headers, but unspecified ("Port"
    rather than"Port=80", for example); if this is the case, port is None.

    """

    def __init__(self, version, name, value,
                 port, port_specified,
                 domain, domain_specified, domain_initial_dot,
                 path, path_specified,
                 secure,
                 expires,
                 discard,
                 comment,
                 comment_url,
                 rest,
                 rfc2109=False,
                 ):

        if version is not None: version = int(version)
        if expires is not None: expires = int(expires)
        if port is None and port_specified is True:
            raise ValueError("if port is None, port_specified must be false")

        self.version = version
        self.name = name
        self.value = value
        self.port = port
        self.port_specified = port_specified
        # normalise case, as per RFC 2965 section 3.3.3
        self.domain = domain.lower()
        self.domain_specified = domain_specified
        # Sigh.  We need to know whether the domain given in the
        # cookie-attribute had an initial dot, in order to follow RFC 2965
        # (as clarified in draft errata).  Needed for the returned $Domain
        # value.
        self.domain_initial_dot = domain_initial_dot
        self.path = path
        self.path_specified = path_specified
        self.secure = secure
        self.expires = expires
        self.discard = discard
        self.comment = comment
        self.comment_url = comment_url
        self.rfc2109 = rfc2109

        self._rest = copy.copy(rest)

    def has_nonstandard_attr(self, name):
        return name in self._rest
    def get_nonstandard_attr(self, name, default=None):
        return self._rest.get(name, default)
    def set_nonstandard_attr(self, name, value):
        self._rest[name] = value

    def is_expired(self, now=None):
        if now is None: now = time.time()
        if (self.expires is not None) and (self.expires <= now):
            return True
        return False

    def __str__(self):
        if self.port is None: p = ""
        else: p = ":"+self.port
        limit = self.domain + p + self.path
        if self.value is not None:
            namevalue = "%s=%s" % (self.name, self.value)
        else:
            namevalue = self.name
        return "<Cookie %s for %s>" % (namevalue, limit)

    def __repr__(self):
        args = []
        for name in ("version", "name", "value",
                     "port", "port_specified",
                     "domain", "domain_specified", "domain_initial_dot",
                     "path", "path_specified",
                     "secure", "expires", "discard", "comment", "comment_url",
                     ):
            attr = getattr(self, name)
            args.append("%s=%s" % (name, repr(attr)))
        args.append("rest=%s" % repr(self._rest))
        args.append("rfc2109=%s" % repr(self.rfc2109))
        return "Cookie(%s)" % ", ".join(args)


class CookiePolicy:
    """Defines which cookies get accepted from and returned to server.

    May also modify cookies, though this is probably a bad idea.

    The subclass DefaultCookiePolicy defines the standard rules for Netscape
    and RFC 2965 cookies -- override that if you want a customised policy.

    """
    def set_ok(self, cookie, request):
        """Return true if (and only if) cookie should be accepted from server.

        Currently, pre-expired cookies never get this far -- the CookieJar
        class deletes such cookies itself.

        """
        raise NotImplementedError()

    def return_ok(self, cookie, request):
        """Return true if (and only if) cookie should be returned to server."""
        raise NotImplementedError()

    def domain_return_ok(self, domain, request):
        """Return false if cookies should not be returned, given cookie domain.
        """
        return True

    def path_return_ok(self, path, request):
        """Return false if cookies should not be returned, given cookie path.
        """
        return True


class DefaultCookiePolicy(CookiePolicy):
    """Implements the standard rules for accepting and returning cookies."""

    DomainStrictNoDots = 1
    DomainStrictNonDomain = 2
    DomainRFC2965Match = 4

    DomainLiberal = 0
    DomainStrict = DomainStrictNoDots|DomainStrictNonDomain

    def __init__(self,
                 blocked_domains=None, allowed_domains=None,
                 netscape=True, rfc2965=False,
                 rfc2109_as_netscape=None,
                 hide_cookie2=False,
                 strict_domain=False,
                 strict_rfc2965_unverifiable=True,
                 strict_ns_unverifiable=False,
                 strict_ns_domain=DomainLiberal,
                 strict_ns_set_initial_dollar=False,
                 strict_ns_set_path=False,
                 ):
        """Constructor arguments should be passed as keyword arguments only."""
        self.netscape = netscape
        self.rfc2965 = rfc2965
        self.rfc2109_as_netscape = rfc2109_as_netscape
        self.hide_cookie2 = hide_cookie2
        self.strict_domain = strict_domain
        self.strict_rfc2965_unverifiable = strict_rfc2965_unverifiable
        self.strict_ns_unverifiable = strict_ns_unverifiable
        self.strict_ns_domain = strict_ns_domain
        self.strict_ns_set_initial_dollar = strict_ns_set_initial_dollar
        self.strict_ns_set_path = strict_ns_set_path

        if blocked_domains is not None:
            self._blocked_domains = tuple(blocked_domains)
        else:
            self._blocked_domains = ()

        if allowed_domains is not None:
            allowed_domains = tuple(allowed_domains)
        self._allowed_domains = allowed_domains

    def blocked_domains(self):
        """Return the sequence of blocked domains (as a tuple)."""
        return self._blocked_domains
    def set_blocked_domains(self, blocked_domains):
        """Set the sequence of blocked domains."""
        self._blocked_domains = tuple(blocked_domains)

    def is_blocked(self, domain):
        for blocked_domain in self._blocked_domains:
            if user_domain_match(domain, blocked_domain):
                return True
        return False

    def allowed_domains(self):
        """Return None, or the sequence of allowed domains (as a tuple)."""
        return self._allowed_domains
    def set_allowed_domains(self, allowed_domains):
        """Set the sequence of allowed domains, or None."""
        if allowed_domains is not None:
            allowed_domains = tuple(allowed_domains)
        self._allowed_domains = allowed_domains

    def is_not_allowed(self, domain):
        if self._allowed_domains is None:
            return False
        for allowed_domain in self._allowed_domains:
            if user_domain_match(domain, allowed_domain):
                return False
        return True

    def set_ok(self, cookie, request):
        """
        If you override .set_ok(), be sure to call this method.  If it returns
        false, so should your subclass (assuming your subclass wants to be more
        strict about which cookies to accept).

        """
        _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

        assert cookie.name is not None

        for n in "version", "verifiability", "name", "path", "domain", "port":
            fn_name = "set_ok_"+n
            fn = getattr(self, fn_name)
            if not fn(cookie, request):
                return False

        return True

    def set_ok_version(self, cookie, request):
        if cookie.version is None:
            # Version is always set to 0 by parse_ns_headers if it's a Netscape
            # cookie, so this must be an invalid RFC 2965 cookie.
            _debug("   Set-Cookie2 without version attribute (%s=%s)",
                   cookie.name, cookie.value)
            return False
        if cookie.version > 0 and not self.rfc2965:
            _debug("   RFC 2965 cookies are switched off")
            return False
        elif cookie.version == 0 and not self.netscape:
            _debug("   Netscape cookies are switched off")
            return False
        return True

    def set_ok_verifiability(self, cookie, request):
        if request.is_unverifiable() and is_third_party(request):
            if cookie.version > 0 and self.strict_rfc2965_unverifiable:
                _debug("   third-party RFC 2965 cookie during "
                             "unverifiable transaction")
                return False
            elif cookie.version == 0 and self.strict_ns_unverifiable:
                _debug("   third-party Netscape cookie during "
                             "unverifiable transaction")
                return False
        return True

    def set_ok_name(self, cookie, request):
        # Try and stop servers setting V0 cookies designed to hack other
        # servers that know both V0 and V1 protocols.
        if (cookie.version == 0 and self.strict_ns_set_initial_dollar and
            cookie.name.startswith("$")):
            _debug("   illegal name (starts with '$'): '%s'", cookie.name)
            return False
        return True

    def set_ok_path(self, cookie, request):
        if cookie.path_specified:
            req_path = request_path(request)
            if ((cookie.version > 0 or
                 (cookie.version == 0 and self.strict_ns_set_path)) and
                not req_path.startswith(cookie.path)):
                _debug("   path attribute %s is not a prefix of request "
                       "path %s", cookie.path, req_path)
                return False
        return True

    def set_ok_domain(self, cookie, request):
        if self.is_blocked(cookie.domain):
            _debug("   domain %s is in user block-list", cookie.domain)
            return False
        if self.is_not_allowed(cookie.domain):
            _debug("   domain %s is not in user allow-list", cookie.domain)
            return False
        if cookie.domain_specified:
            req_host, erhn = eff_request_host(request)
            domain = cookie.domain
            if self.strict_domain and (domain.count(".") >= 2):
                # XXX This should probably be compared with the Konqueror
                # (kcookiejar.cpp) and Mozilla implementations, but it's a
                # losing battle.
                i = domain.rfind(".")
                j = domain.rfind(".", 0, i)
                if j == 0:  # domain like .foo.bar
                    tld = domain[i+1:]
                    sld = domain[j+1:i]
                    if sld.lower() in ("co", "ac", "com", "edu", "org", "net",
                       "gov", "mil", "int", "aero", "biz", "cat", "coop",
                       "info", "jobs", "mobi", "museum", "name", "pro",
                       "travel", "eu") and len(tld) == 2:
                        # domain like .co.uk
                        _debug("   country-code second level domain %s", domain)
                        return False
            if domain.startswith("."):
                undotted_domain = domain[1:]
            else:
                undotted_domain = domain
            embedded_dots = (undotted_domain.find(".") >= 0)
            if not embedded_dots and domain != ".local":
                _debug("   non-local domain %s contains no embedded dot",
                       domain)
                return False
            if cookie.version == 0:
                if (not erhn.endswith(domain) and
                    (not erhn.startswith(".") and
                     not ("."+erhn).endswith(domain))):
                    _debug("   effective request-host %s (even with added "
                           "initial dot) does not end end with %s",
                           erhn, domain)
                    return False
            if (cookie.version > 0 or
                (self.strict_ns_domain & self.DomainRFC2965Match)):
                if not domain_match(erhn, domain):
                    _debug("   effective request-host %s does not domain-match "
                           "%s", erhn, domain)
                    return False
            if (cookie.version > 0 or
                (self.strict_ns_domain & self.DomainStrictNoDots)):
                host_prefix = req_host[:-len(domain)]
                if (host_prefix.find(".") >= 0 and
                    not IPV4_RE.search(req_host)):
                    _debug("   host prefix %s for domain %s contains a dot",
                           host_prefix, domain)
                    return False
        return True

    def set_ok_port(self, cookie, request):
        if cookie.port_specified:
            req_port = request_port(request)
            if req_port is None:
                req_port = "80"
            else:
                req_port = str(req_port)
            for p in cookie.port.split(","):
                try:
                    int(p)
                except ValueError:
                    _debug("   bad port %s (not numeric)", p)
                    return False
                if p == req_port:
                    break
            else:
                _debug("   request port (%s) not found in %s",
                       req_port, cookie.port)
                return False
        return True

    def return_ok(self, cookie, request):
        """
        If you override .return_ok(), be sure to call this method.  If it
        returns false, so should your subclass (assuming your subclass wants to
        be more strict about which cookies to return).

        """
        # Path has already been checked by .path_return_ok(), and domain
        # blocking done by .domain_return_ok().
        _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

        for n in "version", "verifiability", "secure", "expires", "port", "domain":
            fn_name = "return_ok_"+n
            fn = getattr(self, fn_name)
            if not fn(cookie, request):
                return False
        return True

    def return_ok_version(self, cookie, request):
        if cookie.version > 0 and not self.rfc2965:
            _debug("   RFC 2965 cookies are switched off")
            return False
        elif cookie.version == 0 and not self.netscape:
            _debug("   Netscape cookies are switched off")
            return False
        return True

    def return_ok_verifiability(self, cookie, request):
        if request.is_unverifiable() and is_third_party(request):
            if cookie.version > 0 and self.strict_rfc2965_unverifiable:
                _debug("   third-party RFC 2965 cookie during unverifiable "
                       "transaction")
                return False
            elif cookie.version == 0 and self.strict_ns_unverifiable:
                _debug("   third-party Netscape cookie during unverifiable "
                       "transaction")
                return False
        return True

    def return_ok_secure(self, cookie, request):
        if cookie.secure and request.get_type() != "https":
            _debug("   secure cookie with non-secure request")
            return False
        return True

    def return_ok_expires(self, cookie, request):
        if cookie.is_expired(self._now):
            _debug("   cookie expired")
            return False
        return True

    def return_ok_port(self, cookie, request):
        if cookie.port:
            req_port = request_port(request)
            if req_port is None:
                req_port = "80"
            for p in cookie.port.split(","):
                if p == req_port:
                    break
            else:
                _debug("   request port %s does not match cookie port %s",
                       req_port, cookie.port)
                return False
        return True

    def return_ok_domain(self, cookie, request):
        req_host, erhn = eff_request_host(request)
        domain = cookie.domain

        # strict check of non-domain cookies: Mozilla does this, MSIE5 doesn't
        if (cookie.version == 0 and
            (self.strict_ns_domain & self.DomainStrictNonDomain) and
            not cookie.domain_specified and domain != erhn):
            _debug("   cookie with unspecified domain does not string-compare "
                   "equal to request domain")
            return False

        if cookie.version > 0 and not domain_match(erhn, domain):
            _debug("   effective request-host name %s does not domain-match "
                   "RFC 2965 cookie domain %s", erhn, domain)
            return False
        if cookie.version == 0 and not ("."+erhn).endswith(domain):
            _debug("   request-host %s does not match Netscape cookie domain "
                   "%s", req_host, domain)
            return False
        return True

    def domain_return_ok(self, domain, request):
        # Liberal check of.  This is here as an optimization to avoid
        # having to load lots of MSIE cookie files unless necessary.
        req_host, erhn = eff_request_host(request)
        if not req_host.startswith("."):
            req_host = "."+req_host
        if not erhn.startswith("."):
            erhn = "."+erhn
        if not (req_host.endswith(domain) or erhn.endswith(domain)):
            #_debug("   request domain %s does not match cookie domain %s",
            #       req_host, domain)
            return False

        if self.is_blocked(domain):
            _debug("   domain %s is in user block-list", domain)
            return False
        if self.is_not_allowed(domain):
            _debug("   domain %s is not in user allow-list", domain)
            return False

        return True

    def path_return_ok(self, path, request):
        _debug("- checking cookie path=%s", path)
        req_path = request_path(request)
        if not req_path.startswith(path):
            _debug("  %s does not path-match %s", req_path, path)
            return False
        return True


def vals_sorted_by_key(adict):
    keys = adict.keys()
    keys.sort()
    return map(adict.get, keys)

def deepvalues(mapping):
    """Iterates over nested mapping, depth-first, in sorted order by key."""
    values = vals_sorted_by_key(mapping)
    for obj in values:
        mapping = False
        try:
            obj.items
        except AttributeError:
            pass
        else:
            mapping = True
            for subobj in deepvalues(obj):
                yield subobj
        if not mapping:
            yield obj


# Used as second parameter to dict.get() method, to distinguish absent
# dict key from one with a None value.
class Absent: pass

class CookieJar:
    """Collection of HTTP cookies.

    You may not need to know about this class: try
    urllib2.build_opener(HTTPCookieProcessor).open(url).

    """

    non_word_re = re.compile(r"\W")
    quote_re = re.compile(r"([\"\\])")
    strict_domain_re = re.compile(r"\.?[^.]*")
    domain_re = re.compile(r"[^.]*")
    dots_re = re.compile(r"^\.+")

    magic_re = r"^\#LWP-Cookies-(\d+\.\d+)"

    def __init__(self, policy=None):
        if policy is None:
            policy = DefaultCookiePolicy()
        self._policy = policy

        self._cookies_lock = _threading.RLock()
        self._cookies = {}

    def set_policy(self, policy):
        self._policy = policy

    def _cookies_for_domain(self, domain, request):
        cookies = []
        if not self._policy.domain_return_ok(domain, request):
            return []
        _debug("Checking %s for cookies to return", domain)
        cookies_by_path = self._cookies[domain]
        for path in cookies_by_path.keys():
            if not self._policy.path_return_ok(path, request):
                continue
            cookies_by_name = cookies_by_path[path]
            for cookie in cookies_by_name.values():
                if not self._policy.return_ok(cookie, request):
                    _debug("   not returning cookie")
                    continue
                _debug("   it's a match")
                cookies.append(cookie)
        return cookies

    def _cookies_for_request(self, request):
        """Return a list of cookies to be returned to server."""
        cookies = []
        for domain in self._cookies.keys():
            cookies.extend(self._cookies_for_domain(domain, request))
        return cookies

    def _cookie_attrs(self, cookies):
        """Return a list of cookie-attributes to be returned to server.

        like ['foo="bar"; $Path="/"', ...]

        The $Version attribute is also added when appropriate (currently only
        once per request).

        """
        # add cookies in order of most specific (ie. longest) path first
        def decreasing_size(a, b): return cmp(len(b.path), len(a.path))
        cookies.sort(decreasing_size)

        version_set = False

        attrs = []
        for cookie in cookies:
            # set version of Cookie header
            # XXX
            # What should it be if multiple matching Set-Cookie headers have
            #  different versions themselves?
            # Answer: there is no answer; was supposed to be settled by
            #  RFC 2965 errata, but that may never appear...
            version = cookie.version
            if not version_set:
                version_set = True
                if version > 0:
                    attrs.append("$Version=%s" % version)

            # quote cookie value if necessary
            # (not for Netscape protocol, which already has any quotes
            #  intact, due to the poorly-specified Netscape Cookie: syntax)
            if ((cookie.value is not None) and
                self.non_word_re.search(cookie.value) and version > 0):
                value = self.quote_re.sub(r"\\\1", cookie.value)
            else:
                value = cookie.value

            # add cookie-attributes to be returned in Cookie header
            if cookie.value is None:
                attrs.append(cookie.name)
            else:
                attrs.append("%s=%s" % (cookie.name, value))
            if version > 0:
                if cookie.path_specified:
                    attrs.append('$Path="%s"' % cookie.path)
                if cookie.domain.startswith("."):
                    domain = cookie.domain
                    if (not cookie.domain_initial_dot and
                        domain.startswith(".")):
                        domain = domain[1:]
                    attrs.append('$Domain="%s"' % domain)
                if cookie.port is not None:
                    p = "$Port"
                    if cookie.port_specified:
                        p = p + ('="%s"' % cookie.port)
                    attrs.append(p)

        return attrs

    def add_cookie_header(self, request):
        """Add correct Cookie: header to request (urllib2.Request object).

        The Cookie2 header is also added unless policy.hide_cookie2 is true.

        """
        _debug("add_cookie_header")
        self._cookies_lock.acquire()

        self._policy._now = self._now = int(time.time())

        cookies = self._cookies_for_request(request)

        attrs = self._cookie_attrs(cookies)
        if attrs:
            if not request.has_header("Cookie"):
                request.add_unredirected_header(
                    "Cookie", "; ".join(attrs))

        # if necessary, advertise that we know RFC 2965
        if (self._policy.rfc2965 and not self._policy.hide_cookie2 and
            not request.has_header("Cookie2")):
            for cookie in cookies:
                if cookie.version != 1:
                    request.add_unredirected_header("Cookie2", '$Version="1"')
                    break

        self._cookies_lock.release()

        self.clear_expired_cookies()

    def _normalized_cookie_tuples(self, attrs_set):
        """Return list of tuples containing normalised cookie information.

        attrs_set is the list of lists of key,value pairs extracted from
        the Set-Cookie or Set-Cookie2 headers.

        Tuples are name, value, standard, rest, where name and value are the
        cookie name and value, standard is a dictionary containing the standard
        cookie-attributes (discard, secure, version, expires or max-age,
        domain, path and port) and rest is a dictionary containing the rest of
        the cookie-attributes.

        """
        cookie_tuples = []

        boolean_attrs = "discard", "secure"
        value_attrs = ("version",
                       "expires", "max-age",
                       "domain", "path", "port",
                       "comment", "commenturl")

        for cookie_attrs in attrs_set:
            name, value = cookie_attrs[0]

            # Build dictionary of standard cookie-attributes (standard) and
            # dictionary of other cookie-attributes (rest).

            # Note: expiry time is normalised to seconds since epoch.  V0
            # cookies should have the Expires cookie-attribute, and V1 cookies
            # should have Max-Age, but since V1 includes RFC 2109 cookies (and
            # since V0 cookies may be a mish-mash of Netscape and RFC 2109), we
            # accept either (but prefer Max-Age).
            max_age_set = False

            bad_cookie = False

            standard = {}
            rest = {}
            for k, v in cookie_attrs[1:]:
                lc = k.lower()
                # don't lose case distinction for unknown fields
                if lc in value_attrs or lc in boolean_attrs:
                    k = lc
                if k in boolean_attrs and v is None:
                    # boolean cookie-attribute is present, but has no value
                    # (like "discard", rather than "port=80")
                    v = True
                if k in standard:
                    # only first value is significant
                    continue
                if k == "domain":
                    if v is None:
                        _debug("   missing value for domain attribute")
                        bad_cookie = True
                        break
                    # RFC 2965 section 3.3.3
                    v = v.lower()
                if k == "expires":
                    if max_age_set:
                        # Prefer max-age to expires (like Mozilla)
                        continue
                    if v is None:
                        _debug("   missing or invalid value for expires "
                              "attribute: treating as session cookie")
                        continue
                if k == "max-age":
                    max_age_set = True
                    try:
                        v = int(v)
                    except ValueError:
                        _debug("   missing or invalid (non-numeric) value for "
                              "max-age attribute")
                        bad_cookie = True
                        break
                    # convert RFC 2965 Max-Age to seconds since epoch
                    # XXX Strictly you're supposed to follow RFC 2616
                    #   age-calculation rules.  Remember that zero Max-Age is a
                    #   is a request to discard (old and new) cookie, though.
                    k = "expires"
                    v = self._now + v
                if (k in value_attrs) or (k in boolean_attrs):
                    if (v is None and
                        k not in ("port", "comment", "commenturl")):
                        _debug("   missing value for %s attribute" % k)
                        bad_cookie = True
                        break
                    standard[k] = v
                else:
                    rest[k] = v

            if bad_cookie:
                continue

            cookie_tuples.append((name, value, standard, rest))

        return cookie_tuples

    def _cookie_from_cookie_tuple(self, tup, request):
        # standard is dict of standard cookie-attributes, rest is dict of the
        # rest of them
        name, value, standard, rest = tup

        domain = standard.get("domain", Absent)
        path = standard.get("path", Absent)
        port = standard.get("port", Absent)
        expires = standard.get("expires", Absent)

        # set the easy defaults
        version = standard.get("version", None)
        if version is not None: version = int(version)
        secure = standard.get("secure", False)
        # (discard is also set if expires is Absent)
        discard = standard.get("discard", False)
        comment = standard.get("comment", None)
        comment_url = standard.get("commenturl", None)

        # set default path
        if path is not Absent and path != "":
            path_specified = True
            path = escape_path(path)
        else:
            path_specified = False
            path = request_path(request)
            i = path.rfind("/")
            if i != -1:
                if version == 0:
                    # Netscape spec parts company from reality here
                    path = path[:i]
                else:
                    path = path[:i+1]
            if len(path) == 0: path = "/"

        # set default domain
        domain_specified = domain is not Absent
        # but first we have to remember whether it starts with a dot
        domain_initial_dot = False
        if domain_specified:
            domain_initial_dot = bool(domain.startswith("."))
        if domain is Absent:
            req_host, erhn = eff_request_host(request)
            domain = erhn
        elif not domain.startswith("."):
            domain = "."+domain

        # set default port
        port_specified = False
        if port is not Absent:
            if port is None:
                # Port attr present, but has no value: default to request port.
                # Cookie should then only be sent back on that port.
                port = request_port(request)
            else:
                port_specified = True
                port = re.sub(r"\s+", "", port)
        else:
            # No port attr present.  Cookie can be sent back on any port.
            port = None

        # set default expires and discard
        if expires is Absent:
            expires = None
            discard = True
        elif expires <= self._now:
            # Expiry date in past is request to delete cookie.  This can't be
            # in DefaultCookiePolicy, because can't delete cookies there.
            try:
                self.clear(domain, path, name)
            except KeyError:
                pass
            _debug("Expiring cookie, domain='%s', path='%s', name='%s'",
                   domain, path, name)
            return None

        return Cookie(version,
                      name, value,
                      port, port_specified,
                      domain, domain_specified, domain_initial_dot,
                      path, path_specified,
                      secure,
                      expires,
                      discard,
                      comment,
                      comment_url,
                      rest)

    def _cookies_from_attrs_set(self, attrs_set, request):
        cookie_tuples = self._normalized_cookie_tuples(attrs_set)

        cookies = []
        for tup in cookie_tuples:
            cookie = self._cookie_from_cookie_tuple(tup, request)
            if cookie: cookies.append(cookie)
        return cookies

    def _process_rfc2109_cookies(self, cookies):
        rfc2109_as_ns = getattr(self._policy, 'rfc2109_as_netscape', None)
        if rfc2109_as_ns is None:
            rfc2109_as_ns = not self._policy.rfc2965
        for cookie in cookies:
            if cookie.version == 1:
                cookie.rfc2109 = True
                if rfc2109_as_ns:
                    # treat 2109 cookies as Netscape cookies rather than
                    # as RFC2965 cookies
                    cookie.version = 0

    def make_cookies(self, response, request):
        """Return sequence of Cookie objects extracted from response object."""
        # get cookie-attributes for RFC 2965 and Netscape protocols
        headers = response.info()
        rfc2965_hdrs = headers.getheaders("Set-Cookie2")
        ns_hdrs = headers.getheaders("Set-Cookie")

        rfc2965 = self._policy.rfc2965
        netscape = self._policy.netscape

        if ((not rfc2965_hdrs and not ns_hdrs) or
            (not ns_hdrs and not rfc2965) or
            (not rfc2965_hdrs and not netscape) or
            (not netscape and not rfc2965)):
            return []  # no relevant cookie headers: quick exit

        try:
            cookies = self._cookies_from_attrs_set(
                split_header_words(rfc2965_hdrs), request)
        except Exception:
            _warn_unhandled_exception()
            cookies = []

        if ns_hdrs and netscape:
            try:
                # RFC 2109 and Netscape cookies
                ns_cookies = self._cookies_from_attrs_set(
                    parse_ns_headers(ns_hdrs), request)
            except Exception:
                _warn_unhandled_exception()
                ns_cookies = []
            self._process_rfc2109_cookies(ns_cookies)

            # Look for Netscape cookies (from Set-Cookie headers) that match
            # corresponding RFC 2965 cookies (from Set-Cookie2 headers).
            # For each match, keep the RFC 2965 cookie and ignore the Netscape
            # cookie (RFC 2965 section 9.1).  Actually, RFC 2109 cookies are
            # bundled in with the Netscape cookies for this purpose, which is
            # reasonable behaviour.
            if rfc2965:
                lookup = {}
                for cookie in cookies:
                    lookup[(cookie.domain, cookie.path, cookie.name)] = None

                def no_matching_rfc2965(ns_cookie, lookup=lookup):
                    key = ns_cookie.domain, ns_cookie.path, ns_cookie.name
                    return key not in lookup
                ns_cookies = filter(no_matching_rfc2965, ns_cookies)

            if ns_cookies:
                cookies.extend(ns_cookies)

        return cookies

    def set_cookie_if_ok(self, cookie, request):
        """Set a cookie if policy says it's OK to do so."""
        self._cookies_lock.acquire()
        self._policy._now = self._now = int(time.time())

        if self._policy.set_ok(cookie, request):
            self.set_cookie(cookie)

        self._cookies_lock.release()

    def set_cookie(self, cookie):
        """Set a cookie, without checking whether or not it should be set."""
        c = self._cookies
        self._cookies_lock.acquire()
        try:
            if cookie.domain not in c: c[cookie.domain] = {}
            c2 = c[cookie.domain]
            if cookie.path not in c2: c2[cookie.path] = {}
            c3 = c2[cookie.path]
            c3[cookie.name] = cookie
        finally:
            self._cookies_lock.release()

    def extract_cookies(self, response, request):
        """Extract cookies from response, where allowable given the request."""
        _debug("extract_cookies: %s", response.info())
        self._cookies_lock.acquire()
        self._policy._now = self._now = int(time.time())

        for cookie in self.make_cookies(response, request):
            if self._policy.set_ok(cookie, request):
                _debug(" setting cookie: %s", cookie)
                self.set_cookie(cookie)
        self._cookies_lock.release()

    def clear(self, domain=None, path=None, name=None):
        """Clear some cookies.

        Invoking this method without arguments will clear all cookies.  If
        given a single argument, only cookies belonging to that domain will be
        removed.  If given two arguments, cookies belonging to the specified
        path within that domain are removed.  If given three arguments, then
        the cookie with the specified name, path and domain is removed.

        Raises KeyError if no matching cookie exists.

        """
        if name is not None:
            if (domain is None) or (path is None):
                raise ValueError(
                    "domain and path must be given to remove a cookie by name")
            del self._cookies[domain][path][name]
        elif path is not None:
            if domain is None:
                raise ValueError(
                    "domain must be given to remove cookies by path")
            del self._cookies[domain][path]
        elif domain is not None:
            del self._cookies[domain]
        else:
            self._cookies = {}

    def clear_session_cookies(self):
        """Discard all session cookies.

        Note that the .save() method won't save session cookies anyway, unless
        you ask otherwise by passing a true ignore_discard argument.

        """
        self._cookies_lock.acquire()
        for cookie in self:
            if cookie.discard:
                self.clear(cookie.domain, cookie.path, cookie.name)
        self._cookies_lock.release()

    def clear_expired_cookies(self):
        """Discard all expired cookies.

        You probably don't need to call this method: expired cookies are never
        sent back to the server (provided you're using DefaultCookiePolicy),
        this method is called by CookieJar itself every so often, and the
        .save() method won't save expired cookies anyway (unless you ask
        otherwise by passing a true ignore_expires argument).

        """
        self._cookies_lock.acquire()
        now = time.time()
        for cookie in self:
            if cookie.is_expired(now):
                self.clear(cookie.domain, cookie.path, cookie.name)
        self._cookies_lock.release()

    def __iter__(self):
        return deepvalues(self._cookies)

    def __len__(self):
        """Return number of contained cookies."""
        i = 0
        for cookie in self: i = i + 1
        return i

    def __repr__(self):
        r = []
        for cookie in self: r.append(repr(cookie))
        return "<%s[%s]>" % (self.__class__, ", ".join(r))

    def __str__(self):
        r = []
        for cookie in self: r.append(str(cookie))
        return "<%s[%s]>" % (self.__class__, ", ".join(r))


# derives from IOError for backwards-compatibility with Python 2.4.0
class LoadError(IOError): pass

class FileCookieJar(CookieJar):
    """CookieJar that can be loaded from and saved to a file."""

    def __init__(self, filename=None, delayload=False, policy=None):
        """
        Cookies are NOT loaded from the named file until either the .load() or
        .revert() method is called.

        """
        CookieJar.__init__(self, policy)
        if filename is not None:
            try:
                filename+""
            except:
                raise ValueError("filename must be string-like")
        self.filename = filename
        self.delayload = bool(delayload)

    def save(self, filename=None, ignore_discard=False, ignore_expires=False):
        """Save cookies to a file."""
        raise NotImplementedError()

    def load(self, filename=None, ignore_discard=False, ignore_expires=False):
        """Load cookies from a file."""
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        f = open(filename)
        try:
            self._really_load(f, filename, ignore_discard, ignore_expires)
        finally:
            f.close()

    def revert(self, filename=None,
               ignore_discard=False, ignore_expires=False):
        """Clear all cookies and reload cookies from a saved file.

        Raises LoadError (or IOError) if reversion is not successful; the
        object's state will not be altered if this happens.

        """
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        self._cookies_lock.acquire()

        old_state = copy.deepcopy(self._cookies)
        self._cookies = {}
        try:
            self.load(filename, ignore_discard, ignore_expires)
        except (LoadError, IOError):
            self._cookies = old_state
            raise

        self._cookies_lock.release()

from _LWPCookieJar import LWPCookieJar, lwp_cookie_str
from _MozillaCookieJar import MozillaCookieJar
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448
/*

Unicode implementation based on original code by Fredrik Lundh,
modified by Marc-Andre Lemburg <mal@lemburg.com> according to the
Unicode Integration Proposal (see file Misc/unicode.txt).

Major speed upgrades to the method implementations at the Reykjavik
NeedForSpeed sprint, by Fredrik Lundh and Andrew Dalke.

Copyright (c) Corporation for National Research Initiatives.

--------------------------------------------------------------------
The original string type implementation is:

  Copyright (c) 1999 by Secret Labs AB
  Copyright (c) 1999 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its
associated documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies, and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of Secret Labs
AB or the author not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------------------------------------------

*/

#define PY_SSIZE_T_CLEAN
#include "Python.h"
#include "ucnhash.h"

#ifdef MS_WINDOWS
#include <windows.h>
#endif

/* Limit for the Unicode object free list */

#define PyUnicode_MAXFREELIST       1024

/* Limit for the Unicode object free list stay alive optimization.

   The implementation will keep allocated Unicode memory intact for
   all objects on the free list having a size less than this
   limit. This reduces malloc() overhead for small Unicode objects.

   At worst this will result in PyUnicode_MAXFREELIST *
   (sizeof(PyUnicodeObject) + KEEPALIVE_SIZE_LIMIT +
   malloc()-overhead) bytes of unused garbage.

   Setting the limit to 0 effectively turns the feature off.

   Note: This is an experimental feature ! If you get core dumps when
   using Unicode objects, turn this feature off.

*/

#define KEEPALIVE_SIZE_LIMIT       9

/* Endianness switches; defaults to little endian */

#ifdef WORDS_BIGENDIAN
# define BYTEORDER_IS_BIG_ENDIAN
#else
# define BYTEORDER_IS_LITTLE_ENDIAN
#endif

/* --- Globals ------------------------------------------------------------

   The globals are initialized by the _PyUnicode_Init() API and should
   not be used before calling that API.

*/


#ifdef __cplusplus
extern "C" {
#endif

/* This dictionary holds all interned unicode strings.  Note that references
   to strings in this dictionary are *not* counted in the string's ob_refcnt.
   When the interned string reaches a refcnt of 0 the string deallocation
   function will delete the reference from this dictionary.

   Another way to look at this is that to say that the actual reference
   count of a string is:  s->ob_refcnt + (s->state ? 2 : 0)
*/
static PyObject *interned;

/* Free list for Unicode objects */
static PyUnicodeObject *free_list;
static int numfree;

/* The empty Unicode object is shared to improve performance. */
static PyUnicodeObject *unicode_empty;

/* Single character Unicode strings in the Latin-1 range are being
   shared as well. */
static PyUnicodeObject *unicode_latin1[256];

/* Fast detection of the most frequent whitespace characters */
const unsigned char _Py_ascii_whitespace[] = {
    0, 0, 0, 0, 0, 0, 0, 0,
/*     case 0x0009: * CHARACTER TABULATION */
/*     case 0x000A: * LINE FEED */
/*     case 0x000B: * LINE TABULATION */
/*     case 0x000C: * FORM FEED */
/*     case 0x000D: * CARRIAGE RETURN */
    0, 1, 1, 1, 1, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
/*     case 0x001C: * FILE SEPARATOR */
/*     case 0x001D: * GROUP SEPARATOR */
/*     case 0x001E: * RECORD SEPARATOR */
/*     case 0x001F: * UNIT SEPARATOR */
    0, 0, 0, 0, 1, 1, 1, 1,
/*     case 0x0020: * SPACE */
    1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0
};

static PyObject *unicode_encode_call_errorhandler(const char *errors,
       PyObject **errorHandler,const char *encoding, const char *reason,
       const Py_UNICODE *unicode, Py_ssize_t size, PyObject **exceptionObject,
       Py_ssize_t startpos, Py_ssize_t endpos, Py_ssize_t *newpos);

static void raise_encode_exception(PyObject **exceptionObject,
                                   const char *encoding,
                                   const Py_UNICODE *unicode, Py_ssize_t size,
                                   Py_ssize_t startpos, Py_ssize_t endpos,
                                   const char *reason);

/* Same for linebreaks */
static unsigned char ascii_linebreak[] = {
    0, 0, 0, 0, 0, 0, 0, 0,
/*         0x000A, * LINE FEED */
/*         0x000B, * LINE TABULATION */
/*         0x000C, * FORM FEED */
/*         0x000D, * CARRIAGE RETURN */
    0, 0, 1, 1, 1, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
/*         0x001C, * FILE SEPARATOR */
/*         0x001D, * GROUP SEPARATOR */
/*         0x001E, * RECORD SEPARATOR */
    0, 0, 0, 0, 1, 1, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0
};


Py_UNICODE
PyUnicode_GetMax(void)
{
#ifdef Py_UNICODE_WIDE
    return 0x10FFFF;
#else
    /* This is actually an illegal character, so it should
       not be passed to unichr. */
    return 0xFFFF;
#endif
}

/* --- Bloom Filters ----------------------------------------------------- */

/* stuff to implement simple "bloom filters" for Unicode characters.
   to keep things simple, we use a single bitmask, using the least 5
   bits from each unicode characters as the bit index. */

/* the linebreak mask is set up by Unicode_Init below */

#if LONG_BIT >= 128
#define BLOOM_WIDTH 128
#elif LONG_BIT >= 64
#define BLOOM_WIDTH 64
#elif LONG_BIT >= 32
#define BLOOM_WIDTH 32
#else
#error "LONG_BIT is smaller than 32"
#endif

#define BLOOM_MASK unsigned long

static BLOOM_MASK bloom_linebreak;

#define BLOOM_ADD(mask, ch) ((mask |= (1UL << ((ch) & (BLOOM_WIDTH - 1)))))
#define BLOOM(mask, ch)     ((mask &  (1UL << ((ch) & (BLOOM_WIDTH - 1)))))

#define BLOOM_LINEBREAK(ch)                                             \
    ((ch) < 128U ? ascii_linebreak[(ch)] :                              \
     (BLOOM(bloom_linebreak, (ch)) && Py_UNICODE_ISLINEBREAK(ch)))

Py_LOCAL_INLINE(BLOOM_MASK) make_bloom_mask(Py_UNICODE* ptr, Py_ssize_t len)
{
    /* calculate simple bloom-style bitmask for a given unicode string */

    BLOOM_MASK mask;
    Py_ssize_t i;

    mask = 0;
    for (i = 0; i < len; i++)
        BLOOM_ADD(mask, ptr[i]);

    return mask;
}

Py_LOCAL_INLINE(int) unicode_member(Py_UNICODE chr, Py_UNICODE* set, Py_ssize_t setlen)
{
    Py_ssize_t i;

    for (i = 0; i < setlen; i++)
        if (set[i] == chr)
            return 1;

    return 0;
}

#define BLOOM_MEMBER(mask, chr, set, setlen)                    \
    BLOOM(mask, chr) && unicode_member(chr, set, setlen)

/* --- Unicode Object ----------------------------------------------------- */

static
int unicode_resize(register PyUnicodeObject *unicode,
                   Py_ssize_t length)
{
    void *oldstr;

    /* Shortcut if there's nothing much to do. */
    if (unicode->length == length)
        goto reset;

    /* Resizing shared object (unicode_empty or single character
       objects) in-place is not allowed. Use PyUnicode_Resize()
       instead ! */

    if (unicode == unicode_empty ||
        (unicode->length == 1 &&
         unicode->str[0] < 256U &&
         unicode_latin1[unicode->str[0]] == unicode)) {
        PyErr_SetString(PyExc_SystemError,
                        "can't resize shared str objects");
        return -1;
    }

    /* We allocate one more byte to make sure the string is Ux0000 terminated.
       The overallocation is also used by fastsearch, which assumes that it's
       safe to look at str[length] (without making any assumptions about what
       it contains). */

    oldstr = unicode->str;
    unicode->str = PyObject_REALLOC(unicode->str,
                                    sizeof(Py_UNICODE) * (length + 1));
    if (!unicode->str) {
        unicode->str = (Py_UNICODE *)oldstr;
        PyErr_NoMemory();
        return -1;
    }
    unicode->str[length] = 0;
    unicode->length = length;

  reset:
    /* Reset the object caches */
    if (unicode->defenc) {
        Py_CLEAR(unicode->defenc);
    }
    unicode->hash = -1;

    return 0;
}

/* We allocate one more byte to make sure the string is
   Ux0000 terminated; some code (e.g. new_identifier)
   relies on that.

   XXX This allocator could further be enhanced by assuring that the
   free list never reduces its size below 1.

*/

static
PyUnicodeObject *_PyUnicode_New(Py_ssize_t length)
{
    register PyUnicodeObject *unicode;

    /* Optimization for empty strings */
    if (length == 0 && unicode_empty != NULL) {
        Py_INCREF(unicode_empty);
        return unicode_empty;
    }

    /* Ensure we won't overflow the size. */
    if (length > ((PY_SSIZE_T_MAX / sizeof(Py_UNICODE)) - 1)) {
        return (PyUnicodeObject *)PyErr_NoMemory();
    }

    /* Unicode freelist & memory allocation */
    if (free_list) {
        unicode = free_list;
        free_list = *(PyUnicodeObject **)unicode;
        numfree--;
        if (unicode->str) {
            /* Keep-Alive optimization: we only upsize the buffer,
               never downsize it. */
            if ((unicode->length < length) &&
                unicode_resize(unicode, length) < 0) {
                PyObject_DEL(unicode->str);
                unicode->str = NULL;
            }
        }
        else {
            size_t new_size = sizeof(Py_UNICODE) * ((size_t)length + 1);
            unicode->str = (Py_UNICODE*) PyObject_MALLOC(new_size);
        }
        PyObject_INIT(unicode, &PyUnicode_Type);
    }
    else {
        size_t new_size;
        unicode = PyObject_New(PyUnicodeObject, &PyUnicode_Type);
        if (unicode == NULL)
            return NULL;
        new_size = sizeof(Py_UNICODE) * ((size_t)length + 1);
        unicode->str = (Py_UNICODE*) PyObject_MALLOC(new_size);
    }

    if (!unicode->str) {
        PyErr_NoMemory();
        goto onError;
    }
    /* Initialize the first element to guard against cases where
     * the caller fails before initializing str -- unicode_resize()
     * reads str[0], and the Keep-Alive optimization can keep memory
     * allocated for str alive across a call to unicode_dealloc(unicode).
     * We don't want unicode_resize to read uninitialized memory in
     * that case.
     */
    unicode->str[0] = 0;
    unicode->str[length] = 0;
    unicode->length = length;
    unicode->hash = -1;
    unicode->state = 0;
    unicode->defenc = NULL;
    return unicode;

  onError:
    /* XXX UNREF/NEWREF interface should be more symmetrical */
    _Py_DEC_REFTOTAL;
    _Py_ForgetReference((PyObject *)unicode);
    PyObject_Del(unicode);
    return NULL;
}

static
void unicode_dealloc(register PyUnicodeObject *unicode)
{
    switch (PyUnicode_CHECK_INTERNED(unicode)) {
    case SSTATE_NOT_INTERNED:
        break;

    case SSTATE_INTERNED_MORTAL:
        /* revive dead object temporarily for DelItem */
        Py_REFCNT(unicode) = 3;
        if (PyDict_DelItem(interned, (PyObject *)unicode) != 0)
            Py_FatalError(
                "deletion of interned string failed");
        break;

    case SSTATE_INTERNED_IMMORTAL:
        Py_FatalError("Immortal interned string died.");

    default:
        Py_FatalError("Inconsistent interned string state.");
    }

    if (PyUnicode_CheckExact(unicode) &&
        numfree < PyUnicode_MAXFREELIST) {
        /* Keep-Alive optimization */
        if (unicode->length >= KEEPALIVE_SIZE_LIMIT) {
            PyObject_DEL(unicode->str);
            unicode->str = NULL;
            unicode->length = 0;
        }
        if (unicode->defenc) {
            Py_CLEAR(unicode->defenc);
        }
        /* Add to free list */
        *(PyUnicodeObject **)unicode = free_list;
        free_list = unicode;
        numfree++;
    }
    else {
        PyObject_DEL(unicode->str);
        Py_XDECREF(unicode->defenc);
        Py_TYPE(unicode)->tp_free((PyObject *)unicode);
    }
}

static
int _PyUnicode_Resize(PyUnicodeObject **unicode, Py_ssize_t length)
{
    register PyUnicodeObject *v;

    /* Argument checks */
    if (unicode == NULL) {
        PyErr_BadInternalCall();
        return -1;
    }
    v = *unicode;
    if (v == NULL || !PyUnicode_Check(v) || Py_REFCNT(v) != 1 || length < 0) {
        PyErr_BadInternalCall();
        return -1;
    }

    /* Resizing unicode_empty and single character objects is not
       possible since these are being shared. We simply return a fresh
       copy with the same Unicode content. */
    if (v->length != length &&
        (v == unicode_empty || v->length == 1)) {
        PyUnicodeObject *w = _PyUnicode_New(length);
        if (w == NULL)
            return -1;
        Py_UNICODE_COPY(w->str, v->str,
                        length < v->length ? length : v->length);
        Py_DECREF(*unicode);
        *unicode = w;
        return 0;
    }

    /* Note that we don't have to modify *unicode for unshared Unicode
       objects, since we can modify them in-place. */
    return unicode_resize(v, length);
}

int PyUnicode_Resize(PyObject **unicode, Py_ssize_t length)
{
    return _PyUnicode_Resize((PyUnicodeObject **)unicode, length);
}

PyObject *PyUnicode_FromUnicode(const Py_UNICODE *u,
                                Py_ssize_t size)
{
    PyUnicodeObject *unicode;

    /* If the Unicode data is known at construction time, we can apply
       some optimizations which share commonly used objects. */
    if (u != NULL) {

        /* Optimization for empty strings */
        if (size == 0 && unicode_empty != NULL) {
            Py_INCREF(unicode_empty);
            return (PyObject *)unicode_empty;
        }

        /* Single character Unicode objects in the Latin-1 range are
           shared when using this constructor */
        if (size == 1 && *u < 256) {
            unicode = unicode_latin1[*u];
            if (!unicode) {
                unicode = _PyUnicode_New(1);
                if (!unicode)
                    return NULL;
                unicode->str[0] = *u;
                unicode_latin1[*u] = unicode;
            }
            Py_INCREF(unicode);
            return (PyObject *)unicode;
        }
    }

    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;

    /* Copy the Unicode data into the new object */
    if (u != NULL)
        Py_UNICODE_COPY(unicode->str, u, size);

    return (PyObject *)unicode;
}

PyObject *PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
{
    PyUnicodeObject *unicode;

    if (size < 0) {
        PyErr_SetString(PyExc_SystemError,
                        "Negative size passed to PyUnicode_FromStringAndSize");
        return NULL;
    }

    /* If the Unicode data is known at construction time, we can apply
       some optimizations which share commonly used objects.
       Also, this means the input must be UTF-8, so fall back to the
       UTF-8 decoder at the end. */
    if (u != NULL) {

        /* Optimization for empty strings */
        if (size == 0 && unicode_empty != NULL) {
            Py_INCREF(unicode_empty);
            return (PyObject *)unicode_empty;
        }

        /* Single characters are shared when using this constructor.
           Restrict to ASCII, since the input must be UTF-8. */
        if (size == 1 && Py_CHARMASK(*u) < 128) {
            unicode = unicode_latin1[Py_CHARMASK(*u)];
            if (!unicode) {
                unicode = _PyUnicode_New(1);
                if (!unicode)
                    return NULL;
                unicode->str[0] = Py_CHARMASK(*u);
                unicode_latin1[Py_CHARMASK(*u)] = unicode;
            }
            Py_INCREF(unicode);
            return (PyObject *)unicode;
        }

        return PyUnicode_DecodeUTF8(u, size, NULL);
    }

    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;

    return (PyObject *)unicode;
}

PyObject *PyUnicode_FromString(const char *u)
{
    size_t size = strlen(u);
    if (size > PY_SSIZE_T_MAX) {
        PyErr_SetString(PyExc_OverflowError, "input too long");
        return NULL;
    }

    return PyUnicode_FromStringAndSize(u, size);
}

#ifdef HAVE_WCHAR_H

#if (Py_UNICODE_SIZE == 2) && defined(SIZEOF_WCHAR_T) && (SIZEOF_WCHAR_T == 4)
# define CONVERT_WCHAR_TO_SURROGATES
#endif

#ifdef CONVERT_WCHAR_TO_SURROGATES

/* Here sizeof(wchar_t) is 4 but Py_UNICODE_SIZE == 2, so we need
   to convert from UTF32 to UTF16. */

PyObject *PyUnicode_FromWideChar(register const wchar_t *w,
                                 Py_ssize_t size)
{
    PyUnicodeObject *unicode;
    register Py_ssize_t i;
    Py_ssize_t alloc;
    const wchar_t *orig_w;

    if (w == NULL) {
        if (size == 0)
            return PyUnicode_FromStringAndSize(NULL, 0);
        PyErr_BadInternalCall();
        return NULL;
    }

    if (size == -1) {
        size = wcslen(w);
    }

    alloc = size;
    orig_w = w;
    for (i = size; i > 0; i--) {
        if (*w > 0xFFFF)
            alloc++;
        w++;
    }
    w = orig_w;
    unicode = _PyUnicode_New(alloc);
    if (!unicode)
        return NULL;

    /* Copy the wchar_t data into the new object */
    {
        register Py_UNICODE *u;
        u = PyUnicode_AS_UNICODE(unicode);
        for (i = size; i > 0; i--) {
            if (*w > 0xFFFF) {
                wchar_t ordinal = *w++;
                ordinal -= 0x10000;
                *u++ = 0xD800 | (ordinal >> 10);
                *u++ = 0xDC00 | (ordinal & 0x3FF);
            }
            else
                *u++ = *w++;
        }
    }
    return (PyObject *)unicode;
}

#else

PyObject *PyUnicode_FromWideChar(register const wchar_t *w,
                                 Py_ssize_t size)
{
    PyUnicodeObject *unicode;

    if (w == NULL) {
        if (size == 0)
            return PyUnicode_FromStringAndSize(NULL, 0);
        PyErr_BadInternalCall();
        return NULL;
    }

    if (size == -1) {
        size = wcslen(w);
    }

    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;

    /* Copy the wchar_t data into the new object */
#if Py_UNICODE_SIZE == SIZEOF_WCHAR_T
    memcpy(unicode->str, w, size * sizeof(wchar_t));
#else
    {
        register Py_UNICODE *u;
        register Py_ssize_t i;
        u = PyUnicode_AS_UNICODE(unicode);
        for (i = size; i > 0; i--)
            *u++ = *w++;
    }
#endif

    return (PyObject *)unicode;
}

#endif /* CONVERT_WCHAR_TO_SURROGATES */

#undef CONVERT_WCHAR_TO_SURROGATES

static void
makefmt(char *fmt, int longflag, int longlongflag, int size_tflag,
        int zeropad, int width, int precision, char c)
{
    *fmt++ = '%';
    if (width) {
        if (zeropad)
            *fmt++ = '0';
        fmt += sprintf(fmt, "%d", width);
    }
    if (precision)
        fmt += sprintf(fmt, ".%d", precision);
    if (longflag)
        *fmt++ = 'l';
    else if (longlongflag) {
        /* longlongflag should only ever be nonzero on machines with
           HAVE_LONG_LONG defined */
#ifdef HAVE_LONG_LONG
        char *f = PY_FORMAT_LONG_LONG;
        while (*f)
            *fmt++ = *f++;
#else
        /* we shouldn't ever get here */
        assert(0);
        *fmt++ = 'l';
#endif
    }
    else if (size_tflag) {
        char *f = PY_FORMAT_SIZE_T;
        while (*f)
            *fmt++ = *f++;
    }
    *fmt++ = c;
    *fmt = '\0';
}

#define appendstring(string) {for (copy = string;*copy;) *s++ = *copy++;}

/* size of fixed-size buffer for formatting single arguments */
#define ITEM_BUFFER_LEN 21
/* maximum number of characters required for output of %ld.  21 characters
   allows for 64-bit integers (in decimal) and an optional sign. */
#define MAX_LONG_CHARS 21
/* maximum number of characters required for output of %lld.
   We need at most ceil(log10(256)*SIZEOF_LONG_LONG) digits,
   plus 1 for the sign.  53/22 is an upper bound for log10(256). */
#define MAX_LONG_LONG_CHARS (2 + (SIZEOF_LONG_LONG*53-1) / 22)

PyObject *
PyUnicode_FromFormatV(const char *format, va_list vargs)
{
    va_list count;
    Py_ssize_t callcount = 0;
    PyObject **callresults = NULL;
    PyObject **callresult = NULL;
    Py_ssize_t n = 0;
    int width = 0;
    int precision = 0;
    int zeropad;
    const char* f;
    Py_UNICODE *s;
    PyObject *string;
    /* used by sprintf */
    char buffer[ITEM_BUFFER_LEN+1];
    /* use abuffer instead of buffer, if we need more space
     * (which can happen if there's a format specifier with width). */
    char *abuffer = NULL;
    char *realbuffer;
    Py_ssize_t abuffersize = 0;
    char fmt[61]; /* should be enough for %0width.precisionlld */
    const char *copy;

    Py_VA_COPY(count, vargs);
    /* step 1: count the number of %S/%R/%A/%s format specifications
     * (we call PyObject_Str()/PyObject_Repr()/PyObject_ASCII()/
     * PyUnicode_DecodeUTF8() for these objects once during step 3 and put the
     * result in an array) */
    for (f = format; *f; f++) {
         if (*f == '%') {
             if (*(f+1)=='%')
                 continue;
             if (*(f+1)=='S' || *(f+1)=='R' || *(f+1)=='A' || *(f+1) == 'V')
                 ++callcount;
             while (Py_ISDIGIT((unsigned)*f))
                 width = (width*10) + *f++ - '0';
             while (*++f && *f != '%' && !Py_ISALPHA((unsigned)*f))
                 ;
             if (*f == 's')
                 ++callcount;
         }
         else if (128 <= (unsigned char)*f) {
             PyErr_Format(PyExc_ValueError,
                "PyUnicode_FromFormatV() expects an ASCII-encoded format "
                "string, got a non-ASCII byte: 0x%02x",
                (unsigned char)*f);
             return NULL;
         }
    }
    /* step 2: allocate memory for the results of
     * PyObject_Str()/PyObject_Repr()/PyUnicode_DecodeUTF8() calls */
    if (callcount) {
        callresults = PyObject_Malloc(sizeof(PyObject *)*callcount);
        if (!callresults) {
            PyErr_NoMemory();
            return NULL;
        }
        callresult = callresults;
    }
    /* step 3: figure out how large a buffer we need */
    for (f = format; *f; f++) {
        if (*f == '%') {
#ifdef HAVE_LONG_LONG
            int longlongflag = 0;
#endif
            const char* p = f;
            width = 0;
            while (Py_ISDIGIT((unsigned)*f))
                width = (width*10) + *f++ - '0';
            while (*++f && *f != '%' && !Py_ISALPHA((unsigned)*f))
                ;

            /* skip the 'l' or 'z' in {%ld, %zd, %lu, %zu} since
             * they don't affect the amount of space we reserve.
             */
            if (*f == 'l') {
                if (f[1] == 'd' || f[1] == 'u') {
                    ++f;
                }
#ifdef HAVE_LONG_LONG
                else if (f[1] == 'l' &&
                         (f[2] == 'd' || f[2] == 'u')) {
                    longlongflag = 1;
                    f += 2;
                }
#endif
            }
            else if (*f == 'z' && (f[1] == 'd' || f[1] == 'u')) {
                ++f;
            }

            switch (*f) {
            case 'c':
            {
#ifndef Py_UNICODE_WIDE
                int ordinal = va_arg(count, int);
                if (ordinal > 0xffff)
                    n += 2;
                else
                    n++;
#else
                (void)va_arg(count, int);
                n++;
#endif
                break;
            }
            case '%':
                n++;
                break;
            case 'd': case 'u': case 'i': case 'x':
                (void) va_arg(count, int);
#ifdef HAVE_LONG_LONG
                if (longlongflag) {
                    if (width < MAX_LONG_LONG_CHARS)
                        width = MAX_LONG_LONG_CHARS;
                }
                else
#endif
                    /* MAX_LONG_CHARS is enough to hold a 64-bit integer,
                       including sign.  Decimal takes the most space.  This
                       isn't enough for octal.  If a width is specified we
                       need more (which we allocate later). */
                    if (width < MAX_LONG_CHARS)
                        width = MAX_LONG_CHARS;
                n += width;
                /* XXX should allow for large precision here too. */
                if (abuffersize < width)
                    abuffersize = width;
                break;
            case 's':
            {
                /* UTF-8 */
                const char *s = va_arg(count, const char*);
                PyObject *str = PyUnicode_DecodeUTF8(s, strlen(s), "replace");
                if (!str)
                    goto fail;
                n += PyUnicode_GET_SIZE(str);
                /* Remember the str and switch to the next slot */
                *callresult++ = str;
                break;
            }
            case 'U':
            {
                PyObject *obj = va_arg(count, PyObject *);
                assert(obj && PyUnicode_Check(obj));
                n += PyUnicode_GET_SIZE(obj);
                break;
            }
            case 'V':
            {
                PyObject *obj = va_arg(count, PyObject *);
                const char *str = va_arg(count, const char *);
                PyObject *str_obj;
                assert(obj || str);
                assert(!obj || PyUnicode_Check(obj));
                if (obj) {
                    n += PyUnicode_GET_SIZE(obj);
                    *callresult++ = NULL;
                }
                else {
                    str_obj = PyUnicode_DecodeUTF8(str, strlen(str), "replace");
                    if (!str_obj)
                        goto fail;
                    n += PyUnicode_GET_SIZE(str_obj);
                    *callresult++ = str_obj;
                }
                break;
            }
            case 'S':
            {
                PyObject *obj = va_arg(count, PyObject *);
                PyObject *str;
                assert(obj);
                str = PyObject_Str(obj);
                if (!str)
                    goto fail;
                n += PyUnicode_GET_SIZE(str);
                /* Remember the str and switch to the next slot */
                *callresult++ = str;
                break;
            }
            case 'R':
            {
                PyObject *obj = va_arg(count, PyObject *);
                PyObject *repr;
                assert(obj);
                repr = PyObject_Repr(obj);
                if (!repr)
                    goto fail;
                n += PyUnicode_GET_SIZE(repr);
                /* Remember the repr and switch to the next slot */
                *callresult++ = repr;
                break;
            }
            case 'A':
            {
                PyObject *obj = va_arg(count, PyObject *);
                PyObject *ascii;
                assert(obj);
                ascii = PyObject_ASCII(obj);
                if (!ascii)
                    goto fail;
                n += PyUnicode_GET_SIZE(ascii);
                /* Remember the repr and switch to the next slot */
                *callresult++ = ascii;
                break;
            }
            case 'p':
                (void) va_arg(count, int);
                /* maximum 64-bit pointer representation:
                 * 0xffffffffffffffff
                 * so 19 characters is enough.
                 * XXX I count 18 -- what's the extra for?
                 */
                n += 19;
                break;
            default:
                /* if we stumble upon an unknown
                   formatting code, copy the rest of
                   the format string to the output
                   string. (we cannot just skip the
                   code, since there's no way to know
                   what's in the argument list) */
                n += strlen(p);
                goto expand;
            }
        } else
            n++;
    }
  expand:
    if (abuffersize > ITEM_BUFFER_LEN) {
        /* add 1 for sprintf's trailing null byte */
        abuffer = PyObject_Malloc(abuffersize + 1);
        if (!abuffer) {
            PyErr_NoMemory();
            goto fail;
        }
        realbuffer = abuffer;
    }
    else
        realbuffer = buffer;
    /* step 4: fill the buffer */
    /* Since we've analyzed how much space we need for the worst case,
       we don't have to resize the string.
       There can be no errors beyond this point. */
    string = PyUnicode_FromUnicode(NULL, n);
    if (!string)
        goto fail;

    s = PyUnicode_AS_UNICODE(string);
    callresult = callresults;

    for (f = format; *f; f++) {
        if (*f == '%') {
            const char* p = f++;
            int longflag = 0;
            int longlongflag = 0;
            int size_tflag = 0;
            zeropad = (*f == '0');
            /* parse the width.precision part */
            width = 0;
            while (Py_ISDIGIT((unsigned)*f))
                width = (width*10) + *f++ - '0';
            precision = 0;
            if (*f == '.') {
                f++;
                while (Py_ISDIGIT((unsigned)*f))
                    precision = (precision*10) + *f++ - '0';
            }
            /* Handle %ld, %lu, %lld and %llu. */
            if (*f == 'l') {
                if (f[1] == 'd' || f[1] == 'u') {
                    longflag = 1;
                    ++f;
                }
#ifdef HAVE_LONG_LONG
                else if (f[1] == 'l' &&
                         (f[2] == 'd' || f[2] == 'u')) {
                    longlongflag = 1;
                    f += 2;
                }
#endif
            }
            /* handle the size_t flag. */
            if (*f == 'z' && (f[1] == 'd' || f[1] == 'u')) {
                size_tflag = 1;
                ++f;
            }

            switch (*f) {
            case 'c':
            {
                int ordinal = va_arg(vargs, int);
#ifndef Py_UNICODE_WIDE
                if (ordinal > 0xffff) {
                    ordinal -= 0x10000;
                    *s++ = 0xD800 | (ordinal >> 10);
                    *s++ = 0xDC00 | (ordinal & 0x3FF);
                } else
#endif
                *s++ = ordinal;
                break;
            }
            case 'd':
                makefmt(fmt, longflag, longlongflag, size_tflag, zeropad,
                        width, precision, 'd');
                if (longflag)
                    sprintf(realbuffer, fmt, va_arg(vargs, long));
#ifdef HAVE_LONG_LONG
                else if (longlongflag)
                    sprintf(realbuffer, fmt, va_arg(vargs, PY_LONG_LONG));
#endif
                else if (size_tflag)
                    sprintf(realbuffer, fmt, va_arg(vargs, Py_ssize_t));
                else
                    sprintf(realbuffer, fmt, va_arg(vargs, int));
                appendstring(realbuffer);
                break;
            case 'u':
                makefmt(fmt, longflag, longlongflag, size_tflag, zeropad,
                        width, precision, 'u');
                if (longflag)
                    sprintf(realbuffer, fmt, va_arg(vargs, unsigned long));
#ifdef HAVE_LONG_LONG
                else if (longlongflag)
                    sprintf(realbuffer, fmt, va_arg(vargs,
                                                    unsigned PY_LONG_LONG));
#endif
                else if (size_tflag)
                    sprintf(realbuffer, fmt, va_arg(vargs, size_t));
                else
                    sprintf(realbuffer, fmt, va_arg(vargs, unsigned int));
                appendstring(realbuffer);
                break;
            case 'i':
                makefmt(fmt, 0, 0, 0, zeropad, width, precision, 'i');
                sprintf(realbuffer, fmt, va_arg(vargs, int));
                appendstring(realbuffer);
                break;
            case 'x':
                makefmt(fmt, 0, 0, 0, zeropad, width, precision, 'x');
                sprintf(realbuffer, fmt, va_arg(vargs, int));
                appendstring(realbuffer);
                break;
            case 's':
            {
                /* unused, since we already have the result */
                (void) va_arg(vargs, char *);
                Py_UNICODE_COPY(s, PyUnicode_AS_UNICODE(*callresult),
                                PyUnicode_GET_SIZE(*callresult));
                s += PyUnicode_GET_SIZE(*callresult);
                /* We're done with the unicode()/repr() => forget it */
                Py_DECREF(*callresult);
                /* switch to next unicode()/repr() result */
                ++callresult;
                break;
            }
            case 'U':
            {
                PyObject *obj = va_arg(vargs, PyObject *);
                Py_ssize_t size = PyUnicode_GET_SIZE(obj);
                Py_UNICODE_COPY(s, PyUnicode_AS_UNICODE(obj), size);
                s += size;
                break;
            }
            case 'V':
            {
                PyObject *obj = va_arg(vargs, PyObject *);
                va_arg(vargs, const char *);
                if (obj) {
                    Py_ssize_t size = PyUnicode_GET_SIZE(obj);
                    Py_UNICODE_COPY(s, PyUnicode_AS_UNICODE(obj), size);
                    s += size;
                } else {
                    Py_UNICODE_COPY(s, PyUnicode_AS_UNICODE(*callresult),
                                    PyUnicode_GET_SIZE(*callresult));
                    s += PyUnicode_GET_SIZE(*callresult);
                    Py_DECREF(*callresult);
                }
                ++callresult;
                break;
            }
            case 'S':
            case 'R':
            case 'A':
            {
                Py_UNICODE *ucopy;
                Py_ssize_t usize;
                Py_ssize_t upos;
                /* unused, since we already have the result */
                (void) va_arg(vargs, PyObject *);
                ucopy = PyUnicode_AS_UNICODE(*callresult);
                usize = PyUnicode_GET_SIZE(*callresult);
                for (upos = 0; upos<usize;)
                    *s++ = ucopy[upos++];
                /* We're done with the unicode()/repr() => forget it */
                Py_DECREF(*callresult);
                /* switch to next unicode()/repr() result */
                ++callresult;
                break;
            }
            case 'p':
                sprintf(buffer, "%p", va_arg(vargs, void*));
                /* %p is ill-defined:  ensure leading 0x. */
                if (buffer[1] == 'X')
                    buffer[1] = 'x';
                else if (buffer[1] != 'x') {
                    memmove(buffer+2, buffer, strlen(buffer)+1);
                    buffer[0] = '0';
                    buffer[1] = 'x';
                }
                appendstring(buffer);
                break;
            case '%':
                *s++ = '%';
                break;
            default:
                appendstring(p);
                goto end;
            }
        }
        else
            *s++ = *f;
    }

  end:
    if (callresults)
        PyObject_Free(callresults);
    if (abuffer)
        PyObject_Free(abuffer);
    PyUnicode_Resize(&string, s - PyUnicode_AS_UNICODE(string));
    return string;
  fail:
    if (callresults) {
        PyObject **callresult2 = callresults;
        while (callresult2 < callresult) {
            Py_XDECREF(*callresult2);
            ++callresult2;
        }
        PyObject_Free(callresults);
    }
    if (abuffer)
        PyObject_Free(abuffer);
    return NULL;
}

#undef appendstring

PyObject *
PyUnicode_FromFormat(const char *format, ...)
{
    PyObject* ret;
    va_list vargs;

#ifdef HAVE_STDARG_PROTOTYPES
    va_start(vargs, format);
#else
    va_start(vargs);
#endif
    ret = PyUnicode_FromFormatV(format, vargs);
    va_end(vargs);
    return ret;
}

/* Helper function for PyUnicode_AsWideChar() and PyUnicode_AsWideCharString():
   convert a Unicode object to a wide character string.

   - If w is NULL: return the number of wide characters (including the nul
     character) required to convert the unicode object. Ignore size argument.

   - Otherwise: return the number of wide characters (excluding the nul
     character) written into w. Write at most size wide characters (including
     the nul character). */
static Py_ssize_t
unicode_aswidechar(PyUnicodeObject *unicode,
                   wchar_t *w,
                   Py_ssize_t size)
{
#if Py_UNICODE_SIZE == SIZEOF_WCHAR_T
    Py_ssize_t res;
    if (w != NULL) {
        res = PyUnicode_GET_SIZE(unicode);
        if (size > res)
            size = res + 1;
        else
            res = size;
        memcpy(w, unicode->str, size * sizeof(wchar_t));
        return res;
    }
    else
        return PyUnicode_GET_SIZE(unicode) + 1;
#elif Py_UNICODE_SIZE == 2 && SIZEOF_WCHAR_T == 4
    register const Py_UNICODE *u;
    const Py_UNICODE *uend;
    const wchar_t *worig, *wend;
    Py_ssize_t nchar;

    u = PyUnicode_AS_UNICODE(unicode);
    uend = u + PyUnicode_GET_SIZE(unicode);
    if (w != NULL) {
        worig = w;
        wend = w + size;
        while (u != uend && w != wend) {
            if (0xD800 <= u[0] && u[0] <= 0xDBFF
                && 0xDC00 <= u[1] && u[1] <= 0xDFFF)
            {
                *w = (((u[0] & 0x3FF) << 10) | (u[1] & 0x3FF)) + 0x10000;
                u += 2;
            }
            else {
                *w = *u;
                u++;
            }
            w++;
        }
        if (w != wend)
            *w = L'\0';
        return w - worig;
    }
    else {
        nchar = 1; /* nul character at the end */
        while (u != uend) {
            if (0xD800 <= u[0] && u[0] <= 0xDBFF
                && 0xDC00 <= u[1] && u[1] <= 0xDFFF)
                u += 2;
            else
                u++;
            nchar++;
        }
    }
    return nchar;
#elif Py_UNICODE_SIZE == 4 && SIZEOF_WCHAR_T == 2
    register Py_UNICODE *u, *uend, ordinal;
    register Py_ssize_t i;
    wchar_t *worig, *wend;
    Py_ssize_t nchar;

    u = PyUnicode_AS_UNICODE(unicode);
    uend = u + PyUnicode_GET_SIZE(u);
    if (w != NULL) {
        worig = w;
        wend = w + size;
        while (u != uend && w != wend) {
            ordinal = *u;
            if (ordinal > 0xffff) {
                ordinal -= 0x10000;
                *w++ = 0xD800 | (ordinal >> 10);
                *w++ = 0xDC00 | (ordinal & 0x3FF);
            }
            else
                *w++ = ordinal;
            u++;
        }
        if (w != wend)
            *w = 0;
        return w - worig;
    }
    else {
        nchar = 1; /* nul character */
        while (u != uend) {
            if (*u > 0xffff)
                nchar += 2;
            else
                nchar++;
            u++;
        }
        return nchar;
    }
#else
#  error "unsupported wchar_t and Py_UNICODE sizes, see issue #8670"
#endif
}

Py_ssize_t
PyUnicode_AsWideChar(PyObject *unicode,
                     wchar_t *w,
                     Py_ssize_t size)
{
    if (unicode == NULL) {
        PyErr_BadInternalCall();
        return -1;
    }
    return unicode_aswidechar((PyUnicodeObject*)unicode, w, size);
}

wchar_t*
PyUnicode_AsWideCharString(PyObject *unicode,
                           Py_ssize_t *size)
{
    wchar_t* buffer;
    Py_ssize_t buflen;

    if (unicode == NULL) {
        PyErr_BadInternalCall();
        return NULL;
    }

    buflen = unicode_aswidechar((PyUnicodeObject *)unicode, NULL, 0);
    if (PY_SSIZE_T_MAX / sizeof(wchar_t) < buflen) {
        PyErr_NoMemory();
        return NULL;
    }

    buffer = PyMem_MALLOC(buflen * sizeof(wchar_t));
    if (buffer == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    buflen = unicode_aswidechar((PyUnicodeObject *)unicode, buffer, buflen);
    if (size != NULL)
        *size = buflen;
    return buffer;
}

#endif

PyObject *PyUnicode_FromOrdinal(int ordinal)
{
    Py_UNICODE s[2];

    if (ordinal < 0 || ordinal > 0x10ffff) {
        PyErr_SetString(PyExc_ValueError,
                        "chr() arg not in range(0x110000)");
        return NULL;
    }

#ifndef Py_UNICODE_WIDE
    if (ordinal > 0xffff) {
        ordinal -= 0x10000;
        s[0] = 0xD800 | (ordinal >> 10);
        s[1] = 0xDC00 | (ordinal & 0x3FF);
        return PyUnicode_FromUnicode(s, 2);
    }
#endif

    s[0] = (Py_UNICODE)ordinal;
    return PyUnicode_FromUnicode(s, 1);
}

PyObject *PyUnicode_FromObject(register PyObject *obj)
{
    /* XXX Perhaps we should make this API an alias of
       PyObject_Str() instead ?! */
    if (PyUnicode_CheckExact(obj)) {
        Py_INCREF(obj);
        return obj;
    }
    if (PyUnicode_Check(obj)) {
        /* For a Unicode subtype that's not a Unicode object,
           return a true Unicode object with the same data. */
        return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(obj),
                                     PyUnicode_GET_SIZE(obj));
    }
    PyErr_Format(PyExc_TypeError,
                 "Can't convert '%.100s' object to str implicitly",
                 Py_TYPE(obj)->tp_name);
    return NULL;
}

PyObject *PyUnicode_FromEncodedObject(register PyObject *obj,
                                      const char *encoding,
                                      const char *errors)
{
    Py_buffer buffer;
    PyObject *v;

    if (obj == NULL) {
        PyErr_BadInternalCall();
        return NULL;
    }

    /* Decoding bytes objects is the most common case and should be fast */
    if (PyBytes_Check(obj)) {
        if (PyBytes_GET_SIZE(obj) == 0) {
            Py_INCREF(unicode_empty);
            v = (PyObject *) unicode_empty;
        }
        else {
            v = PyUnicode_Decode(
                    PyBytes_AS_STRING(obj), PyBytes_GET_SIZE(obj),
                    encoding, errors);
        }
        return v;
    }

    if (PyUnicode_Check(obj)) {
        PyErr_SetString(PyExc_TypeError,
                        "decoding str is not supported");
        return NULL;
    }

    /* Retrieve a bytes buffer view through the PEP 3118 buffer interface */
    if (PyObject_GetBuffer(obj, &buffer, PyBUF_SIMPLE) < 0) {
        PyErr_Format(PyExc_TypeError,
                     "coercing to str: need bytes, bytearray "
                     "or buffer-like object, %.80s found",
                     Py_TYPE(obj)->tp_name);
        return NULL;
    }

    if (buffer.len == 0) {
        Py_INCREF(unicode_empty);
        v = (PyObject *) unicode_empty;
    }
    else
        v = PyUnicode_Decode((char*) buffer.buf, buffer.len, encoding, errors);

    PyBuffer_Release(&buffer);
    return v;
}

/* Convert encoding to lower case and replace '_' with '-' in order to
   catch e.g. UTF_8. Return 0 on error (encoding is longer than lower_len-1),
   1 on success. */
static int
normalize_encoding(const char *encoding,
                   char *lower,
                   size_t lower_len)
{
    const char *e;
    char *l;
    char *l_end;

    e = encoding;
    l = lower;
    l_end = &lower[lower_len - 1];
    while (*e) {
        if (l == l_end)
            return 0;
        if (Py_ISUPPER(*e)) {
            *l++ = Py_TOLOWER(*e++);
        }
        else if (*e == '_') {
            *l++ = '-';
            e++;
        }
        else {
            *l++ = *e++;
        }
    }
    *l = '\0';
    return 1;
}

PyObject *PyUnicode_Decode(const char *s,
                           Py_ssize_t size,
                           const char *encoding,
                           const char *errors)
{
    PyObject *buffer = NULL, *unicode;
    Py_buffer info;
    char lower[11];  /* Enough for any encoding shortcut */

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Shortcuts for common default encodings */
    if (normalize_encoding(encoding, lower, sizeof(lower))) {
        if (strcmp(lower, "utf-8") == 0)
            return PyUnicode_DecodeUTF8(s, size, errors);
        else if ((strcmp(lower, "latin-1") == 0) ||
                 (strcmp(lower, "iso-8859-1") == 0))
            return PyUnicode_DecodeLatin1(s, size, errors);
#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)
        else if (strcmp(lower, "mbcs") == 0)
            return PyUnicode_DecodeMBCS(s, size, errors);
#endif
        else if (strcmp(lower, "ascii") == 0)
            return PyUnicode_DecodeASCII(s, size, errors);
        else if (strcmp(lower, "utf-16") == 0)
            return PyUnicode_DecodeUTF16(s, size, errors, 0);
        else if (strcmp(lower, "utf-32") == 0)
            return PyUnicode_DecodeUTF32(s, size, errors, 0);
    }

    /* Decode via the codec registry */
    buffer = NULL;
    if (PyBuffer_FillInfo(&info, NULL, (void *)s, size, 1, PyBUF_FULL_RO) < 0)
        goto onError;
    buffer = PyMemoryView_FromBuffer(&info);
    if (buffer == NULL)
        goto onError;
    unicode = PyCodec_Decode(buffer, encoding, errors);
    if (unicode == NULL)
        goto onError;
    if (!PyUnicode_Check(unicode)) {
        PyErr_Format(PyExc_TypeError,
                     "decoder did not return a str object (type=%.400s)",
                     Py_TYPE(unicode)->tp_name);
        Py_DECREF(unicode);
        goto onError;
    }
    Py_DECREF(buffer);
    return unicode;

  onError:
    Py_XDECREF(buffer);
    return NULL;
}

PyObject *PyUnicode_AsDecodedObject(PyObject *unicode,
                                    const char *encoding,
                                    const char *errors)
{
    PyObject *v;

    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Decode via the codec registry */
    v = PyCodec_Decode(unicode, encoding, errors);
    if (v == NULL)
        goto onError;
    return v;

  onError:
    return NULL;
}

PyObject *PyUnicode_AsDecodedUnicode(PyObject *unicode,
                                     const char *encoding,
                                     const char *errors)
{
    PyObject *v;

    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Decode via the codec registry */
    v = PyCodec_Decode(unicode, encoding, errors);
    if (v == NULL)
        goto onError;
    if (!PyUnicode_Check(v)) {
        PyErr_Format(PyExc_TypeError,
                     "decoder did not return a str object (type=%.400s)",
                     Py_TYPE(v)->tp_name);
        Py_DECREF(v);
        goto onError;
    }
    return v;

  onError:
    return NULL;
}

PyObject *PyUnicode_Encode(const Py_UNICODE *s,
                           Py_ssize_t size,
                           const char *encoding,
                           const char *errors)
{
    PyObject *v, *unicode;

    unicode = PyUnicode_FromUnicode(s, size);
    if (unicode == NULL)
        return NULL;
    v = PyUnicode_AsEncodedString(unicode, encoding, errors);
    Py_DECREF(unicode);
    return v;
}

PyObject *PyUnicode_AsEncodedObject(PyObject *unicode,
                                    const char *encoding,
                                    const char *errors)
{
    PyObject *v;

    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Encode via the codec registry */
    v = PyCodec_Encode(unicode, encoding, errors);
    if (v == NULL)
        goto onError;
    return v;

  onError:
    return NULL;
}

PyObject *
PyUnicode_EncodeFSDefault(PyObject *unicode)
{
#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)
    return PyUnicode_EncodeMBCS(PyUnicode_AS_UNICODE(unicode),
                                PyUnicode_GET_SIZE(unicode),
                                NULL);
#elif defined(__APPLE__)
    return PyUnicode_EncodeUTF8(PyUnicode_AS_UNICODE(unicode),
                                PyUnicode_GET_SIZE(unicode),
                                "surrogateescape");
#else
    PyInterpreterState *interp = PyThreadState_GET()->interp;
    /* Bootstrap check: if the filesystem codec is implemented in Python, we
       cannot use it to encode and decode filenames before it is loaded. Load
       the Python codec requires to encode at least its own filename. Use the C
       version of the locale codec until the codec registry is initialized and
       the Python codec is loaded.

       Py_FileSystemDefaultEncoding is shared between all interpreters, we
       cannot only rely on it: check also interp->fscodec_initialized for
       subinterpreters. */
    if (Py_FileSystemDefaultEncoding && interp->fscodec_initialized) {
        return PyUnicode_AsEncodedString(unicode,
                                         Py_FileSystemDefaultEncoding,
                                         "surrogateescape");
    }
    else {
        /* locale encoding with surrogateescape */
        wchar_t *wchar;
        char *bytes;
        PyObject *bytes_obj;
        size_t error_pos;

        wchar = PyUnicode_AsWideCharString(unicode, NULL);
        if (wchar == NULL)
            return NULL;
        bytes = _Py_wchar2char(wchar, &error_pos);
        if (bytes == NULL) {
            if (error_pos != (size_t)-1) {
                char *errmsg = strerror(errno);
                PyObject *exc = NULL;
                if (errmsg == NULL)
                    errmsg = "Py_wchar2char() failed";
                raise_encode_exception(&exc,
                    "filesystemencoding",
                    PyUnicode_AS_UNICODE(unicode), PyUnicode_GET_SIZE(unicode),
                    error_pos, error_pos+1,
                    errmsg);
                Py_XDECREF(exc);
            }
            else
                PyErr_NoMemory();
            PyMem_Free(wchar);
            return NULL;
        }
        PyMem_Free(wchar);

        bytes_obj = PyBytes_FromString(bytes);
        PyMem_Free(bytes);
        return bytes_obj;
    }
#endif
}

PyObject *PyUnicode_AsEncodedString(PyObject *unicode,
                                    const char *encoding,
                                    const char *errors)
{
    PyObject *v;
    char lower[11];  /* Enough for any encoding shortcut */

    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Shortcuts for common default encodings */
    if (normalize_encoding(encoding, lower, sizeof(lower))) {
        if (strcmp(lower, "utf-8") == 0)
            return PyUnicode_EncodeUTF8(PyUnicode_AS_UNICODE(unicode),
                                        PyUnicode_GET_SIZE(unicode),
                                        errors);
        else if ((strcmp(lower, "latin-1") == 0) ||
                 (strcmp(lower, "iso-8859-1") == 0))
            return PyUnicode_EncodeLatin1(PyUnicode_AS_UNICODE(unicode),
                                          PyUnicode_GET_SIZE(unicode),
                                          errors);
#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)
        else if (strcmp(lower, "mbcs") == 0)
            return PyUnicode_EncodeMBCS(PyUnicode_AS_UNICODE(unicode),
                                        PyUnicode_GET_SIZE(unicode),
                                        errors);
#endif
        else if (strcmp(lower, "ascii") == 0)
            return PyUnicode_EncodeASCII(PyUnicode_AS_UNICODE(unicode),
                                         PyUnicode_GET_SIZE(unicode),
                                         errors);
    }
    /* During bootstrap, we may need to find the encodings
       package, to load the file system encoding, and require the
       file system encoding in order to load the encodings
       package.

       Break out of this dependency by assuming that the path to
       the encodings module is ASCII-only.  XXX could try wcstombs
       instead, if the file system encoding is the locale's
       encoding. */
    if (Py_FileSystemDefaultEncoding &&
             strcmp(encoding, Py_FileSystemDefaultEncoding) == 0 &&
             !PyThreadState_GET()->interp->codecs_initialized)
        return PyUnicode_EncodeASCII(PyUnicode_AS_UNICODE(unicode),
                                     PyUnicode_GET_SIZE(unicode),
                                     errors);

    /* Encode via the codec registry */
    v = PyCodec_Encode(unicode, encoding, errors);
    if (v == NULL)
        return NULL;

    /* The normal path */
    if (PyBytes_Check(v))
        return v;

    /* If the codec returns a buffer, raise a warning and convert to bytes */
    if (PyByteArray_Check(v)) {
        int error;
        PyObject *b;

        error = PyErr_WarnFormat(PyExc_RuntimeWarning, 1,
            "encoder %s returned bytearray instead of bytes",
            encoding);
        if (error) {
            Py_DECREF(v);
            return NULL;
        }

        b = PyBytes_FromStringAndSize(PyByteArray_AS_STRING(v), Py_SIZE(v));
        Py_DECREF(v);
        return b;
    }

    PyErr_Format(PyExc_TypeError,
                 "encoder did not return a bytes object (type=%.400s)",
                 Py_TYPE(v)->tp_name);
    Py_DECREF(v);
    return NULL;
}

PyObject *PyUnicode_AsEncodedUnicode(PyObject *unicode,
                                     const char *encoding,
                                     const char *errors)
{
    PyObject *v;

    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }

    if (encoding == NULL)
        encoding = PyUnicode_GetDefaultEncoding();

    /* Encode via the codec registry */
    v = PyCodec_Encode(unicode, encoding, errors);
    if (v == NULL)
        goto onError;
    if (!PyUnicode_Check(v)) {
        PyErr_Format(PyExc_TypeError,
                     "encoder did not return an str object (type=%.400s)",
                     Py_TYPE(v)->tp_name);
        Py_DECREF(v);
        goto onError;
    }
    return v;

  onError:
    return NULL;
}

PyObject *_PyUnicode_AsDefaultEncodedString(PyObject *unicode,
                                            const char *errors)
{
    PyObject *v = ((PyUnicodeObject *)unicode)->defenc;
    if (v)
        return v;
    if (errors != NULL)
        Py_FatalError("non-NULL encoding in _PyUnicode_AsDefaultEncodedString");
    v = PyUnicode_EncodeUTF8(PyUnicode_AS_UNICODE(unicode),
                             PyUnicode_GET_SIZE(unicode),
                             NULL);
    if (!v)
        return NULL;
    ((PyUnicodeObject *)unicode)->defenc = v;
    return v;
}

PyObject*
PyUnicode_DecodeFSDefault(const char *s) {
    Py_ssize_t size = (Py_ssize_t)strlen(s);
    return PyUnicode_DecodeFSDefaultAndSize(s, size);
}

PyObject*
PyUnicode_DecodeFSDefaultAndSize(const char *s, Py_ssize_t size)
{
#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)
    return PyUnicode_DecodeMBCS(s, size, NULL);
#elif defined(__APPLE__)
    return PyUnicode_DecodeUTF8(s, size, "surrogateescape");
#else
    PyInterpreterState *interp = PyThreadState_GET()->interp;
    /* Bootstrap check: if the filesystem codec is implemented in Python, we
       cannot use it to encode and decode filenames before it is loaded. Load
       the Python codec requires to encode at least its own filename. Use the C
       version of the locale codec until the codec registry is initialized and
       the Python codec is loaded.

       Py_FileSystemDefaultEncoding is shared between all interpreters, we
       cannot only rely on it: check also interp->fscodec_initialized for
       subinterpreters. */
    if (Py_FileSystemDefaultEncoding && interp->fscodec_initialized) {
        return PyUnicode_Decode(s, size,
                                Py_FileSystemDefaultEncoding,
                                "surrogateescape");
    }
    else {
        /* locale encoding with surrogateescape */
        wchar_t *wchar;
        PyObject *unicode;
        size_t len;

        if (s[size] != '\0' || size != strlen(s)) {
            PyErr_SetString(PyExc_TypeError, "embedded NUL character");
            return NULL;
        }

        wchar = _Py_char2wchar(s, &len);
        if (wchar == NULL)
            return PyErr_NoMemory();

        unicode = PyUnicode_FromWideChar(wchar, len);
        PyMem_Free(wchar);
        return unicode;
    }
#endif
}


int
PyUnicode_FSConverter(PyObject* arg, void* addr)
{
    PyObject *output = NULL;
    Py_ssize_t size;
    void *data;
    if (arg == NULL) {
        Py_DECREF(*(PyObject**)addr);
        return 1;
    }
    if (PyBytes_Check(arg)) {
        output = arg;
        Py_INCREF(output);
    }
    else {
        arg = PyUnicode_FromObject(arg);
        if (!arg)
            return 0;
        output = PyUnicode_EncodeFSDefault(arg);
        Py_DECREF(arg);
        if (!output)
            return 0;
        if (!PyBytes_Check(output)) {
            Py_DECREF(output);
            PyErr_SetString(PyExc_TypeError, "encoder failed to return bytes");
            return 0;
        }
    }
    size = PyBytes_GET_SIZE(output);
    data = PyBytes_AS_STRING(output);
    if (size != strlen(data)) {
        PyErr_SetString(PyExc_TypeError, "embedded NUL character");
        Py_DECREF(output);
        return 0;
    }
    *(PyObject**)addr = output;
    return Py_CLEANUP_SUPPORTED;
}


int
PyUnicode_FSDecoder(PyObject* arg, void* addr)
{
    PyObject *output = NULL;
    Py_ssize_t size;
    void *data;
    if (arg == NULL) {
        Py_DECREF(*(PyObject**)addr);
        return 1;
    }
    if (PyUnicode_Check(arg)) {
        output = arg;
        Py_INCREF(output);
    }
    else {
        arg = PyBytes_FromObject(arg);
        if (!arg)
            return 0;
        output = PyUnicode_DecodeFSDefaultAndSize(PyBytes_AS_STRING(arg),
                                                  PyBytes_GET_SIZE(arg));
        Py_DECREF(arg);
        if (!output)
            return 0;
        if (!PyUnicode_Check(output)) {
            Py_DECREF(output);
            PyErr_SetString(PyExc_TypeError, "decoder failed to return unicode");
            return 0;
        }
    }
    size = PyUnicode_GET_SIZE(output);
    data = PyUnicode_AS_UNICODE(output);
    if (size != Py_UNICODE_strlen(data)) {
        PyErr_SetString(PyExc_TypeError, "embedded NUL character");
        Py_DECREF(output);
        return 0;
    }
    *(PyObject**)addr = output;
    return Py_CLEANUP_SUPPORTED;
}


char*
_PyUnicode_AsStringAndSize(PyObject *unicode, Py_ssize_t *psize)
{
    PyObject *bytes;
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    bytes = _PyUnicode_AsDefaultEncodedString(unicode, NULL);
    if (bytes == NULL)
        return NULL;
    if (psize != NULL)
        *psize = PyBytes_GET_SIZE(bytes);
    return PyBytes_AS_STRING(bytes);
}

char*
_PyUnicode_AsString(PyObject *unicode)
{
    return _PyUnicode_AsStringAndSize(unicode, NULL);
}

Py_UNICODE *PyUnicode_AsUnicode(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }
    return PyUnicode_AS_UNICODE(unicode);

  onError:
    return NULL;
}

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        goto onError;
    }
    return PyUnicode_GET_SIZE(unicode);

  onError:
    return -1;
}

const char *PyUnicode_GetDefaultEncoding(void)
{
    return "utf-8";
}

/* create or adjust a UnicodeDecodeError */
static void
make_decode_exception(PyObject **exceptionObject,
                      const char *encoding,
                      const char *input, Py_ssize_t length,
                      Py_ssize_t startpos, Py_ssize_t endpos,
                      const char *reason)
{
    if (*exceptionObject == NULL) {
        *exceptionObject = PyUnicodeDecodeError_Create(
            encoding, input, length, startpos, endpos, reason);
    }
    else {
        if (PyUnicodeDecodeError_SetStart(*exceptionObject, startpos))
            goto onError;
        if (PyUnicodeDecodeError_SetEnd(*exceptionObject, endpos))
            goto onError;
        if (PyUnicodeDecodeError_SetReason(*exceptionObject, reason))
            goto onError;
    }
    return;

onError:
    Py_DECREF(*exceptionObject);
    *exceptionObject = NULL;
}

/* error handling callback helper:
   build arguments, call the callback and check the arguments,
   if no exception occurred, copy the replacement to the output
   and adjust various state variables.
   return 0 on success, -1 on error
*/

static
int unicode_decode_call_errorhandler(const char *errors, PyObject **errorHandler,
                                     const char *encoding, const char *reason,
                                     const char **input, const char **inend, Py_ssize_t *startinpos,
                                     Py_ssize_t *endinpos, PyObject **exceptionObject, const char **inptr,
                                     PyUnicodeObject **output, Py_ssize_t *outpos, Py_UNICODE **outptr)
{
    static char *argparse = "O!n;decoding error handler must return (str, int) tuple";

    PyObject *restuple = NULL;
    PyObject *repunicode = NULL;
    Py_ssize_t outsize = PyUnicode_GET_SIZE(*output);
    Py_ssize_t insize;
    Py_ssize_t requiredsize;
    Py_ssize_t newpos;
    Py_UNICODE *repptr;
    PyObject *inputobj = NULL;
    Py_ssize_t repsize;
    int res = -1;

    if (*errorHandler == NULL) {
        *errorHandler = PyCodec_LookupError(errors);
        if (*errorHandler == NULL)
            goto onError;
    }

    make_decode_exception(exceptionObject,
        encoding,
        *input, *inend - *input,
        *startinpos, *endinpos,
        reason);
    if (*exceptionObject == NULL)
        goto onError;

    restuple = PyObject_CallFunctionObjArgs(*errorHandler, *exceptionObject, NULL);
    if (restuple == NULL)
        goto onError;
    if (!PyTuple_Check(restuple)) {
        PyErr_SetString(PyExc_TypeError, &argparse[4]);
        goto onError;
    }
    if (!PyArg_ParseTuple(restuple, argparse, &PyUnicode_Type, &repunicode, &newpos))
        goto onError;

    /* Copy back the bytes variables, which might have been modified by the
       callback */
    inputobj = PyUnicodeDecodeError_GetObject(*exceptionObject);
    if (!inputobj)
        goto onError;
    if (!PyBytes_Check(inputobj)) {
        PyErr_Format(PyExc_TypeError, "exception attribute object must be bytes");
    }
    *input = PyBytes_AS_STRING(inputobj);
    insize = PyBytes_GET_SIZE(inputobj);
    *inend = *input + insize;
    /* we can DECREF safely, as the exception has another reference,
       so the object won't go away. */
    Py_DECREF(inputobj);

    if (newpos<0)
        newpos = insize+newpos;
    if (newpos<0 || newpos>insize) {
        PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", newpos);
        goto onError;
    }

    /* need more space? (at least enough for what we
       have+the replacement+the rest of the string (starting
       at the new input position), so we won't have to check space
       when there are no errors in the rest of the string) */
    repptr = PyUnicode_AS_UNICODE(repunicode);
    repsize = PyUnicode_GET_SIZE(repunicode);
    requiredsize = *outpos + repsize + insize-newpos;
    if (requiredsize > outsize) {
        if (requiredsize<2*outsize)
            requiredsize = 2*outsize;
        if (_PyUnicode_Resize(output, requiredsize) < 0)
            goto onError;
        *outptr = PyUnicode_AS_UNICODE(*output) + *outpos;
    }
    *endinpos = newpos;
    *inptr = *input + newpos;
    Py_UNICODE_COPY(*outptr, repptr, repsize);
    *outptr += repsize;
    *outpos += repsize;

    /* we made it! */
    res = 0;

  onError:
    Py_XDECREF(restuple);
    return res;
}

/* --- UTF-7 Codec -------------------------------------------------------- */

/* See RFC2152 for details.  We encode conservatively and decode liberally. */

/* Three simple macros defining base-64. */

/* Is c a base-64 character? */

#define IS_BASE64(c) \
    (((c) >= 'A' && (c) <= 'Z') ||     \
     ((c) >= 'a' && (c) <= 'z') ||     \
     ((c) >= '0' && (c) <= '9') ||     \
     (c) == '+' || (c) == '/')

/* given that c is a base-64 character, what is its base-64 value? */

#define FROM_BASE64(c)                                                  \
    (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' :                           \
     ((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 26 :                      \
     ((c) >= '0' && (c) <= '9') ? (c) - '0' + 52 :                      \
     (c) == '+' ? 62 : 63)

/* What is the base-64 character of the bottom 6 bits of n? */

#define TO_BASE64(n)  \
    ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"[(n) & 0x3f])

/* DECODE_DIRECT: this byte encountered in a UTF-7 string should be
 * decoded as itself.  We are permissive on decoding; the only ASCII
 * byte not decoding to itself is the + which begins a base64
 * string. */

#define DECODE_DIRECT(c)                                \
    ((c) <= 127 && (c) != '+')

/* The UTF-7 encoder treats ASCII characters differently according to
 * whether they are Set D, Set O, Whitespace, or special (i.e. none of
 * the above).  See RFC2152.  This array identifies these different
 * sets:
 * 0 : "Set D"
 *     alphanumeric and '(),-./:?
 * 1 : "Set O"
 *     !"#$%&*;<=>@[]^_`{|}
 * 2 : "whitespace"
 *     ht nl cr sp
 * 3 : special (must be base64 encoded)
 *     everything else (i.e. +\~ and non-printing codes 0-8 11-12 14-31 127)
 */

static
char utf7_category[128] = {
/* nul soh stx etx eot enq ack bel bs  ht  nl  vt  np  cr  so  si  */
    3,  3,  3,  3,  3,  3,  3,  3,  3,  2,  2,  3,  3,  2,  3,  3,
/* dle dc1 dc2 dc3 dc4 nak syn etb can em  sub esc fs  gs  rs  us  */
    3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,
/* sp   !   "   #   $   %   &   '   (   )   *   +   ,   -   .   /  */
    2,  1,  1,  1,  1,  1,  1,  0,  0,  0,  1,  3,  0,  0,  0,  0,
/*  0   1   2   3   4   5   6   7   8   9   :   ;   <   =   >   ?  */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  1,  0,
/*  @   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O  */
    1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
/*  P   Q   R   S   T   U   V   W   X   Y   Z   [   \   ]   ^   _  */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  3,  1,  1,  1,
/*  `   a   b   c   d   e   f   g   h   i   j   k   l   m   n   o  */
    1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
/*  p   q   r   s   t   u   v   w   x   y   z   {   |   }   ~  del */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  3,  3,
};

/* ENCODE_DIRECT: this character should be encoded as itself.  The
 * answer depends on whether we are encoding set O as itself, and also
 * on whether we are encoding whitespace as itself.  RFC2152 makes it
 * clear that the answers to these questions vary between
 * applications, so this code needs to be flexible.  */

#define ENCODE_DIRECT(c, directO, directWS)             \
    ((c) < 128 && (c) > 0 &&                            \
     ((utf7_category[(c)] == 0) ||                      \
      (directWS && (utf7_category[(c)] == 2)) ||        \
      (directO && (utf7_category[(c)] == 1))))

PyObject *PyUnicode_DecodeUTF7(const char *s,
                               Py_ssize_t size,
                               const char *errors)
{
    return PyUnicode_DecodeUTF7Stateful(s, size, errors, NULL);
}

/* The decoder.  The only state we preserve is our read position,
 * i.e. how many characters we have consumed.  So if we end in the
 * middle of a shift sequence we have to back off the read position
 * and the output to the beginning of the sequence, otherwise we lose
 * all the shift state (seen bits, number of bits seen, high
 * surrogate). */

PyObject *PyUnicode_DecodeUTF7Stateful(const char *s,
                                       Py_ssize_t size,
                                       const char *errors,
                                       Py_ssize_t *consumed)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    const char *e;
    PyUnicodeObject *unicode;
    Py_UNICODE *p;
    const char *errmsg = "";
    int inShift = 0;
    Py_UNICODE *shiftOutStart;
    unsigned int base64bits = 0;
    unsigned long base64buffer = 0;
    Py_UNICODE surrogate = 0;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;
    if (size == 0) {
        if (consumed)
            *consumed = 0;
        return (PyObject *)unicode;
    }

    p = unicode->str;
    shiftOutStart = p;
    e = s + size;

    while (s < e) {
        Py_UNICODE ch;
      restart:
        ch = (unsigned char) *s;

        if (inShift) { /* in a base-64 section */
            if (IS_BASE64(ch)) { /* consume a base-64 character */
                base64buffer = (base64buffer << 6) | FROM_BASE64(ch);
                base64bits += 6;
                s++;
                if (base64bits >= 16) {
                    /* we have enough bits for a UTF-16 value */
                    Py_UNICODE outCh = (Py_UNICODE)
                                       (base64buffer >> (base64bits-16));
                    base64bits -= 16;
                    base64buffer &= (1 << base64bits) - 1; /* clear high bits */
                    if (surrogate) {
                        /* expecting a second surrogate */
                        if (outCh >= 0xDC00 && outCh <= 0xDFFF) {
#ifdef Py_UNICODE_WIDE
                            *p++ = (((surrogate & 0x3FF)<<10)
                                    | (outCh & 0x3FF)) + 0x10000;
#else
                            *p++ = surrogate;
                            *p++ = outCh;
#endif
                            surrogate = 0;
                        }
                        else {
                            surrogate = 0;
                            errmsg = "second surrogate missing";
                            goto utf7Error;
                        }
                    }
                    else if (outCh >= 0xD800 && outCh <= 0xDBFF) {
                        /* first surrogate */
                        surrogate = outCh;
                    }
                    else if (outCh >= 0xDC00 && outCh <= 0xDFFF) {
                        errmsg = "unexpected second surrogate";
                        goto utf7Error;
                    }
                    else {
                        *p++ = outCh;
                    }
                }
            }
            else { /* now leaving a base-64 section */
                inShift = 0;
                s++;
                if (surrogate) {
                    errmsg = "second surrogate missing at end of shift sequence";
                    goto utf7Error;
                }
                if (base64bits > 0) { /* left-over bits */
                    if (base64bits >= 6) {
                        /* We've seen at least one base-64 character */
                        errmsg = "partial character in shift sequence";
                        goto utf7Error;
                    }
                    else {
                        /* Some bits remain; they should be zero */
                        if (base64buffer != 0) {
                            errmsg = "non-zero padding bits in shift sequence";
                            goto utf7Error;
                        }
                    }
                }
                if (ch != '-') {
                    /* '-' is absorbed; other terminating
                       characters are preserved */
                    *p++ = ch;
                }
            }
        }
        else if ( ch == '+' ) {
            startinpos = s-starts;
            s++; /* consume '+' */
            if (s < e && *s == '-') { /* '+-' encodes '+' */
                s++;
                *p++ = '+';
            }
            else { /* begin base64-encoded section */
                inShift = 1;
                shiftOutStart = p;
                base64bits = 0;
            }
        }
        else if (DECODE_DIRECT(ch)) { /* character decodes as itself */
            *p++ = ch;
            s++;
        }
        else {
            startinpos = s-starts;
            s++;
            errmsg = "unexpected special character";
            goto utf7Error;
        }
        continue;
utf7Error:
        outpos = p-PyUnicode_AS_UNICODE(unicode);
        endinpos = s-starts;
        if (unicode_decode_call_errorhandler(
                errors, &errorHandler,
                "utf7", errmsg,
                &starts, &e, &startinpos, &endinpos, &exc, &s,
                &unicode, &outpos, &p))
            goto onError;
    }

    /* end of string */

    if (inShift && !consumed) { /* in shift sequence, no more to follow */
        /* if we're in an inconsistent state, that's an error */
        if (surrogate ||
                (base64bits >= 6) ||
                (base64bits > 0 && base64buffer != 0)) {
            outpos = p-PyUnicode_AS_UNICODE(unicode);
            endinpos = size;
            if (unicode_decode_call_errorhandler(
                    errors, &errorHandler,
                    "utf7", "unterminated shift sequence",
                    &starts, &e, &startinpos, &endinpos, &exc, &s,
                    &unicode, &outpos, &p))
                goto onError;
            if (s < e)
                goto restart;
        }
    }

    /* return state */
    if (consumed) {
        if (inShift) {
            p = shiftOutStart; /* back off output */
            *consumed = startinpos;
        }
        else {
            *consumed = s-starts;
        }
    }

    if (_PyUnicode_Resize(&unicode, p - PyUnicode_AS_UNICODE(unicode)) < 0)
        goto onError;

    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)unicode;

  onError:
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    Py_DECREF(unicode);
    return NULL;
}


PyObject *PyUnicode_EncodeUTF7(const Py_UNICODE *s,
                               Py_ssize_t size,
                               int base64SetO,
                               int base64WhiteSpace,
                               const char *errors)
{
    PyObject *v;
    /* It might be possible to tighten this worst case */
    Py_ssize_t allocated = 8 * size;
    int inShift = 0;
    Py_ssize_t i = 0;
    unsigned int base64bits = 0;
    unsigned long base64buffer = 0;
    char * out;
    char * start;

    if (size == 0)
        return PyBytes_FromStringAndSize(NULL, 0);

    if (allocated / 8 != size)
        return PyErr_NoMemory();

    v = PyBytes_FromStringAndSize(NULL, allocated);
    if (v == NULL)
        return NULL;

    start = out = PyBytes_AS_STRING(v);
    for (;i < size; ++i) {
        Py_UNICODE ch = s[i];

        if (inShift) {
            if (ENCODE_DIRECT(ch, !base64SetO, !base64WhiteSpace)) {
                /* shifting out */
                if (base64bits) { /* output remaining bits */
                    *out++ = TO_BASE64(base64buffer << (6-base64bits));
                    base64buffer = 0;
                    base64bits = 0;
                }
                inShift = 0;
                /* Characters not in the BASE64 set implicitly unshift the sequence
                   so no '-' is required, except if the character is itself a '-' */
                if (IS_BASE64(ch) || ch == '-') {
                    *out++ = '-';
                }
                *out++ = (char) ch;
            }
            else {
                goto encode_char;
            }
        }
        else { /* not in a shift sequence */
            if (ch == '+') {
                *out++ = '+';
                        *out++ = '-';
            }
            else if (ENCODE_DIRECT(ch, !base64SetO, !base64WhiteSpace)) {
                *out++ = (char) ch;
            }
            else {
                *out++ = '+';
                inShift = 1;
                goto encode_char;
            }
        }
        continue;
encode_char:
#ifdef Py_UNICODE_WIDE
        if (ch >= 0x10000) {
            /* code first surrogate */
            base64bits += 16;
            base64buffer = (base64buffer << 16) | 0xd800 | ((ch-0x10000) >> 10);
            while (base64bits >= 6) {
                *out++ = TO_BASE64(base64buffer >> (base64bits-6));
                base64bits -= 6;
            }
            /* prepare second surrogate */
            ch =  0xDC00 | ((ch-0x10000) & 0x3FF);
        }
#endif
        base64bits += 16;
        base64buffer = (base64buffer << 16) | ch;
        while (base64bits >= 6) {
            *out++ = TO_BASE64(base64buffer >> (base64bits-6));
            base64bits -= 6;
        }
    }
    if (base64bits)
        *out++= TO_BASE64(base64buffer << (6-base64bits) );
    if (inShift)
        *out++ = '-';
    if (_PyBytes_Resize(&v, out - start) < 0)
        return NULL;
    return v;
}

#undef IS_BASE64
#undef FROM_BASE64
#undef TO_BASE64
#undef DECODE_DIRECT
#undef ENCODE_DIRECT

/* --- UTF-8 Codec -------------------------------------------------------- */

static
char utf8_code_length[256] = {
    /* Map UTF-8 encoded prefix byte to sequence length.  Zero means
       illegal prefix.  See RFC 3629 for details */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 00-0F */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 70-7F */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 80-8F */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* B0-BF */
    0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* C0-C1 + C2-CF */
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* D0-DF */
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* E0-EF */
    4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  /* F0-F4 + F5-FF */
};

PyObject *PyUnicode_DecodeUTF8(const char *s,
                               Py_ssize_t size,
                               const char *errors)
{
    return PyUnicode_DecodeUTF8Stateful(s, size, errors, NULL);
}

/* Mask to check or force alignment of a pointer to C 'long' boundaries */
#define LONG_PTR_MASK (size_t) (SIZEOF_LONG - 1)

/* Mask to quickly check whether a C 'long' contains a
   non-ASCII, UTF8-encoded char. */
#if (SIZEOF_LONG == 8)
# define ASCII_CHAR_MASK 0x8080808080808080L
#elif (SIZEOF_LONG == 4)
# define ASCII_CHAR_MASK 0x80808080L
#else
# error C 'long' size should be either 4 or 8!
#endif

PyObject *PyUnicode_DecodeUTF8Stateful(const char *s,
                                       Py_ssize_t size,
                                       const char *errors,
                                       Py_ssize_t *consumed)
{
    const char *starts = s;
    int n;
    int k;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    const char *e, *aligned_end;
    PyUnicodeObject *unicode;
    Py_UNICODE *p;
    const char *errmsg = "";
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    /* Note: size will always be longer than the resulting Unicode
       character count */
    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;
    if (size == 0) {
        if (consumed)
            *consumed = 0;
        return (PyObject *)unicode;
    }

    /* Unpack UTF-8 encoded data */
    p = unicode->str;
    e = s + size;
    aligned_end = (const char *) ((size_t) e & ~LONG_PTR_MASK);

    while (s < e) {
        Py_UCS4 ch = (unsigned char)*s;

        if (ch < 0x80) {
            /* Fast path for runs of ASCII characters. Given that common UTF-8
               input will consist of an overwhelming majority of ASCII
               characters, we try to optimize for this case by checking
               as many characters as a C 'long' can contain.
               First, check if we can do an aligned read, as most CPUs have
               a penalty for unaligned reads.
            */
            if (!((size_t) s & LONG_PTR_MASK)) {
                /* Help register allocation */
                register const char *_s = s;
                register Py_UNICODE *_p = p;
                while (_s < aligned_end) {
                    /* Read a whole long at a time (either 4 or 8 bytes),
                       and do a fast unrolled copy if it only contains ASCII
                       characters. */
                    unsigned long data = *(unsigned long *) _s;
                    if (data & ASCII_CHAR_MASK)
                        break;
                    _p[0] = (unsigned char) _s[0];
                    _p[1] = (unsigned char) _s[1];
                    _p[2] = (unsigned char) _s[2];
                    _p[3] = (unsigned char) _s[3];
#if (SIZEOF_LONG == 8)
                    _p[4] = (unsigned char) _s[4];
                    _p[5] = (unsigned char) _s[5];
                    _p[6] = (unsigned char) _s[6];
                    _p[7] = (unsigned char) _s[7];
#endif
                    _s += SIZEOF_LONG;
                    _p += SIZEOF_LONG;
                }
                s = _s;
                p = _p;
                if (s == e)
                    break;
                ch = (unsigned char)*s;
            }
        }

        if (ch < 0x80) {
            *p++ = (Py_UNICODE)ch;
            s++;
            continue;
        }

        n = utf8_code_length[ch];

        if (s + n > e) {
            if (consumed)
                break;
            else {
                errmsg = "unexpected end of data";
                startinpos = s-starts;
                endinpos = startinpos+1;
                for (k=1; (k < size-startinpos) && ((s[k]&0xC0) == 0x80); k++)
                    endinpos++;
                goto utf8Error;
            }
        }

        switch (n) {

        case 0:
            errmsg = "invalid start byte";
            startinpos = s-starts;
            endinpos = startinpos+1;
            goto utf8Error;

        case 1:
            errmsg = "internal error";
            startinpos = s-starts;
            endinpos = startinpos+1;
            goto utf8Error;

        case 2:
            if ((s[1] & 0xc0) != 0x80) {
                errmsg = "invalid continuation byte";
                startinpos = s-starts;
                endinpos = startinpos + 1;
                goto utf8Error;
            }
            ch = ((s[0] & 0x1f) << 6) + (s[1] & 0x3f);
            assert ((ch > 0x007F) && (ch <= 0x07FF));
            *p++ = (Py_UNICODE)ch;
            break;

        case 3:
            /* Decoding UTF-8 sequences in range \xed\xa0\x80-\xed\xbf\xbf
               will result in surrogates in range d800-dfff. Surrogates are
               not valid UTF-8 so they are rejected.
               See http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf
               (table 3-7) and http://www.rfc-editor.org/rfc/rfc3629.txt */
            if ((s[1] & 0xc0) != 0x80 ||
                (s[2] & 0xc0) != 0x80 ||
                ((unsigned char)s[0] == 0xE0 &&
                 (unsigned char)s[1] < 0xA0) ||
                ((unsigned char)s[0] == 0xED &&
                 (unsigned char)s[1] > 0x9F)) {
                errmsg = "invalid continuation byte";
                startinpos = s-starts;
                endinpos = startinpos + 1;

                /* if s[1] first two bits are 1 and 0, then the invalid
                   continuation byte is s[2], so increment endinpos by 1,
                   if not, s[1] is invalid and endinpos doesn't need to
                   be incremented. */
                if ((s[1] & 0xC0) == 0x80)
                    endinpos++;
                goto utf8Error;
            }
            ch = ((s[0] & 0x0f) << 12) + ((s[1] & 0x3f) << 6) + (s[2] & 0x3f);
            assert ((ch > 0x07FF) && (ch <= 0xFFFF));
            *p++ = (Py_UNICODE)ch;
            break;

        case 4:
            if ((s[1] & 0xc0) != 0x80 ||
                (s[2] & 0xc0) != 0x80 ||
                (s[3] & 0xc0) != 0x80 ||
                ((unsigned char)s[0] == 0xF0 &&
                 (unsigned char)s[1] < 0x90) ||
                ((unsigned char)s[0] == 0xF4 &&
                 (unsigned char)s[1] > 0x8F)) {
                errmsg = "invalid continuation byte";
                startinpos = s-starts;
                endinpos = startinpos + 1;
                if ((s[1] & 0xC0) == 0x80) {
                    endinpos++;
                    if ((s[2] & 0xC0) == 0x80)
                        endinpos++;
                }
                goto utf8Error;
            }
            ch = ((s[0] & 0x7) << 18) + ((s[1] & 0x3f) << 12) +
                 ((s[2] & 0x3f) << 6) + (s[3] & 0x3f);
            assert ((ch > 0xFFFF) && (ch <= 0x10ffff));

#ifdef Py_UNICODE_WIDE
            *p++ = (Py_UNICODE)ch;
#else
            /*  compute and append the two surrogates: */

            /*  translate from 10000..10FFFF to 0..FFFF */
            ch -= 0x10000;

            /*  high surrogate = top 10 bits added to D800 */
            *p++ = (Py_UNICODE)(0xD800 + (ch >> 10));

            /*  low surrogate = bottom 10 bits added to DC00 */
            *p++ = (Py_UNICODE)(0xDC00 + (ch & 0x03FF));
#endif
            break;
        }
        s += n;
        continue;

      utf8Error:
        outpos = p-PyUnicode_AS_UNICODE(unicode);
        if (unicode_decode_call_errorhandler(
                errors, &errorHandler,
                "utf8", errmsg,
                &starts, &e, &startinpos, &endinpos, &exc, &s,
                &unicode, &outpos, &p))
            goto onError;
        aligned_end = (const char *) ((size_t) e & ~LONG_PTR_MASK);
    }
    if (consumed)
        *consumed = s-starts;

    /* Adjust length */
    if (_PyUnicode_Resize(&unicode, p - unicode->str) < 0)
        goto onError;

    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)unicode;

  onError:
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    Py_DECREF(unicode);
    return NULL;
}

#undef ASCII_CHAR_MASK

#ifdef __APPLE__

/* Simplified UTF-8 decoder using surrogateescape error handler,
   used to decode the command line arguments on Mac OS X. */

wchar_t*
_Py_DecodeUTF8_surrogateescape(const char *s, Py_ssize_t size)
{
    int n;
    const char *e;
    wchar_t *unicode, *p;

    /* Note: size will always be longer than the resulting Unicode
       character count */
    if (PY_SSIZE_T_MAX / sizeof(wchar_t) < (size + 1)) {
        PyErr_NoMemory();
        return NULL;
    }
    unicode = PyMem_Malloc((size + 1) * sizeof(wchar_t));
    if (!unicode)
        return NULL;

    /* Unpack UTF-8 encoded data */
    p = unicode;
    e = s + size;
    while (s < e) {
        Py_UCS4 ch = (unsigned char)*s;

        if (ch < 0x80) {
            *p++ = (wchar_t)ch;
            s++;
            continue;
        }

        n = utf8_code_length[ch];
        if (s + n > e) {
            goto surrogateescape;
        }

        switch (n) {
        case 0:
        case 1:
            goto surrogateescape;

        case 2:
            if ((s[1] & 0xc0) != 0x80)
                goto surrogateescape;
            ch = ((s[0] & 0x1f) << 6) + (s[1] & 0x3f);
            assert ((ch > 0x007F) && (ch <= 0x07FF));
            *p++ = (wchar_t)ch;
            break;

        case 3:
            /* Decoding UTF-8 sequences in range \xed\xa0\x80-\xed\xbf\xbf
               will result in surrogates in range d800-dfff. Surrogates are
               not valid UTF-8 so they are rejected.
               See http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf
               (table 3-7) and http://www.rfc-editor.org/rfc/rfc3629.txt */
            if ((s[1] & 0xc0) != 0x80 ||
                (s[2] & 0xc0) != 0x80 ||
                ((unsigned char)s[0] == 0xE0 &&
                 (unsigned char)s[1] < 0xA0) ||
                ((unsigned char)s[0] == 0xED &&
                 (unsigned char)s[1] > 0x9F)) {

                goto surrogateescape;
            }
            ch = ((s[0] & 0x0f) << 12) + ((s[1] & 0x3f) << 6) + (s[2] & 0x3f);
            assert ((ch > 0x07FF) && (ch <= 0xFFFF));
            *p++ = (Py_UNICODE)ch;
            break;

        case 4:
            if ((s[1] & 0xc0) != 0x80 ||
                (s[2] & 0xc0) != 0x80 ||
                (s[3] & 0xc0) != 0x80 ||
                ((unsigned char)s[0] == 0xF0 &&
                 (unsigned char)s[1] < 0x90) ||
                ((unsigned char)s[0] == 0xF4 &&
                 (unsigned char)s[1] > 0x8F)) {
                goto surrogateescape;
            }
            ch = ((s[0] & 0x7) << 18) + ((s[1] & 0x3f) << 12) +
                 ((s[2] & 0x3f) << 6) + (s[3] & 0x3f);
            assert ((ch > 0xFFFF) && (ch <= 0x10ffff));

#if SIZEOF_WCHAR_T == 4
            *p++ = (wchar_t)ch;
#else
            /*  compute and append the two surrogates: */

            /*  translate from 10000..10FFFF to 0..FFFF */
            ch -= 0x10000;

            /*  high surrogate = top 10 bits added to D800 */
            *p++ = (wchar_t)(0xD800 + (ch >> 10));

            /*  low surrogate = bottom 10 bits added to DC00 */
            *p++ = (wchar_t)(0xDC00 + (ch & 0x03FF));
#endif
            break;
        }
        s += n;
        continue;

      surrogateescape:
        *p++ = 0xDC00 + ch;
        s++;
    }
    *p = L'\0';
    return unicode;
}

#endif /* __APPLE__ */

/* Allocation strategy:  if the string is short, convert into a stack buffer
   and allocate exactly as much space needed at the end.  Else allocate the
   maximum possible needed (4 result bytes per Unicode character), and return
   the excess memory at the end.
*/
PyObject *
PyUnicode_EncodeUTF8(const Py_UNICODE *s,
                     Py_ssize_t size,
                     const char *errors)
{
#define MAX_SHORT_UNICHARS 300  /* largest size we'll do on the stack */

    Py_ssize_t i;                /* index into s of next input byte */
    PyObject *result;            /* result string object */
    char *p;                     /* next free byte in output buffer */
    Py_ssize_t nallocated;      /* number of result bytes allocated */
    Py_ssize_t nneeded;            /* number of result bytes needed */
    char stackbuf[MAX_SHORT_UNICHARS * 4];
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    assert(s != NULL);
    assert(size >= 0);

    if (size <= MAX_SHORT_UNICHARS) {
        /* Write into the stack buffer; nallocated can't overflow.
         * At the end, we'll allocate exactly as much heap space as it
         * turns out we need.
         */
        nallocated = Py_SAFE_DOWNCAST(sizeof(stackbuf), size_t, int);
        result = NULL;   /* will allocate after we're done */
        p = stackbuf;
    }
    else {
        /* Overallocate on the heap, and give the excess back at the end. */
        nallocated = size * 4;
        if (nallocated / 4 != size)  /* overflow! */
            return PyErr_NoMemory();
        result = PyBytes_FromStringAndSize(NULL, nallocated);
        if (result == NULL)
            return NULL;
        p = PyBytes_AS_STRING(result);
    }

    for (i = 0; i < size;) {
        Py_UCS4 ch = s[i++];

        if (ch < 0x80)
            /* Encode ASCII */
            *p++ = (char) ch;

        else if (ch < 0x0800) {
            /* Encode Latin-1 */
            *p++ = (char)(0xc0 | (ch >> 6));
            *p++ = (char)(0x80 | (ch & 0x3f));
        } else if (0xD800 <= ch && ch <= 0xDFFF) {
#ifndef Py_UNICODE_WIDE
            /* Special case: check for high and low surrogate */
            if (ch <= 0xDBFF && i != size && 0xDC00 <= s[i] && s[i] <= 0xDFFF) {
                Py_UCS4 ch2 = s[i];
                /* Combine the two surrogates to form a UCS4 value */
                ch = ((ch - 0xD800) << 10 | (ch2 - 0xDC00)) + 0x10000;
                i++;

                /* Encode UCS4 Unicode ordinals */
                *p++ = (char)(0xf0 | (ch >> 18));
                *p++ = (char)(0x80 | ((ch >> 12) & 0x3f));
                *p++ = (char)(0x80 | ((ch >> 6) & 0x3f));
                *p++ = (char)(0x80 | (ch & 0x3f));
            } else {
#endif
                Py_ssize_t newpos;
                PyObject *rep;
                Py_ssize_t repsize, k;
                rep = unicode_encode_call_errorhandler
                    (errors, &errorHandler, "utf-8", "surrogates not allowed",
                     s, size, &exc, i-1, i, &newpos);
                if (!rep)
                    goto error;

                if (PyBytes_Check(rep))
                    repsize = PyBytes_GET_SIZE(rep);
                else
                    repsize = PyUnicode_GET_SIZE(rep);

                if (repsize > 4) {
                    Py_ssize_t offset;

                    if (result == NULL)
                        offset = p - stackbuf;
                    else
                        offset = p - PyBytes_AS_STRING(result);

                    if (nallocated > PY_SSIZE_T_MAX - repsize + 4) {
                        /* integer overflow */
                        PyErr_NoMemory();
                        goto error;
                    }
                    nallocated += repsize - 4;
                    if (result != NULL) {
                        if (_PyBytes_Resize(&result, nallocated) < 0)
                            goto error;
                    } else {
                        result = PyBytes_FromStringAndSize(NULL, nallocated);
                        if (result == NULL)
                            goto error;
                        Py_MEMCPY(PyBytes_AS_STRING(result), stackbuf, offset);
                    }
                    p = PyBytes_AS_STRING(result) + offset;
                }

                if (PyBytes_Check(rep)) {
                    char *prep = PyBytes_AS_STRING(rep);
                    for(k = repsize; k > 0; k--)
                        *p++ = *prep++;
                } else /* rep is unicode */ {
                    Py_UNICODE *prep = PyUnicode_AS_UNICODE(rep);
                    Py_UNICODE c;

                    for(k=0; k<repsize; k++) {
                        c = prep[k];
                        if (0x80 <= c) {
                            raise_encode_exception(&exc, "utf-8", s, size,
                                                   i-1, i, "surrogates not allowed");
                            goto error;
                        }
                        *p++ = (char)prep[k];
                    }
                }
                Py_DECREF(rep);
#ifndef Py_UNICODE_WIDE
            }
#endif
        } else if (ch < 0x10000) {
            *p++ = (char)(0xe0 | (ch >> 12));
            *p++ = (char)(0x80 | ((ch >> 6) & 0x3f));
            *p++ = (char)(0x80 | (ch & 0x3f));
        } else /* ch >= 0x10000 */ {
            /* Encode UCS4 Unicode ordinals */
            *p++ = (char)(0xf0 | (ch >> 18));
            *p++ = (char)(0x80 | ((ch >> 12) & 0x3f));
            *p++ = (char)(0x80 | ((ch >> 6) & 0x3f));
            *p++ = (char)(0x80 | (ch & 0x3f));
        }
    }

    if (result == NULL) {
        /* This was stack allocated. */
        nneeded = p - stackbuf;
        assert(nneeded <= nallocated);
        result = PyBytes_FromStringAndSize(stackbuf, nneeded);
    }
    else {
        /* Cut back to size actually needed. */
        nneeded = p - PyBytes_AS_STRING(result);
        assert(nneeded <= nallocated);
        _PyBytes_Resize(&result, nneeded);
    }
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return result;
 error:
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    Py_XDECREF(result);
    return NULL;

#undef MAX_SHORT_UNICHARS
}

PyObject *PyUnicode_AsUTF8String(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeUTF8(PyUnicode_AS_UNICODE(unicode),
                                PyUnicode_GET_SIZE(unicode),
                                NULL);
}

/* --- UTF-32 Codec ------------------------------------------------------- */

PyObject *
PyUnicode_DecodeUTF32(const char *s,
                      Py_ssize_t size,
                      const char *errors,
                      int *byteorder)
{
    return PyUnicode_DecodeUTF32Stateful(s, size, errors, byteorder, NULL);
}

PyObject *
PyUnicode_DecodeUTF32Stateful(const char *s,
                              Py_ssize_t size,
                              const char *errors,
                              int *byteorder,
                              Py_ssize_t *consumed)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    PyUnicodeObject *unicode;
    Py_UNICODE *p;
#ifndef Py_UNICODE_WIDE
    int pairs = 0;
    const unsigned char *qq;
#else
    const int pairs = 0;
#endif
    const unsigned char *q, *e;
    int bo = 0;       /* assume native ordering by default */
    const char *errmsg = "";
    /* Offsets from q for retrieving bytes in the right order. */
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
    int iorder[] = {0, 1, 2, 3};
#else
    int iorder[] = {3, 2, 1, 0};
#endif
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    q = (unsigned char *)s;
    e = q + size;

    if (byteorder)
        bo = *byteorder;

    /* Check for BOM marks (U+FEFF) in the input and adjust current
       byte order setting accordingly. In native mode, the leading BOM
       mark is skipped, in all other modes, it is copied to the output
       stream as-is (giving a ZWNBSP character). */
    if (bo == 0) {
        if (size >= 4) {
            const Py_UCS4 bom = (q[iorder[3]] << 24) | (q[iorder[2]] << 16) |
                (q[iorder[1]] << 8) | q[iorder[0]];
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
            if (bom == 0x0000FEFF) {
                q += 4;
                bo = -1;
            }
            else if (bom == 0xFFFE0000) {
                q += 4;
                bo = 1;
            }
#else
            if (bom == 0x0000FEFF) {
                q += 4;
                bo = 1;
            }
            else if (bom == 0xFFFE0000) {
                q += 4;
                bo = -1;
            }
#endif
        }
    }

    if (bo == -1) {
        /* force LE */
        iorder[0] = 0;
        iorder[1] = 1;
        iorder[2] = 2;
        iorder[3] = 3;
    }
    else if (bo == 1) {
        /* force BE */
        iorder[0] = 3;
        iorder[1] = 2;
        iorder[2] = 1;
        iorder[3] = 0;
    }

    /* On narrow builds we split characters outside the BMP into two
       codepoints => count how much extra space we need. */
#ifndef Py_UNICODE_WIDE
    for (qq = q; qq < e; qq += 4)
        if (qq[iorder[2]] != 0 || qq[iorder[3]] != 0)
            pairs++;
#endif

    /* This might be one to much, because of a BOM */
    unicode = _PyUnicode_New((size+3)/4+pairs);
    if (!unicode)
        return NULL;
    if (size == 0)
        return (PyObject *)unicode;

    /* Unpack UTF-32 encoded data */
    p = unicode->str;

    while (q < e) {
        Py_UCS4 ch;
        /* remaining bytes at the end? (size should be divisible by 4) */
        if (e-q<4) {
            if (consumed)
                break;
            errmsg = "truncated data";
            startinpos = ((const char *)q)-starts;
            endinpos = ((const char *)e)-starts;
            goto utf32Error;
            /* The remaining input chars are ignored if the callback
               chooses to skip the input */
        }
        ch = (q[iorder[3]] << 24) | (q[iorder[2]] << 16) |
            (q[iorder[1]] << 8) | q[iorder[0]];

        if (ch >= 0x110000)
        {
            errmsg = "codepoint not in range(0x110000)";
            startinpos = ((const char *)q)-starts;
            endinpos = startinpos+4;
            goto utf32Error;
        }
#ifndef Py_UNICODE_WIDE
        if (ch >= 0x10000)
        {
            *p++ = 0xD800 | ((ch-0x10000) >> 10);
            *p++ = 0xDC00 | ((ch-0x10000) & 0x3FF);
        }
        else
#endif
            *p++ = ch;
        q += 4;
        continue;
      utf32Error:
        outpos = p-PyUnicode_AS_UNICODE(unicode);
        if (unicode_decode_call_errorhandler(
                errors, &errorHandler,
                "utf32", errmsg,
                &starts, (const char **)&e, &startinpos, &endinpos, &exc, (const char **)&q,
                &unicode, &outpos, &p))
            goto onError;
    }

    if (byteorder)
        *byteorder = bo;

    if (consumed)
        *consumed = (const char *)q-starts;

    /* Adjust length */
    if (_PyUnicode_Resize(&unicode, p - unicode->str) < 0)
        goto onError;

    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)unicode;

  onError:
    Py_DECREF(unicode);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

PyObject *
PyUnicode_EncodeUTF32(const Py_UNICODE *s,
                      Py_ssize_t size,
                      const char *errors,
                      int byteorder)
{
    PyObject *v;
    unsigned char *p;
    Py_ssize_t nsize, bytesize;
#ifndef Py_UNICODE_WIDE
    Py_ssize_t i, pairs;
#else
    const int pairs = 0;
#endif
    /* Offsets from p for storing byte pairs in the right order. */
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
    int iorder[] = {0, 1, 2, 3};
#else
    int iorder[] = {3, 2, 1, 0};
#endif

#define STORECHAR(CH)                           \
    do {                                        \
        p[iorder[3]] = ((CH) >> 24) & 0xff;     \
        p[iorder[2]] = ((CH) >> 16) & 0xff;     \
        p[iorder[1]] = ((CH) >> 8) & 0xff;      \
        p[iorder[0]] = (CH) & 0xff;             \
        p += 4;                                 \
    } while(0)

    /* In narrow builds we can output surrogate pairs as one codepoint,
       so we need less space. */
#ifndef Py_UNICODE_WIDE
    for (i = pairs = 0; i < size-1; i++)
        if (0xD800 <= s[i] && s[i] <= 0xDBFF &&
            0xDC00 <= s[i+1] && s[i+1] <= 0xDFFF)
            pairs++;
#endif
    nsize = (size - pairs + (byteorder == 0));
    bytesize = nsize * 4;
    if (bytesize / 4 != nsize)
        return PyErr_NoMemory();
    v = PyBytes_FromStringAndSize(NULL, bytesize);
    if (v == NULL)
        return NULL;

    p = (unsigned char *)PyBytes_AS_STRING(v);
    if (byteorder == 0)
        STORECHAR(0xFEFF);
    if (size == 0)
        goto done;

    if (byteorder == -1) {
        /* force LE */
        iorder[0] = 0;
        iorder[1] = 1;
        iorder[2] = 2;
        iorder[3] = 3;
    }
    else if (byteorder == 1) {
        /* force BE */
        iorder[0] = 3;
        iorder[1] = 2;
        iorder[2] = 1;
        iorder[3] = 0;
    }

    while (size-- > 0) {
        Py_UCS4 ch = *s++;
#ifndef Py_UNICODE_WIDE
        if (0xD800 <= ch && ch <= 0xDBFF && size > 0) {
            Py_UCS4 ch2 = *s;
            if (0xDC00 <= ch2 && ch2 <= 0xDFFF) {
                ch = (((ch & 0x3FF)<<10) | (ch2 & 0x3FF)) + 0x10000;
                s++;
                size--;
            }
        }
#endif
        STORECHAR(ch);
    }

  done:
    return v;
#undef STORECHAR
}

PyObject *PyUnicode_AsUTF32String(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeUTF32(PyUnicode_AS_UNICODE(unicode),
                                 PyUnicode_GET_SIZE(unicode),
                                 NULL,
                                 0);
}

/* --- UTF-16 Codec ------------------------------------------------------- */

PyObject *
PyUnicode_DecodeUTF16(const char *s,
                      Py_ssize_t size,
                      const char *errors,
                      int *byteorder)
{
    return PyUnicode_DecodeUTF16Stateful(s, size, errors, byteorder, NULL);
}

/* Two masks for fast checking of whether a C 'long' may contain
   UTF16-encoded surrogate characters. This is an efficient heuristic,
   assuming that non-surrogate characters with a code point >= 0x8000 are
   rare in most input.
   FAST_CHAR_MASK is used when the input is in native byte ordering,
   SWAPPED_FAST_CHAR_MASK when the input is in byteswapped ordering.
*/
#if (SIZEOF_LONG == 8)
# define FAST_CHAR_MASK         0x8000800080008000L
# define SWAPPED_FAST_CHAR_MASK 0x0080008000800080L
#elif (SIZEOF_LONG == 4)
# define FAST_CHAR_MASK         0x80008000L
# define SWAPPED_FAST_CHAR_MASK 0x00800080L
#else
# error C 'long' size should be either 4 or 8!
#endif

PyObject *
PyUnicode_DecodeUTF16Stateful(const char *s,
                              Py_ssize_t size,
                              const char *errors,
                              int *byteorder,
                              Py_ssize_t *consumed)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    PyUnicodeObject *unicode;
    Py_UNICODE *p;
    const unsigned char *q, *e, *aligned_end;
    int bo = 0;       /* assume native ordering by default */
    int native_ordering = 0;
    const char *errmsg = "";
    /* Offsets from q for retrieving byte pairs in the right order. */
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
    int ihi = 1, ilo = 0;
#else
    int ihi = 0, ilo = 1;
#endif
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    /* Note: size will always be longer than the resulting Unicode
       character count */
    unicode = _PyUnicode_New(size);
    if (!unicode)
        return NULL;
    if (size == 0)
        return (PyObject *)unicode;

    /* Unpack UTF-16 encoded data */
    p = unicode->str;
    q = (unsigned char *)s;
    e = q + size - 1;

    if (byteorder)
        bo = *byteorder;

    /* Check for BOM marks (U+FEFF) in the input and adjust current
       byte order setting accordingly. In native mode, the leading BOM
       mark is skipped, in all other modes, it is copied to the output
       stream as-is (giving a ZWNBSP character). */
    if (bo == 0) {
        if (size >= 2) {
            const Py_UNICODE bom = (q[ihi] << 8) | q[ilo];
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
            if (bom == 0xFEFF) {
                q += 2;
                bo = -1;
            }
            else if (bom == 0xFFFE) {
                q += 2;
                bo = 1;
            }
#else
            if (bom == 0xFEFF) {
                q += 2;
                bo = 1;
            }
            else if (bom == 0xFFFE) {
                q += 2;
                bo = -1;
            }
#endif
        }
    }

    if (bo == -1) {
        /* force LE */
        ihi = 1;
        ilo = 0;
    }
    else if (bo == 1) {
        /* force BE */
        ihi = 0;
        ilo = 1;
    }
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
    native_ordering = ilo < ihi;
#else
    native_ordering = ilo > ihi;
#endif

    aligned_end = (const unsigned char *) ((size_t) e & ~LONG_PTR_MASK);
    while (q < e) {
        Py_UNICODE ch;
        /* First check for possible aligned read of a C 'long'. Unaligned
           reads are more expensive, better to defer to another iteration. */
        if (!((size_t) q & LONG_PTR_MASK)) {
            /* Fast path for runs of non-surrogate chars. */
            register const unsigned char *_q = q;
            Py_UNICODE *_p = p;
            if (native_ordering) {
                /* Native ordering is simple: as long as the input cannot
                   possibly contain a surrogate char, do an unrolled copy
                   of several 16-bit code points to the target object.
                   The non-surrogate check is done on several input bytes
                   at a time (as many as a C 'long' can contain). */
                while (_q < aligned_end) {
                    unsigned long data = * (unsigned long *) _q;
                    if (data & FAST_CHAR_MASK)
                        break;
                    _p[0] = ((unsigned short *) _q)[0];
                    _p[1] = ((unsigned short *) _q)[1];
#if (SIZEOF_LONG == 8)
                    _p[2] = ((unsigned short *) _q)[2];
                    _p[3] = ((unsigned short *) _q)[3];
#endif
                    _q += SIZEOF_LONG;
                    _p += SIZEOF_LONG / 2;
                }
            }
            else {
                /* Byteswapped ordering is similar, but we must decompose
                   the copy bytewise, and take care of zero'ing out the
                   upper bytes if the target object is in 32-bit units
                   (that is, in UCS-4 builds). */
                while (_q < aligned_end) {
                    unsigned long data = * (unsigned long *) _q;
                    if (data & SWAPPED_FAST_CHAR_MASK)
                        break;
                    /* Zero upper bytes in UCS-4 builds */
#if (Py_UNICODE_SIZE > 2)
                    _p[0] = 0;
                    _p[1] = 0;
#if (SIZEOF_LONG == 8)
                    _p[2] = 0;
                    _p[3] = 0;
#endif
#endif
                    /* Issue #4916; UCS-4 builds on big endian machines must
                       fill the two last bytes of each 4-byte unit. */
#if (!defined(BYTEORDER_IS_LITTLE_ENDIAN) && Py_UNICODE_SIZE > 2)
# define OFF 2
#else
# define OFF 0
#endif
                    ((unsigned char *) _p)[OFF + 1] = _q[0];
                    ((unsigned char *) _p)[OFF + 0] = _q[1];
                    ((unsigned char *) _p)[OFF + 1 + Py_UNICODE_SIZE] = _q[2];
                    ((unsigned char *) _p)[OFF + 0 + Py_UNICODE_SIZE] = _q[3];
#if (SIZEOF_LONG == 8)
                    ((unsigned char *) _p)[OFF + 1 + 2 * Py_UNICODE_SIZE] = _q[4];
                    ((unsigned char *) _p)[OFF + 0 + 2 * Py_UNICODE_SIZE] = _q[5];
                    ((unsigned char *) _p)[OFF + 1 + 3 * Py_UNICODE_SIZE] = _q[6];
                    ((unsigned char *) _p)[OFF + 0 + 3 * Py_UNICODE_SIZE] = _q[7];
#endif
#undef OFF
                    _q += SIZEOF_LONG;
                    _p += SIZEOF_LONG / 2;
                }
            }
            p = _p;
            q = _q;
            if (q >= e)
                break;
        }
        ch = (q[ihi] << 8) | q[ilo];

        q += 2;

        if (ch < 0xD800 || ch > 0xDFFF) {
            *p++ = ch;
            continue;
        }

        /* UTF-16 code pair: */
        if (q > e) {
            errmsg = "unexpected end of data";
            startinpos = (((const char *)q) - 2) - starts;
            endinpos = ((const char *)e) + 1 - starts;
            goto utf16Error;
        }
        if (0xD800 <= ch && ch <= 0xDBFF) {
            Py_UNICODE ch2 = (q[ihi] << 8) | q[ilo];
            q += 2;
            if (0xDC00 <= ch2 && ch2 <= 0xDFFF) {
#ifndef Py_UNICODE_WIDE
                *p++ = ch;
                *p++ = ch2;
#else
                *p++ = (((ch & 0x3FF)<<10) | (ch2 & 0x3FF)) + 0x10000;
#endif
                continue;
            }
            else {
                errmsg = "illegal UTF-16 surrogate";
                startinpos = (((const char *)q)-4)-starts;
                endinpos = startinpos+2;
                goto utf16Error;
            }

        }
        errmsg = "illegal encoding";
        startinpos = (((const char *)q)-2)-starts;
        endinpos = startinpos+2;
        /* Fall through to report the error */

      utf16Error:
        outpos = p - PyUnicode_AS_UNICODE(unicode);
        if (unicode_decode_call_errorhandler(
                errors,
                &errorHandler,
                "utf16", errmsg,
                &starts,
                (const char **)&e,
                &startinpos,
                &endinpos,
                &exc,
                (const char **)&q,
                &unicode,
                &outpos,
                &p))
            goto onError;
    }
    /* remaining byte at the end? (size should be even) */
    if (e == q) {
        if (!consumed) {
            errmsg = "truncated data";
            startinpos = ((const char *)q) - starts;
            endinpos = ((const char *)e) + 1 - starts;
            outpos = p - PyUnicode_AS_UNICODE(unicode);
            if (unicode_decode_call_errorhandler(
                    errors,
                    &errorHandler,
                    "utf16", errmsg,
                    &starts,
                    (const char **)&e,
                    &startinpos,
                    &endinpos,
                    &exc,
                    (const char **)&q,
                    &unicode,
                    &outpos,
                    &p))
                goto onError;
            /* The remaining input chars are ignored if the callback
               chooses to skip the input */
        }
    }

    if (byteorder)
        *byteorder = bo;

    if (consumed)
        *consumed = (const char *)q-starts;

    /* Adjust length */
    if (_PyUnicode_Resize(&unicode, p - unicode->str) < 0)
        goto onError;

    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)unicode;

  onError:
    Py_DECREF(unicode);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

#undef FAST_CHAR_MASK
#undef SWAPPED_FAST_CHAR_MASK

PyObject *
PyUnicode_EncodeUTF16(const Py_UNICODE *s,
                      Py_ssize_t size,
                      const char *errors,
                      int byteorder)
{
    PyObject *v;
    unsigned char *p;
    Py_ssize_t nsize, bytesize;
#ifdef Py_UNICODE_WIDE
    Py_ssize_t i, pairs;
#else
    const int pairs = 0;
#endif
    /* Offsets from p for storing byte pairs in the right order. */
#ifdef BYTEORDER_IS_LITTLE_ENDIAN
    int ihi = 1, ilo = 0;
#else
    int ihi = 0, ilo = 1;
#endif

#define STORECHAR(CH)                           \
    do {                                        \
        p[ihi] = ((CH) >> 8) & 0xff;            \
        p[ilo] = (CH) & 0xff;                   \
        p += 2;                                 \
    } while(0)

#ifdef Py_UNICODE_WIDE
    for (i = pairs = 0; i < size; i++)
        if (s[i] >= 0x10000)
            pairs++;
#endif
    /* 2 * (size + pairs + (byteorder == 0)) */
    if (size > PY_SSIZE_T_MAX ||
        size > PY_SSIZE_T_MAX - pairs - (byteorder == 0))
        return PyErr_NoMemory();
    nsize = size + pairs + (byteorder == 0);
    bytesize = nsize * 2;
    if (bytesize / 2 != nsize)
        return PyErr_NoMemory();
    v = PyBytes_FromStringAndSize(NULL, bytesize);
    if (v == NULL)
        return NULL;

    p = (unsigned char *)PyBytes_AS_STRING(v);
    if (byteorder == 0)
        STORECHAR(0xFEFF);
    if (size == 0)
        goto done;

    if (byteorder == -1) {
        /* force LE */
        ihi = 1;
        ilo = 0;
    }
    else if (byteorder == 1) {
        /* force BE */
        ihi = 0;
        ilo = 1;
    }

    while (size-- > 0) {
        Py_UNICODE ch = *s++;
        Py_UNICODE ch2 = 0;
#ifdef Py_UNICODE_WIDE
        if (ch >= 0x10000) {
            ch2 = 0xDC00 | ((ch-0x10000) & 0x3FF);
            ch  = 0xD800 | ((ch-0x10000) >> 10);
        }
#endif
        STORECHAR(ch);
        if (ch2)
            STORECHAR(ch2);
    }

  done:
    return v;
#undef STORECHAR
}

PyObject *PyUnicode_AsUTF16String(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeUTF16(PyUnicode_AS_UNICODE(unicode),
                                 PyUnicode_GET_SIZE(unicode),
                                 NULL,
                                 0);
}

/* --- Unicode Escape Codec ----------------------------------------------- */

static _PyUnicode_Name_CAPI *ucnhash_CAPI = NULL;

PyObject *PyUnicode_DecodeUnicodeEscape(const char *s,
                                        Py_ssize_t size,
                                        const char *errors)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    int i;
    PyUnicodeObject *v;
    Py_UNICODE *p;
    const char *end;
    char* message;
    Py_UCS4 chr = 0xffffffff; /* in case 'getcode' messes up */
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    /* Escaped strings will always be longer than the resulting
       Unicode string, so we start with size here and then reduce the
       length after conversion to the true value.
       (but if the error callback returns a long replacement string
       we'll have to allocate more space) */
    v = _PyUnicode_New(size);
    if (v == NULL)
        goto onError;
    if (size == 0)
        return (PyObject *)v;

    p = PyUnicode_AS_UNICODE(v);
    end = s + size;

    while (s < end) {
        unsigned char c;
        Py_UNICODE x;
        int digits;

        /* Non-escape characters are interpreted as Unicode ordinals */
        if (*s != '\\') {
            *p++ = (unsigned char) *s++;
            continue;
        }

        startinpos = s-starts;
        /* \ - Escapes */
        s++;
        c = *s++;
        if (s > end)
            c = '\0'; /* Invalid after \ */
        switch (c) {

            /* \x escapes */
        case '\n': break;
        case '\\': *p++ = '\\'; break;
        case '\'': *p++ = '\''; break;
        case '\"': *p++ = '\"'; break;
        case 'b': *p++ = '\b'; break;
        case 'f': *p++ = '\014'; break; /* FF */
        case 't': *p++ = '\t'; break;
        case 'n': *p++ = '\n'; break;
        case 'r': *p++ = '\r'; break;
        case 'v': *p++ = '\013'; break; /* VT */
        case 'a': *p++ = '\007'; break; /* BEL, not classic C */

            /* \OOO (octal) escapes */
        case '0': case '1': case '2': case '3':
        case '4': case '5': case '6': case '7':
            x = s[-1] - '0';
            if (s < end && '0' <= *s && *s <= '7') {
                x = (x<<3) + *s++ - '0';
                if (s < end && '0' <= *s && *s <= '7')
                    x = (x<<3) + *s++ - '0';
            }
            *p++ = x;
            break;

            /* hex escapes */
            /* \xXX */
        case 'x':
            digits = 2;
            message = "truncated \\xXX escape";
            goto hexescape;

            /* \uXXXX */
        case 'u':
            digits = 4;
            message = "truncated \\uXXXX escape";
            goto hexescape;

            /* \UXXXXXXXX */
        case 'U':
            digits = 8;
            message = "truncated \\UXXXXXXXX escape";
        hexescape:
            chr = 0;
            outpos = p-PyUnicode_AS_UNICODE(v);
            if (s+digits>end) {
                endinpos = size;
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "unicodeescape", "end of string in escape sequence",
                        &starts, &end, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p))
                    goto onError;
                goto nextByte;
            }
            for (i = 0; i < digits; ++i) {
                c = (unsigned char) s[i];
                if (!Py_ISXDIGIT(c)) {
                    endinpos = (s+i+1)-starts;
                    if (unicode_decode_call_errorhandler(
                            errors, &errorHandler,
                            "unicodeescape", message,
                            &starts, &end, &startinpos, &endinpos, &exc, &s,
                            &v, &outpos, &p))
                        goto onError;
                    goto nextByte;
                }
                chr = (chr<<4) & ~0xF;
                if (c >= '0' && c <= '9')
                    chr += c - '0';
                else if (c >= 'a' && c <= 'f')
                    chr += 10 + c - 'a';
                else
                    chr += 10 + c - 'A';
            }
            s += i;
            if (chr == 0xffffffff && PyErr_Occurred())
                /* _decoding_error will have already written into the
                   target buffer. */
                break;
        store:
            /* when we get here, chr is a 32-bit unicode character */
            if (chr <= 0xffff)
                /* UCS-2 character */
                *p++ = (Py_UNICODE) chr;
            else if (chr <= 0x10ffff) {
                /* UCS-4 character. Either store directly, or as
                   surrogate pair. */
#ifdef Py_UNICODE_WIDE
                *p++ = chr;
#else
                chr -= 0x10000L;
                *p++ = 0xD800 + (Py_UNICODE) (chr >> 10);
                *p++ = 0xDC00 + (Py_UNICODE) (chr & 0x03FF);
#endif
            } else {
                endinpos = s-starts;
                outpos = p-PyUnicode_AS_UNICODE(v);
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "unicodeescape", "illegal Unicode character",
                        &starts, &end, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p))
                    goto onError;
            }
            break;

            /* \N{name} */
        case 'N':
            message = "malformed \\N character escape";
            if (ucnhash_CAPI == NULL) {
                /* load the unicode data module */
                ucnhash_CAPI = (_PyUnicode_Name_CAPI *)PyCapsule_Import(PyUnicodeData_CAPSULE_NAME, 1);
                if (ucnhash_CAPI == NULL)
                    goto ucnhashError;
            }
            if (*s == '{') {
                const char *start = s+1;
                /* look for the closing brace */
                while (*s != '}' && s < end)
                    s++;
                if (s > start && s < end && *s == '}') {
                    /* found a name.  look it up in the unicode database */
                    message = "unknown Unicode character name";
                    s++;
                    if (ucnhash_CAPI->getcode(NULL, start, (int)(s-start-1), &chr))
                        goto store;
                }
            }
            endinpos = s-starts;
            outpos = p-PyUnicode_AS_UNICODE(v);
            if (unicode_decode_call_errorhandler(
                    errors, &errorHandler,
                    "unicodeescape", message,
                    &starts, &end, &startinpos, &endinpos, &exc, &s,
                    &v, &outpos, &p))
                goto onError;
            break;

        default:
            if (s > end) {
                message = "\\ at end of string";
                s--;
                endinpos = s-starts;
                outpos = p-PyUnicode_AS_UNICODE(v);
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "unicodeescape", message,
                        &starts, &end, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p))
                    goto onError;
            }
            else {
                *p++ = '\\';
                *p++ = (unsigned char)s[-1];
            }
            break;
        }
      nextByte:
        ;
    }
    if (_PyUnicode_Resize(&v, p - PyUnicode_AS_UNICODE(v)) < 0)
        goto onError;
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)v;

  ucnhashError:
    PyErr_SetString(
        PyExc_UnicodeError,
        "\\N escapes not supported (can't load unicodedata module)"
        );
    Py_XDECREF(v);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;

  onError:
    Py_XDECREF(v);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

/* Return a Unicode-Escape string version of the Unicode object.

   If quotes is true, the string is enclosed in u"" or u'' quotes as
   appropriate.

*/

Py_LOCAL_INLINE(const Py_UNICODE *) findchar(const Py_UNICODE *s,
                                             Py_ssize_t size,
                                             Py_UNICODE ch)
{
    /* like wcschr, but doesn't stop at NULL characters */

    while (size-- > 0) {
        if (*s == ch)
            return s;
        s++;
    }

    return NULL;
}

static const char *hexdigits = "0123456789abcdef";

PyObject *PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s,
                                        Py_ssize_t size)
{
    PyObject *repr;
    char *p;

#ifdef Py_UNICODE_WIDE
    const Py_ssize_t expandsize = 10;
#else
    const Py_ssize_t expandsize = 6;
#endif

    /* XXX(nnorwitz): rather than over-allocating, it would be
       better to choose a different scheme.  Perhaps scan the
       first N-chars of the string and allocate based on that size.
    */
    /* Initial allocation is based on the longest-possible unichr
       escape.

       In wide (UTF-32) builds '\U00xxxxxx' is 10 chars per source
       unichr, so in this case it's the longest unichr escape. In
       narrow (UTF-16) builds this is five chars per source unichr
       since there are two unichrs in the surrogate pair, so in narrow
       (UTF-16) builds it's not the longest unichr escape.

       In wide or narrow builds '\uxxxx' is 6 chars per source unichr,
       so in the narrow (UTF-16) build case it's the longest unichr
       escape.
    */

    if (size == 0)
        return PyBytes_FromStringAndSize(NULL, 0);

    if (size > (PY_SSIZE_T_MAX - 2 - 1) / expandsize)
        return PyErr_NoMemory();

    repr = PyBytes_FromStringAndSize(NULL,
                                     2
                                     + expandsize*size
                                     + 1);
    if (repr == NULL)
        return NULL;

    p = PyBytes_AS_STRING(repr);

    while (size-- > 0) {
        Py_UNICODE ch = *s++;

        /* Escape backslashes */
        if (ch == '\\') {
            *p++ = '\\';
            *p++ = (char) ch;
            continue;
        }

#ifdef Py_UNICODE_WIDE
        /* Map 21-bit characters to '\U00xxxxxx' */
        else if (ch >= 0x10000) {
            *p++ = '\\';
            *p++ = 'U';
            *p++ = hexdigits[(ch >> 28) & 0x0000000F];
            *p++ = hexdigits[(ch >> 24) & 0x0000000F];
            *p++ = hexdigits[(ch >> 20) & 0x0000000F];
            *p++ = hexdigits[(ch >> 16) & 0x0000000F];
            *p++ = hexdigits[(ch >> 12) & 0x0000000F];
            *p++ = hexdigits[(ch >> 8) & 0x0000000F];
            *p++ = hexdigits[(ch >> 4) & 0x0000000F];
            *p++ = hexdigits[ch & 0x0000000F];
            continue;
        }
#else
        /* Map UTF-16 surrogate pairs to '\U00xxxxxx' */
        else if (ch >= 0xD800 && ch < 0xDC00) {
            Py_UNICODE ch2;
            Py_UCS4 ucs;

            ch2 = *s++;
            size--;
            if (ch2 >= 0xDC00 && ch2 <= 0xDFFF) {
                ucs = (((ch & 0x03FF) << 10) | (ch2 & 0x03FF)) + 0x00010000;
                *p++ = '\\';
                *p++ = 'U';
                *p++ = hexdigits[(ucs >> 28) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 24) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 20) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 16) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 12) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 8) & 0x0000000F];
                *p++ = hexdigits[(ucs >> 4) & 0x0000000F];
                *p++ = hexdigits[ucs & 0x0000000F];
                continue;
            }
            /* Fall through: isolated surrogates are copied as-is */
            s--;
            size++;
        }
#endif

        /* Map 16-bit characters to '\uxxxx' */
        if (ch >= 256) {
            *p++ = '\\';
            *p++ = 'u';
            *p++ = hexdigits[(ch >> 12) & 0x000F];
            *p++ = hexdigits[(ch >> 8) & 0x000F];
            *p++ = hexdigits[(ch >> 4) & 0x000F];
            *p++ = hexdigits[ch & 0x000F];
        }

        /* Map special whitespace to '\t', \n', '\r' */
        else if (ch == '\t') {
            *p++ = '\\';
            *p++ = 't';
        }
        else if (ch == '\n') {
            *p++ = '\\';
            *p++ = 'n';
        }
        else if (ch == '\r') {
            *p++ = '\\';
            *p++ = 'r';
        }

        /* Map non-printable US ASCII to '\xhh' */
        else if (ch < ' ' || ch >= 0x7F) {
            *p++ = '\\';
            *p++ = 'x';
            *p++ = hexdigits[(ch >> 4) & 0x000F];
            *p++ = hexdigits[ch & 0x000F];
        }

        /* Copy everything else as-is */
        else
            *p++ = (char) ch;
    }

    assert(p - PyBytes_AS_STRING(repr) > 0);
    if (_PyBytes_Resize(&repr, p - PyBytes_AS_STRING(repr)) < 0)
        return NULL;
    return repr;
}

PyObject *PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
{
    PyObject *s;
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    s = PyUnicode_EncodeUnicodeEscape(PyUnicode_AS_UNICODE(unicode),
                                      PyUnicode_GET_SIZE(unicode));
    return s;
}

/* --- Raw Unicode Escape Codec ------------------------------------------- */

PyObject *PyUnicode_DecodeRawUnicodeEscape(const char *s,
                                           Py_ssize_t size,
                                           const char *errors)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    PyUnicodeObject *v;
    Py_UNICODE *p;
    const char *end;
    const char *bs;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    /* Escaped strings will always be longer than the resulting
       Unicode string, so we start with size here and then reduce the
       length after conversion to the true value. (But decoding error
       handler might have to resize the string) */
    v = _PyUnicode_New(size);
    if (v == NULL)
        goto onError;
    if (size == 0)
        return (PyObject *)v;
    p = PyUnicode_AS_UNICODE(v);
    end = s + size;
    while (s < end) {
        unsigned char c;
        Py_UCS4 x;
        int i;
        int count;

        /* Non-escape characters are interpreted as Unicode ordinals */
        if (*s != '\\') {
            *p++ = (unsigned char)*s++;
            continue;
        }
        startinpos = s-starts;

        /* \u-escapes are only interpreted iff the number of leading
           backslashes if odd */
        bs = s;
        for (;s < end;) {
            if (*s != '\\')
                break;
            *p++ = (unsigned char)*s++;
        }
        if (((s - bs) & 1) == 0 ||
            s >= end ||
            (*s != 'u' && *s != 'U')) {
            continue;
        }
        p--;
        count = *s=='u' ? 4 : 8;
        s++;

        /* \uXXXX with 4 hex digits, \Uxxxxxxxx with 8 */
        outpos = p-PyUnicode_AS_UNICODE(v);
        for (x = 0, i = 0; i < count; ++i, ++s) {
            c = (unsigned char)*s;
            if (!Py_ISXDIGIT(c)) {
                endinpos = s-starts;
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "rawunicodeescape", "truncated \\uXXXX",
                        &starts, &end, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p))
                    goto onError;
                goto nextByte;
            }
            x = (x<<4) & ~0xF;
            if (c >= '0' && c <= '9')
                x += c - '0';
            else if (c >= 'a' && c <= 'f')
                x += 10 + c - 'a';
            else
                x += 10 + c - 'A';
        }
        if (x <= 0xffff)
            /* UCS-2 character */
            *p++ = (Py_UNICODE) x;
        else if (x <= 0x10ffff) {
            /* UCS-4 character. Either store directly, or as
               surrogate pair. */
#ifdef Py_UNICODE_WIDE
            *p++ = (Py_UNICODE) x;
#else
            x -= 0x10000L;
            *p++ = 0xD800 + (Py_UNICODE) (x >> 10);
            *p++ = 0xDC00 + (Py_UNICODE) (x & 0x03FF);
#endif
        } else {
            endinpos = s-starts;
            outpos = p-PyUnicode_AS_UNICODE(v);
            if (unicode_decode_call_errorhandler(
                    errors, &errorHandler,
                    "rawunicodeescape", "\\Uxxxxxxxx out of range",
                    &starts, &end, &startinpos, &endinpos, &exc, &s,
                    &v, &outpos, &p))
                goto onError;
        }
      nextByte:
        ;
    }
    if (_PyUnicode_Resize(&v, p - PyUnicode_AS_UNICODE(v)) < 0)
        goto onError;
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)v;

  onError:
    Py_XDECREF(v);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

PyObject *PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s,
                                           Py_ssize_t size)
{
    PyObject *repr;
    char *p;
    char *q;

#ifdef Py_UNICODE_WIDE
    const Py_ssize_t expandsize = 10;
#else
    const Py_ssize_t expandsize = 6;
#endif

    if (size > PY_SSIZE_T_MAX / expandsize)
        return PyErr_NoMemory();

    repr = PyBytes_FromStringAndSize(NULL, expandsize * size);
    if (repr == NULL)
        return NULL;
    if (size == 0)
        return repr;

    p = q = PyBytes_AS_STRING(repr);
    while (size-- > 0) {
        Py_UNICODE ch = *s++;
#ifdef Py_UNICODE_WIDE
        /* Map 32-bit characters to '\Uxxxxxxxx' */
        if (ch >= 0x10000) {
            *p++ = '\\';
            *p++ = 'U';
            *p++ = hexdigits[(ch >> 28) & 0xf];
            *p++ = hexdigits[(ch >> 24) & 0xf];
            *p++ = hexdigits[(ch >> 20) & 0xf];
            *p++ = hexdigits[(ch >> 16) & 0xf];
            *p++ = hexdigits[(ch >> 12) & 0xf];
            *p++ = hexdigits[(ch >> 8) & 0xf];
            *p++ = hexdigits[(ch >> 4) & 0xf];
            *p++ = hexdigits[ch & 15];
        }
        else
#else
            /* Map UTF-16 surrogate pairs to '\U00xxxxxx' */
            if (ch >= 0xD800 && ch < 0xDC00) {
                Py_UNICODE ch2;
                Py_UCS4 ucs;

                ch2 = *s++;
                size--;
                if (ch2 >= 0xDC00 && ch2 <= 0xDFFF) {
                    ucs = (((ch & 0x03FF) << 10) | (ch2 & 0x03FF)) + 0x00010000;
                    *p++ = '\\';
                    *p++ = 'U';
                    *p++ = hexdigits[(ucs >> 28) & 0xf];
                    *p++ = hexdigits[(ucs >> 24) & 0xf];
                    *p++ = hexdigits[(ucs >> 20) & 0xf];
                    *p++ = hexdigits[(ucs >> 16) & 0xf];
                    *p++ = hexdigits[(ucs >> 12) & 0xf];
                    *p++ = hexdigits[(ucs >> 8) & 0xf];
                    *p++ = hexdigits[(ucs >> 4) & 0xf];
                    *p++ = hexdigits[ucs & 0xf];
                    continue;
                }
                /* Fall through: isolated surrogates are copied as-is */
                s--;
                size++;
            }
#endif
        /* Map 16-bit characters to '\uxxxx' */
        if (ch >= 256) {
            *p++ = '\\';
            *p++ = 'u';
            *p++ = hexdigits[(ch >> 12) & 0xf];
            *p++ = hexdigits[(ch >> 8) & 0xf];
            *p++ = hexdigits[(ch >> 4) & 0xf];
            *p++ = hexdigits[ch & 15];
        }
        /* Copy everything else as-is */
        else
            *p++ = (char) ch;
    }
    size = p - q;

    assert(size > 0);
    if (_PyBytes_Resize(&repr, size) < 0)
        return NULL;
    return repr;
}

PyObject *PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
{
    PyObject *s;
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    s = PyUnicode_EncodeRawUnicodeEscape(PyUnicode_AS_UNICODE(unicode),
                                         PyUnicode_GET_SIZE(unicode));

    return s;
}

/* --- Unicode Internal Codec ------------------------------------------- */

PyObject *_PyUnicode_DecodeUnicodeInternal(const char *s,
                                           Py_ssize_t size,
                                           const char *errors)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    PyUnicodeObject *v;
    Py_UNICODE *p;
    const char *end;
    const char *reason;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

#ifdef Py_UNICODE_WIDE
    Py_UNICODE unimax = PyUnicode_GetMax();
#endif

    /* XXX overflow detection missing */
    v = _PyUnicode_New((size+Py_UNICODE_SIZE-1)/ Py_UNICODE_SIZE);
    if (v == NULL)
        goto onError;
    if (PyUnicode_GetSize((PyObject *)v) == 0)
        return (PyObject *)v;
    p = PyUnicode_AS_UNICODE(v);
    end = s + size;

    while (s < end) {
        memcpy(p, s, sizeof(Py_UNICODE));
        /* We have to sanity check the raw data, otherwise doom looms for
           some malformed UCS-4 data. */
        if (
#ifdef Py_UNICODE_WIDE
            *p > unimax || *p < 0 ||
#endif
            end-s < Py_UNICODE_SIZE
            )
        {
            startinpos = s - starts;
            if (end-s < Py_UNICODE_SIZE) {
                endinpos = end-starts;
                reason = "truncated input";
            }
            else {
                endinpos = s - starts + Py_UNICODE_SIZE;
                reason = "illegal code point (> 0x10FFFF)";
            }
            outpos = p - PyUnicode_AS_UNICODE(v);
            if (unicode_decode_call_errorhandler(
                    errors, &errorHandler,
                    "unicode_internal", reason,
                    &starts, &end, &startinpos, &endinpos, &exc, &s,
                    &v, &outpos, &p)) {
                goto onError;
            }
        }
        else {
            p++;
            s += Py_UNICODE_SIZE;
        }
    }

    if (_PyUnicode_Resize(&v, p - PyUnicode_AS_UNICODE(v)) < 0)
        goto onError;
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)v;

  onError:
    Py_XDECREF(v);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

/* --- Latin-1 Codec ------------------------------------------------------ */

PyObject *PyUnicode_DecodeLatin1(const char *s,
                                 Py_ssize_t size,
                                 const char *errors)
{
    PyUnicodeObject *v;
    Py_UNICODE *p;
    const char *e, *unrolled_end;

    /* Latin-1 is equivalent to the first 256 ordinals in Unicode. */
    if (size == 1) {
        Py_UNICODE r = *(unsigned char*)s;
        return PyUnicode_FromUnicode(&r, 1);
    }

    v = _PyUnicode_New(size);
    if (v == NULL)
        goto onError;
    if (size == 0)
        return (PyObject *)v;
    p = PyUnicode_AS_UNICODE(v);
    e = s + size;
    /* Unrolling the copy makes it much faster by reducing the looping
       overhead. This is similar to what many memcpy() implementations do. */
    unrolled_end = e - 4;
    while (s < unrolled_end) {
        p[0] = (unsigned char) s[0];
        p[1] = (unsigned char) s[1];
        p[2] = (unsigned char) s[2];
        p[3] = (unsigned char) s[3];
        s += 4;
        p += 4;
    }
    while (s < e)
        *p++ = (unsigned char) *s++;
    return (PyObject *)v;

  onError:
    Py_XDECREF(v);
    return NULL;
}

/* create or adjust a UnicodeEncodeError */
static void make_encode_exception(PyObject **exceptionObject,
                                  const char *encoding,
                                  const Py_UNICODE *unicode, Py_ssize_t size,
                                  Py_ssize_t startpos, Py_ssize_t endpos,
                                  const char *reason)
{
    if (*exceptionObject == NULL) {
        *exceptionObject = PyUnicodeEncodeError_Create(
            encoding, unicode, size, startpos, endpos, reason);
    }
    else {
        if (PyUnicodeEncodeError_SetStart(*exceptionObject, startpos))
            goto onError;
        if (PyUnicodeEncodeError_SetEnd(*exceptionObject, endpos))
            goto onError;
        if (PyUnicodeEncodeError_SetReason(*exceptionObject, reason))
            goto onError;
        return;
      onError:
        Py_DECREF(*exceptionObject);
        *exceptionObject = NULL;
    }
}

/* raises a UnicodeEncodeError */
static void raise_encode_exception(PyObject **exceptionObject,
                                   const char *encoding,
                                   const Py_UNICODE *unicode, Py_ssize_t size,
                                   Py_ssize_t startpos, Py_ssize_t endpos,
                                   const char *reason)
{
    make_encode_exception(exceptionObject,
                          encoding, unicode, size, startpos, endpos, reason);
    if (*exceptionObject != NULL)
        PyCodec_StrictErrors(*exceptionObject);
}

/* error handling callback helper:
   build arguments, call the callback and check the arguments,
   put the result into newpos and return the replacement string, which
   has to be freed by the caller */
static PyObject *unicode_encode_call_errorhandler(const char *errors,
                                                  PyObject **errorHandler,
                                                  const char *encoding, const char *reason,
                                                  const Py_UNICODE *unicode, Py_ssize_t size, PyObject **exceptionObject,
                                                  Py_ssize_t startpos, Py_ssize_t endpos,
                                                  Py_ssize_t *newpos)
{
    static char *argparse = "On;encoding error handler must return (str/bytes, int) tuple";

    PyObject *restuple;
    PyObject *resunicode;

    if (*errorHandler == NULL) {
        *errorHandler = PyCodec_LookupError(errors);
        if (*errorHandler == NULL)
            return NULL;
    }

    make_encode_exception(exceptionObject,
                          encoding, unicode, size, startpos, endpos, reason);
    if (*exceptionObject == NULL)
        return NULL;

    restuple = PyObject_CallFunctionObjArgs(
        *errorHandler, *exceptionObject, NULL);
    if (restuple == NULL)
        return NULL;
    if (!PyTuple_Check(restuple)) {
        PyErr_SetString(PyExc_TypeError, &argparse[3]);
        Py_DECREF(restuple);
        return NULL;
    }
    if (!PyArg_ParseTuple(restuple, argparse,
                          &resunicode, newpos)) {
        Py_DECREF(restuple);
        return NULL;
    }
    if (!PyUnicode_Check(resunicode) && !PyBytes_Check(resunicode)) {
        PyErr_SetString(PyExc_TypeError, &argparse[3]);
        Py_DECREF(restuple);
        return NULL;
    }
    if (*newpos<0)
        *newpos = size+*newpos;
    if (*newpos<0 || *newpos>size) {
        PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", *newpos);
        Py_DECREF(restuple);
        return NULL;
    }
    Py_INCREF(resunicode);
    Py_DECREF(restuple);
    return resunicode;
}

static PyObject *unicode_encode_ucs1(const Py_UNICODE *p,
                                     Py_ssize_t size,
                                     const char *errors,
                                     int limit)
{
    /* output object */
    PyObject *res;
    /* pointers to the beginning and end+1 of input */
    const Py_UNICODE *startp = p;
    const Py_UNICODE *endp = p + size;
    /* pointer to the beginning of the unencodable characters */
    /* const Py_UNICODE *badp = NULL; */
    /* pointer into the output */
    char *str;
    /* current output position */
    Py_ssize_t ressize;
    const char *encoding = (limit == 256) ? "latin-1" : "ascii";
    const char *reason = (limit == 256) ? "ordinal not in range(256)" : "ordinal not in range(128)";
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;
    /* the following variable is used for caching string comparisons
     * -1=not initialized, 0=unknown, 1=strict, 2=replace, 3=ignore, 4=xmlcharrefreplace */
    int known_errorHandler = -1;

    /* allocate enough for a simple encoding without
       replacements, if we need more, we'll resize */
    if (size == 0)
        return PyBytes_FromStringAndSize(NULL, 0);
    res = PyBytes_FromStringAndSize(NULL, size);
    if (res == NULL)
        return NULL;
    str = PyBytes_AS_STRING(res);
    ressize = size;

    while (p<endp) {
        Py_UNICODE c = *p;

        /* can we encode this? */
        if (c<limit) {
            /* no overflow check, because we know that the space is enough */
            *str++ = (char)c;
            ++p;
        }
        else {
            Py_ssize_t unicodepos = p-startp;
            Py_ssize_t requiredsize;
            PyObject *repunicode;
            Py_ssize_t repsize;
            Py_ssize_t newpos;
            Py_ssize_t respos;
            Py_UNICODE *uni2;
            /* startpos for collecting unencodable chars */
            const Py_UNICODE *collstart = p;
            const Py_UNICODE *collend = p;
            /* find all unecodable characters */
            while ((collend < endp) && ((*collend)>=limit))
                ++collend;
            /* cache callback name lookup (if not done yet, i.e. it's the first error) */
            if (known_errorHandler==-1) {
                if ((errors==NULL) || (!strcmp(errors, "strict")))
                    known_errorHandler = 1;
                else if (!strcmp(errors, "replace"))
                    known_errorHandler = 2;
                else if (!strcmp(errors, "ignore"))
                    known_errorHandler = 3;
                else if (!strcmp(errors, "xmlcharrefreplace"))
                    known_errorHandler = 4;
                else
                    known_errorHandler = 0;
            }
            switch (known_errorHandler) {
            case 1: /* strict */
                raise_encode_exception(&exc, encoding, startp, size, collstart-startp, collend-startp, reason);
                goto onError;
            case 2: /* replace */
                while (collstart++<collend)
                    *str++ = '?'; /* fall through */
            case 3: /* ignore */
                p = collend;
                break;
            case 4: /* xmlcharrefreplace */
                respos = str - PyBytes_AS_STRING(res);
                /* determine replacement size (temporarily (mis)uses p) */
                for (p = collstart, repsize = 0; p < collend; ++p) {
                    if (*p<10)
                        repsize += 2+1+1;
                    else if (*p<100)
                        repsize += 2+2+1;
                    else if (*p<1000)
                        repsize += 2+3+1;
                    else if (*p<10000)
                        repsize += 2+4+1;
#ifndef Py_UNICODE_WIDE
                    else
                        repsize += 2+5+1;
#else
                    else if (*p<100000)
                        repsize += 2+5+1;
                    else if (*p<1000000)
                        repsize += 2+6+1;
                    else
                        repsize += 2+7+1;
#endif
                }
                requiredsize = respos+repsize+(endp-collend);
                if (requiredsize > ressize) {
                    if (requiredsize<2*ressize)
                        requiredsize = 2*ressize;
                    if (_PyBytes_Resize(&res, requiredsize))
                        goto onError;
                    str = PyBytes_AS_STRING(res) + respos;
                    ressize = requiredsize;
                }
                /* generate replacement (temporarily (mis)uses p) */
                for (p = collstart; p < collend; ++p) {
                    str += sprintf(str, "&#%d;", (int)*p);
                }
                p = collend;
                break;
            default:
                repunicode = unicode_encode_call_errorhandler(errors, &errorHandler,
                                                              encoding, reason, startp, size, &exc,
                                                              collstart-startp, collend-startp, &newpos);
                if (repunicode == NULL)
                    goto onError;
                if (PyBytes_Check(repunicode)) {
                    /* Directly copy bytes result to output. */
                    repsize = PyBytes_Size(repunicode);
                    if (repsize > 1) {
                        /* Make room for all additional bytes. */
                        respos = str - PyBytes_AS_STRING(res);
                        if (_PyBytes_Resize(&res, ressize+repsize-1)) {
                            Py_DECREF(repunicode);
                            goto onError;
                        }
                        str = PyBytes_AS_STRING(res) + respos;
                        ressize += repsize-1;
                    }
                    memcpy(str, PyBytes_AsString(repunicode), repsize);
                    str += repsize;
                    p = startp + newpos;
                    Py_DECREF(repunicode);
                    break;
                }
                /* need more space? (at least enough for what we
                   have+the replacement+the rest of the string, so
                   we won't have to check space for encodable characters) */
                respos = str - PyBytes_AS_STRING(res);
                repsize = PyUnicode_GET_SIZE(repunicode);
                requiredsize = respos+repsize+(endp-collend);
                if (requiredsize > ressize) {
                    if (requiredsize<2*ressize)
                        requiredsize = 2*ressize;
                    if (_PyBytes_Resize(&res, requiredsize)) {
                        Py_DECREF(repunicode);
                        goto onError;
                    }
                    str = PyBytes_AS_STRING(res) + respos;
                    ressize = requiredsize;
                }
                /* check if there is anything unencodable in the replacement
                   and copy it to the output */
                for (uni2 = PyUnicode_AS_UNICODE(repunicode);repsize-->0; ++uni2, ++str) {
                    c = *uni2;
                    if (c >= limit) {
                        raise_encode_exception(&exc, encoding, startp, size,
                                               unicodepos, unicodepos+1, reason);
                        Py_DECREF(repunicode);
                        goto onError;
                    }
                    *str = (char)c;
                }
                p = startp + newpos;
                Py_DECREF(repunicode);
            }
        }
    }
    /* Resize if we allocated to much */
    size = str - PyBytes_AS_STRING(res);
    if (size < ressize) { /* If this falls res will be NULL */
        assert(size >= 0);
        if (_PyBytes_Resize(&res, size) < 0)
            goto onError;
    }

    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return res;

  onError:
    Py_XDECREF(res);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

PyObject *PyUnicode_EncodeLatin1(const Py_UNICODE *p,
                                 Py_ssize_t size,
                                 const char *errors)
{
    return unicode_encode_ucs1(p, size, errors, 256);
}

PyObject *PyUnicode_AsLatin1String(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeLatin1(PyUnicode_AS_UNICODE(unicode),
                                  PyUnicode_GET_SIZE(unicode),
                                  NULL);
}

/* --- 7-bit ASCII Codec -------------------------------------------------- */

PyObject *PyUnicode_DecodeASCII(const char *s,
                                Py_ssize_t size,
                                const char *errors)
{
    const char *starts = s;
    PyUnicodeObject *v;
    Py_UNICODE *p;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    const char *e;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;

    /* ASCII is equivalent to the first 128 ordinals in Unicode. */
    if (size == 1 && *(unsigned char*)s < 128) {
        Py_UNICODE r = *(unsigned char*)s;
        return PyUnicode_FromUnicode(&r, 1);
    }

    v = _PyUnicode_New(size);
    if (v == NULL)
        goto onError;
    if (size == 0)
        return (PyObject *)v;
    p = PyUnicode_AS_UNICODE(v);
    e = s + size;
    while (s < e) {
        register unsigned char c = (unsigned char)*s;
        if (c < 128) {
            *p++ = c;
            ++s;
        }
        else {
            startinpos = s-starts;
            endinpos = startinpos + 1;
            outpos = p - (Py_UNICODE *)PyUnicode_AS_UNICODE(v);
            if (unicode_decode_call_errorhandler(
                    errors, &errorHandler,
                    "ascii", "ordinal not in range(128)",
                    &starts, &e, &startinpos, &endinpos, &exc, &s,
                    &v, &outpos, &p))
                goto onError;
        }
    }
    if (p - PyUnicode_AS_UNICODE(v) < PyUnicode_GET_SIZE(v))
        if (_PyUnicode_Resize(&v, p - PyUnicode_AS_UNICODE(v)) < 0)
            goto onError;
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)v;

  onError:
    Py_XDECREF(v);
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return NULL;
}

PyObject *PyUnicode_EncodeASCII(const Py_UNICODE *p,
                                Py_ssize_t size,
                                const char *errors)
{
    return unicode_encode_ucs1(p, size, errors, 128);
}

PyObject *PyUnicode_AsASCIIString(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeASCII(PyUnicode_AS_UNICODE(unicode),
                                 PyUnicode_GET_SIZE(unicode),
                                 NULL);
}

#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)

/* --- MBCS codecs for Windows -------------------------------------------- */

#if SIZEOF_INT < SIZEOF_SIZE_T
#define NEED_RETRY
#endif

/* XXX This code is limited to "true" double-byte encodings, as
   a) it assumes an incomplete character consists of a single byte, and
   b) IsDBCSLeadByte (probably) does not work for non-DBCS multi-byte
   encodings, see IsDBCSLeadByteEx documentation. */

static int is_dbcs_lead_byte(const char *s, int offset)
{
    const char *curr = s + offset;

    if (IsDBCSLeadByte(*curr)) {
        const char *prev = CharPrev(s, curr);
        return (prev == curr) || !IsDBCSLeadByte(*prev) || (curr - prev == 2);
    }
    return 0;
}

/*
 * Decode MBCS string into unicode object. If 'final' is set, converts
 * trailing lead-byte too. Returns consumed size if succeed, -1 otherwise.
 */
static int decode_mbcs(PyUnicodeObject **v,
                       const char *s, /* MBCS string */
                       int size, /* sizeof MBCS string */
                       int final,
                       const char *errors)
{
    Py_UNICODE *p;
    Py_ssize_t n;
    DWORD usize;
    DWORD flags;

    assert(size >= 0);

    /* check and handle 'errors' arg */
    if (errors==NULL || strcmp(errors, "strict")==0)
        flags = MB_ERR_INVALID_CHARS;
    else if (strcmp(errors, "ignore")==0)
        flags = 0;
    else {
        PyErr_Format(PyExc_ValueError,
                     "mbcs encoding does not support errors='%s'",
                     errors);
        return -1;
    }

    /* Skip trailing lead-byte unless 'final' is set */
    if (!final && size >= 1 && is_dbcs_lead_byte(s, size - 1))
        --size;

    /* First get the size of the result */
    if (size > 0) {
        usize = MultiByteToWideChar(CP_ACP, flags, s, size, NULL, 0);
        if (usize==0)
            goto mbcs_decode_error;
    } else
        usize = 0;

    if (*v == NULL) {
        /* Create unicode object */
        *v = _PyUnicode_New(usize);
        if (*v == NULL)
            return -1;
        n = 0;
    }
    else {
        /* Extend unicode object */
        n = PyUnicode_GET_SIZE(*v);
        if (_PyUnicode_Resize(v, n + usize) < 0)
            return -1;
    }

    /* Do the conversion */
    if (usize > 0) {
        p = PyUnicode_AS_UNICODE(*v) + n;
        if (0 == MultiByteToWideChar(CP_ACP, flags, s, size, p, usize)) {
            goto mbcs_decode_error;
        }
    }
    return size;

mbcs_decode_error:
    /* If the last error was ERROR_NO_UNICODE_TRANSLATION, then
       we raise a UnicodeDecodeError - else it is a 'generic'
       windows error
     */
    if (GetLastError()==ERROR_NO_UNICODE_TRANSLATION) {
        /* Ideally, we should get reason from FormatMessage - this
           is the Windows 2000 English version of the message
        */
        PyObject *exc = NULL;
        const char *reason = "No mapping for the Unicode character exists "
                             "in the target multi-byte code page.";
        make_decode_exception(&exc, "mbcs", s, size, 0, 0, reason);
        if (exc != NULL) {
            PyCodec_StrictErrors(exc);
            Py_DECREF(exc);
        }
    } else {
        PyErr_SetFromWindowsErrWithFilename(0, NULL);
    }
    return -1;
}

PyObject *PyUnicode_DecodeMBCSStateful(const char *s,
                                       Py_ssize_t size,
                                       const char *errors,
                                       Py_ssize_t *consumed)
{
    PyUnicodeObject *v = NULL;
    int done;

    if (consumed)
        *consumed = 0;

#ifdef NEED_RETRY
  retry:
    if (size > INT_MAX)
        done = decode_mbcs(&v, s, INT_MAX, 0, errors);
    else
#endif
        done = decode_mbcs(&v, s, (int)size, !consumed, errors);

    if (done < 0) {
        Py_XDECREF(v);
        return NULL;
    }

    if (consumed)
        *consumed += done;

#ifdef NEED_RETRY
    if (size > INT_MAX) {
        s += done;
        size -= done;
        goto retry;
    }
#endif

    return (PyObject *)v;
}

PyObject *PyUnicode_DecodeMBCS(const char *s,
                               Py_ssize_t size,
                               const char *errors)
{
    return PyUnicode_DecodeMBCSStateful(s, size, errors, NULL);
}

/*
 * Convert unicode into string object (MBCS).
 * Returns 0 if succeed, -1 otherwise.
 */
static int encode_mbcs(PyObject **repr,
                       const Py_UNICODE *p, /* unicode */
                       int size, /* size of unicode */
                       const char* errors)
{
    BOOL usedDefaultChar = FALSE;
    BOOL *pusedDefaultChar;
    int mbcssize;
    Py_ssize_t n;
    PyObject *exc = NULL;
    DWORD flags;

    assert(size >= 0);

    /* check and handle 'errors' arg */
    if (errors==NULL || strcmp(errors, "strict")==0) {
        flags = WC_NO_BEST_FIT_CHARS;
        pusedDefaultChar = &usedDefaultChar;
    } else if (strcmp(errors, "replace")==0) {
        flags = 0;
        pusedDefaultChar = NULL;
    } else {
         PyErr_Format(PyExc_ValueError,
                      "mbcs encoding does not support errors='%s'",
                      errors);
         return -1;
    }

    /* First get the size of the result */
    if (size > 0) {
        mbcssize = WideCharToMultiByte(CP_ACP, flags, p, size, NULL, 0,
                                       NULL, pusedDefaultChar);
        if (mbcssize == 0) {
            PyErr_SetFromWindowsErrWithFilename(0, NULL);
            return -1;
        }
        /* If we used a default char, then we failed! */
        if (pusedDefaultChar && *pusedDefaultChar)
            goto mbcs_encode_error;
    } else {
        mbcssize = 0;
    }

    if (*repr == NULL) {
        /* Create string object */
        *repr = PyBytes_FromStringAndSize(NULL, mbcssize);
        if (*repr == NULL)
            return -1;
        n = 0;
    }
    else {
        /* Extend string object */
        n = PyBytes_Size(*repr);
        if (_PyBytes_Resize(repr, n + mbcssize) < 0)
            return -1;
    }

    /* Do the conversion */
    if (size > 0) {
        char *s = PyBytes_AS_STRING(*repr) + n;
        if (0 == WideCharToMultiByte(CP_ACP, flags, p, size, s, mbcssize,
                                     NULL, pusedDefaultChar)) {
            PyErr_SetFromWindowsErrWithFilename(0, NULL);
            return -1;
        }
        if (pusedDefaultChar && *pusedDefaultChar)
            goto mbcs_encode_error;
    }
    return 0;

mbcs_encode_error:
    raise_encode_exception(&exc, "mbcs", p, size, 0, 0, "invalid character");
    Py_XDECREF(exc);
    return -1;
}

PyObject *PyUnicode_EncodeMBCS(const Py_UNICODE *p,
                               Py_ssize_t size,
                               const char *errors)
{
    PyObject *repr = NULL;
    int ret;

#ifdef NEED_RETRY
  retry:
    if (size > INT_MAX)
        ret = encode_mbcs(&repr, p, INT_MAX, errors);
    else
#endif
        ret = encode_mbcs(&repr, p, (int)size, errors);

    if (ret < 0) {
        Py_XDECREF(repr);
        return NULL;
    }

#ifdef NEED_RETRY
    if (size > INT_MAX) {
        p += INT_MAX;
        size -= INT_MAX;
        goto retry;
    }
#endif

    return repr;
}

PyObject *PyUnicode_AsMBCSString(PyObject *unicode)
{
    if (!PyUnicode_Check(unicode)) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeMBCS(PyUnicode_AS_UNICODE(unicode),
                                PyUnicode_GET_SIZE(unicode),
                                NULL);
}

#undef NEED_RETRY

#endif /* MS_WINDOWS */

/* --- Character Mapping Codec -------------------------------------------- */

PyObject *PyUnicode_DecodeCharmap(const char *s,
                                  Py_ssize_t size,
                                  PyObject *mapping,
                                  const char *errors)
{
    const char *starts = s;
    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    Py_ssize_t outpos;
    const char *e;
    PyUnicodeObject *v;
    Py_UNICODE *p;
    Py_ssize_t extrachars = 0;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;
    Py_UNICODE *mapstring = NULL;
    Py_ssize_t maplen = 0;

    /* Default to Latin-1 */
    if (mapping == NULL)
        return PyUnicode_DecodeLatin1(s, size, errors);

    v = _PyUnicode_New(size);
    if (v == NULL)
        goto onError;
    if (size == 0)
        return (PyObject *)v;
    p = PyUnicode_AS_UNICODE(v);
    e = s + size;
    if (PyUnicode_CheckExact(mapping)) {
        mapstring = PyUnicode_AS_UNICODE(mapping);
        maplen = PyUnicode_GET_SIZE(mapping);
        while (s < e) {
            unsigned char ch = *s;
            Py_UNICODE x = 0xfffe; /* illegal value */

            if (ch < maplen)
                x = mapstring[ch];

            if (x == 0xfffe) {
                /* undefined mapping */
                outpos = p-PyUnicode_AS_UNICODE(v);
                startinpos = s-starts;
                endinpos = startinpos+1;
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "charmap", "character maps to <undefined>",
                        &starts, &e, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p)) {
                    goto onError;
                }
                continue;
            }
            *p++ = x;
            ++s;
        }
    }
    else {
        while (s < e) {
            unsigned char ch = *s;
            PyObject *w, *x;

            /* Get mapping (char ordinal -> integer, Unicode char or None) */
            w = PyLong_FromLong((long)ch);
            if (w == NULL)
                goto onError;
            x = PyObject_GetItem(mapping, w);
            Py_DECREF(w);
            if (x == NULL) {
                if (PyErr_ExceptionMatches(PyExc_LookupError)) {
                    /* No mapping found means: mapping is undefined. */
                    PyErr_Clear();
                    x = Py_None;
                    Py_INCREF(x);
                } else
                    goto onError;
            }

            /* Apply mapping */
            if (PyLong_Check(x)) {
                long value = PyLong_AS_LONG(x);
                if (value < 0 || value > 65535) {
                    PyErr_SetString(PyExc_TypeError,
                                    "character mapping must be in range(65536)");
                    Py_DECREF(x);
                    goto onError;
                }
                *p++ = (Py_UNICODE)value;
            }
            else if (x == Py_None) {
                /* undefined mapping */
                outpos = p-PyUnicode_AS_UNICODE(v);
                startinpos = s-starts;
                endinpos = startinpos+1;
                if (unicode_decode_call_errorhandler(
                        errors, &errorHandler,
                        "charmap", "character maps to <undefined>",
                        &starts, &e, &startinpos, &endinpos, &exc, &s,
                        &v, &outpos, &p)) {
                    Py_DECREF(x);
                    goto onError;
                }
                Py_DECREF(x);
                continue;
            }
            else if (PyUnicode_Check(x)) {
                Py_ssize_t targetsize = PyUnicode_GET_SIZE(x);

                if (targetsize == 1)
                    /* 1-1 mapping */
                    *p++ = *PyUnicode_AS_UNICODE(x);

                else if (targetsize > 1) {
                    /* 1-n mapping */
                    if (targetsize > extrachars) {
                        /* resize first */
                        Py_ssize_t oldpos = p - PyUnicode_AS_UNICODE(v);
                        Py_ssize_t needed = (targetsize - extrachars) + \
                            (targetsize << 2);
                        extrachars += needed;
                        /* XXX overflow detection missing */
                        if (_PyUnicode_Resize(&v,
                                              PyUnicode_GET_SIZE(v) + needed) < 0) {
                            Py_DECREF(x);
                            goto onError;
                        }
                        p = PyUnicode_AS_UNICODE(v) + oldpos;
                    }
                    Py_UNICODE_COPY(p,
                                    PyUnicode_AS_UNICODE(x),
                                    targetsize);
                    p += targetsize;
                    extrachars -= targetsize;
                }
                /* 1-0 mapping: skip the character */
            }
            else {
                /* wrong return value */
                PyErr_SetString(PyExc_TypeError,
                                "character mapping must return integer, None or str");
                Py_DECREF(x);
                goto onError;
            }
            Py_DECREF(x);
            ++s;
        }
    }
    if (p - PyUnicode_AS_UNICODE(v) < PyUnicode_GET_SIZE(v))
        if (_PyUnicode_Resize(&v, p - PyUnicode_AS_UNICODE(v)) < 0)
            goto onError;
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    return (PyObject *)v;

  onError:
    Py_XDECREF(errorHandler);
    Py_XDECREF(exc);
    Py_XDECREF(v);
    return NULL;
}

/* Charmap encoding: the lookup table */

struct encoding_map{
    PyObject_HEAD
    unsigned char level1[32];
    int count2, count3;
    unsigned char level23[1];
};

static PyObject*
encoding_map_size(PyObject *obj, PyObject* args)
{
    struct encoding_map *map = (struct encoding_map*)obj;
    return PyLong_FromLong(sizeof(*map) - 1 + 16*map->count2 +
                           128*map->count3);
}

static PyMethodDef encoding_map_methods[] = {
    {"size", encoding_map_size, METH_NOARGS,
     PyDoc_STR("Return the size (in bytes) of this object") },
    { 0 }
};

static void
encoding_map_dealloc(PyObject* o)
{
    PyObject_FREE(o);
}

static PyTypeObject EncodingMapType = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "EncodingMap",          /*tp_name*/
    sizeof(struct encoding_map),   /*tp_basicsize*/
    0,                      /*tp_itemsize*/
    /* methods */
    encoding_map_dealloc,   /*tp_dealloc*/
    0,                      /*tp_print*/
    0,                      /*tp_getattr*/
    0,                      /*tp_setattr*/
    0,                      /*tp_reserved*/
    0,                      /*tp_repr*/
    0,                      /*tp_as_number*/
    0,                      /*tp_as_sequence*/
    0,                      /*tp_as_mapping*/
    0,                      /*tp_hash*/
    0,                      /*tp_call*/
    0,                      /*tp_str*/
    0,                      /*tp_getattro*/
    0,                      /*tp_setattro*/
    0,                      /*tp_as_buffer*/
    Py_TPFLAGS_DEFAULT,     /*tp_flags*/
    0,                      /*tp_doc*/
    0,                      /*tp_traverse*/
    0,                      /*tp_clear*/
    0,                      /*tp_richcompare*/
    0,                      /*tp_weaklistoffset*/
    0,                      /*tp_iter*/
    0,                      /*tp_iternext*/
    encoding_map_methods,   /*tp_methods*/
    0,                      /*tp_members*/
    0,                      /*tp_getset*/
    0,                      /*tp_base*/
    0,                      /*tp_dict*/
    0,                      /*tp_descr_get*/
    0,                      /*tp_descr_set*/
    0,                      /*tp_dictoffset*/
    0,                      /*tp_init*/
    0,                      /*tp_alloc*/
    0,                      /*tp_new*/
    0,                      /*tp_free*/
    0,                      /*tp_is_gc*/
};

PyObject*
PyUnicode_BuildEncodingMap(PyObject* string)
{
    Py_UNICODE *decode;
    PyObject *result;
    struct encoding_map *mresult;
    int i;
    int need_dict = 0;
    unsigned char level1[32];
    unsigned char level2[512];
    unsigned char *mlevel1, *mlevel2, *mlevel3;
    int count2 = 0, count3 = 0;

    if (!PyUnicode_Check(string) || PyUnicode_GetSize(string) != 256) {
        PyErr_BadArgument();
        return NULL;
    }
    decode = PyUnicode_AS_UNICODE(string);
    memset(level1, 0xFF, sizeof level1);
    memset(level2, 0xFF, sizeof level2);

    /* If there isn't a one-to-one mapping of NULL to \0,
       or if there are non-BMP characters, we need to use
       a mapping dictionary. */
    if (decode[0] != 0)
        need_dict = 1;
    for (i = 1; i < 256; i++) {
        int l1, l2;
        if (decode[i] == 0
#ifdef Py_UNICODE_WIDE
            || decode[i] > 0xFFFF
#endif
            ) {
            need_dict = 1;
            break;
        }
        if (decode[i] == 0xFFFE)
            /* unmapped character */
            continue;
        l1 = decode[i] >> 11;
        l2 = decode[i] >> 7;
        if (level1[l1] == 0xFF)
            level1[l1] = count2++;
        if (level2[l2] == 0xFF)
            level2[l2] = count3++;
    }

    if (count2 >= 0xFF || count3 >= 0xFF)
        need_dict = 1;

    if (need_dict) {
        PyObject *result = PyDict_New();
        PyObject *key, *value;
        if (!result)
            return NULL;
        for (i = 0; i < 256; i++) {
            key = value = NULL;
            key = PyLong_FromLong(decode[i]);
            value = PyLong_FromLong(i);
            if (!key || !value)
                goto failed1;
            if (PyDict_SetItem(result, key, value) == -1)
                goto failed1;
            Py_DECREF(key);
            Py_DECREF(value);
        }
        return result;
      failed1:
        Py_XDECREF(key);
        Py_XDECREF(value);
        Py_DECREF(result);
        return NULL;
    }

    /* Create a three-level trie */
    result = PyObject_MALLOC(sizeof(struct encoding_map) +
                             16*count2 + 128*count3 - 1);
    if (!result)
        return PyErr_NoMemory();
    PyObject_Init(result, &EncodingMapType);
    mresult = (struct encoding_map*)result;
    mresult->count2 = count2;
    mresult->count3 = count3;
    mlevel1 = mresult->level1;
    mlevel2 = mresult->level23;
    mlevel3 = mresult->level23 + 16*count2;
    memcpy(mlevel1, level1, 32);
    memset(mlevel2, 0xFF, 16*count2);
    memset(mlevel3, 0, 128*count3);
    count3 = 0;
    for (i = 1; i < 256; i++) {
        int o1, o2, o3, i2, i3;
        if (decode[i] == 0xFFFE)
            /* unmapped character */
            continue;
        o1 = decode[i]>>11;
        o2 = (decode[i]>>7) & 0xF;
        i2 = 16*mlevel1[o1] + o2;
        if (mlevel2[i2] == 0xFF)
            mlevel2[i2] = count3++;
        o3 = decode[i] & 0x7F;
        i3 = 128*mlevel2[i2] + o3;
        mlevel3[i3] = i;
    }
    return result;
}

static int
encoding_map_lookup(Py_UNICODE c, PyObject *mapping)
{
    struct encoding_map *map = (struct encoding_map*)mapping;
    int l1 = c>>11;
    int l2 = (c>>7) & 0xF;
    int l3 = c & 0x7F;
    int i;

#ifdef Py_UNICODE_WIDE
    if (c > 0xFFFF) {
        return -1;
    }
#endif
    if (c == 0)
        return 0;
    /* level 1*/
    i = map->level1[l1];
    if (i == 0xFF) {
        return -1;
    }
    /* level 2*/
    i = map->level23[16*i+l2];
    if (i == 0xFF) {
        return -1;
    }
    /* level 3 */
    i = map->level23[16*map->count2 + 128*i + l3];
    if (i == 0) {
        return -1;
    }
    return i;
}

/* Lookup the character ch in the mapping. If the character
   can't be found, Py_None is returned (or NULL, if another
   error occurred). */
static PyObject *charmapencode_lookup(Py_UNICODE c, PyObject *mapping)
{
    PyObject *w = PyLong_FromLong((long)c);
    PyObject *x;

    if (w == NULL)
        return NULL;
    x = PyObject_GetItem(mapping, w);
    Py_DECREF(w);
    if (x == NULL) {
        if (PyErr_ExceptionMatches(PyExc_LookupError)) {
            /* No mapping found means: mapping is undefined. */
            PyErr_Clear();
            x = Py_None;
            Py_INCREF(x);
            return x;
        } else
            return NULL;
    }
    else if (x == Py_None)
        return x;
    else if (PyLong_Check(x)) {
        long value = PyLong_AS_LONG(x);
        if (value < 0 || value > 255) {
            PyErr_SetString(PyExc_TypeError,
                            "character mapping must be in range(256)");
            Py_DECREF(x);
            return NULL;
        }
        return x;
    }
    else if (PyBytes_Check(x))
        return x;
    else {
        /* wrong return value */
        PyErr_Format(PyExc_TypeError,
                     "character mapping must return integer, bytes or None, not %.400s",
                     x->ob_type->tp_name);
        Py_DECREF(x);
        return NULL;
    }
}

static int
charmapencode_resize(PyObject **outobj, Py_ssize_t *outpos, Py_ssize_t requiredsize)
{
    Py_ssize_t outsize = PyBytes_GET_SIZE(*outobj);
    /* exponentially overallocate to minimize reallocations */
    if (requiredsize < 2*outsize)
        requiredsize = 2*outsize;
    if (_PyBytes_Resize(outobj, requiredsize))
        return -1;
    return 0;
}

typedef enum charmapencode_result {
    enc_SUCCESS, enc_FAILED, enc_EXCEPTION
}charmapencode_result;
/* lookup the character, put the result in the output string and adjust
   various state variables. Resize the output bytes object if not enough
   space is available. Return a new reference to the object that
   was put in the output buffer, or Py_None, if the mapping was undefined
   (in which case no character was written) or NULL, if a
   reallocation error occurred. The caller must decref the result */
static
charmapencode_result charmapencode_output(Py_UNICODE c, PyObject *mapping,
                                          PyObject **outobj, Py_ssize_t *outpos)
{
    PyObject *rep;
    char *outstart;
    Py_ssize_t outsize = PyBytes_GET_SIZE(*outobj);

    if (Py_TYPE(mapping) == &EncodingMapType) {
        int res = encoding_map_lookup(c, mapping);
        Py_ssize_t requiredsize = *outpos+1;
        if (res == -1)
            return enc_FAILED;
        if (outsize<requiredsize)
            if (charmapencode_resize(outobj, outpos, requiredsize))
                return enc_EXCEPTION;
        outstart = PyBytes_AS_STRING(*outobj);
        outstart[(*outpos)++] = (char)res;
        return enc_SUCCESS;
    }

    rep = charmapencode_lookup(c, mapping);
    if (rep==NULL)
        return enc_EXCEPTION;
    else if (rep==Py_None) {
        Py_DECREF(rep);
        return enc_FAILED;
    } else {
        if (PyLong_Check(rep)) {
            Py_ssize_t requiredsize = *outpos+1;
            if (outsize<requiredsize)
                if (charmapencode_resize(outobj, outpos, requiredsize)) {
                    Py_DECREF(rep);
                    return enc_EXCEPTION;
                }
            outstart = PyBytes_AS_STRING(*outobj);
            outstart[(*outpos)++] = (char)PyLong_AS_LONG(rep);
        }
        else {
            const char *repchars = PyBytes_AS_STRING(rep);
            Py_ssize_t repsize = PyBytes_GET_SIZE(rep);
            Py_ssize_t requiredsize = *outpos+repsize;
            if (outsize<requiredsize)
                if (charmapencode_resize(outobj, outpos, requiredsize)) {
                    Py_DECREF(rep);
                    return enc_EXCEPTION;
                }
            outstart = PyBytes_AS_STRING(*outobj);
            memcpy(outstart + *outpos, repchars, repsize);
            *outpos += repsize;
        }
    }
    Py_DECREF(rep);
    return enc_SUCCESS;
}

/* handle an error in PyUnicode_EncodeCharmap
   Return 0 on success, -1 on error */
static
int charmap_encoding_error(
    const Py_UNICODE *p, Py_ssize_t size, Py_ssize_t *inpos, PyObject *mapping,
    PyObject **exceptionObject,
    int *known_errorHandler, PyObject **errorHandler, const char *errors,
    PyObject **res, Py_ssize_t *respos)
{
    PyObject *repunicode = NULL; /* initialize to prevent gcc warning */
    Py_ssize_t repsize;
    Py_ssize_t newpos;
    Py_UNICODE *uni2;
    /* startpos for collecting unencodable chars */
    Py_ssize_t collstartpos = *inpos;
    Py_ssize_t collendpos = *inpos+1;
    Py_ssize_t collpos;
    char *encoding = "charmap";
    char *reason = "character maps to <undefined>";
    charmapencode_result x;

    /* find all unencodable characters */
    while (collendpos < size) {
        PyObject *rep;
        if (Py_TYPE(mapping) == &EncodingMapType) {
            int res = encoding_map_lookup(p[collendpos], mapping);
            if (res != -1)
                break;
            ++collendpos;
            continue;
        }

        rep = charmapencode_lookup(p[collendpos], mapping);
        if (rep==NULL)
            return -1;
        else if (rep!=Py_None) {
            Py_DECREF(rep);
            break;
        }
        Py_DECREF(rep);
        ++collendpos;
    }
    /* cache callback name lookup
     * (if not done yet, i.e. it's the first error) */
    if (*known_errorHandler==-1) {
        if ((errors==NULL) || (!strcmp(errors, "strict")))
            *known_errorHandler = 1;
        else if (!strcmp(errors, "replace"))
            *known_errorHandler = 2;
        else if (!strcmp(errors, "ignore"))
            *known_errorHandler = 3;
        else if (!strcmp(errors, "xmlcharrefreplace"))
            *known_errorHandler = 4;
        else
            *known_errorHandler = 0;
    }
    switch (*known_errorHandler) {
    case 1: /* strict */
        raise_encode_exception(exceptionObject, encoding, p, size, collstartpos, collendpos, reason);
        return -1;
    case 2: /* replace */
        for (collpos = collstartpos; collpos<collendpos; ++collpos) {
            x = charmapencode_output('?', mapping, res, respos);
            if (x==enc_EXCEPTION) {
                return -1;
            }
            else if (x==enc_FAILED) {
                raise_encode_exception(exceptionObject, encoding, p, size, collstartpos, collendpos, reason);
                return -1;
            }
        }
        /* fall through */
    case 3: /* ignore */
        *inpos = collendpos;
        break;
    case 4: /* xmlcharrefreplace */
        /* generate replacement (temporarily (mis)uses p) */
        for (collpos = collstartpos; collpos < collendpos; ++collpos) {
            char buffer[2+29+1+1];
            char *cp;
            sprintf(buffer, "&#%d;", (int)p[collpos]);
            for (cp = buffer; *cp; ++cp) {
                x = charmapencode_output(*cp, mapping, res, respos);
                if (x==enc_EXCEPTION)
                    return -1;
                else if (x==enc_FAILED) {
                    raise_encode_exception(exceptionObject, encoding, p, size, collstartpos, collendpos, reason);
                    return -1;
                }
            }
        }
        *inpos = collendpos;
        break;
    default:
        repunicode = unicode_encode_call_errorhandler(errors, errorHandler,
                                                      encoding, reason, p, size, exceptionObject,
                                                      collstartpos, collendpos, &newpos);
        if (repunicode == NULL)
            return -1;
        if (PyBytes_Check(repunicode)) {
            /* Directly copy bytes result to output. */
            Py_ssize_t outsize = PyBytes_Size(*res);
            Py_ssize_t requiredsize;
            repsize = PyBytes_Size(repunicode);
            requiredsize = *respos + repsize;
            if (requiredsize > outsize)
                /* Make room for all additional bytes. */
                if (charmapencode_resize(res, respos, requiredsize)) {
                    Py_DECREF(repunicode);
                    return -1;
                }
            memcpy(PyBytes_AsString(*res) + *respos,
                   PyBytes_AsString(repunicode),  repsize);
            *respos += repsize;
            *inpos = newpos;
            Py_DECREF(repunicode);
            break;
        }
        /* generate replacement  */
        repsize = PyUnicode_GET_SIZE(repunicode);
        for (uni2 = PyUnicode_AS_UNICODE(repunicode); repsize-->0; ++uni2) {
            x = charmapencode_output(*uni2, mapping, res, respos);
            if (x==enc_EXCEPTION) {
                return -1;
            }
            else if (x==enc_FAILED) {
                Py_DECREF(repunicode);
                raise_encode_exception(exceptionObject, encoding, p, size, collstartpos, collendpos, reason);
                return -1;
            }
        }
        *inpos = newpos;
        Py_DECREF(repunicode);
    }
    return 0;
}

PyObject *PyUnicode_EncodeCharmap(const Py_UNICODE *p,
                                  Py_ssize_t size,
                                  PyObject *mapping,
                                  const char *errors)
{
    /* output object */
    PyObject *res = NULL;
    /* current input position */
    Py_ssize_t inpos = 0;
    /* current output position */
    Py_ssize_t respos = 0;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;
    /* the following variable is used for caching string comparisons
     * -1=not initialized, 0=unknown, 1=strict, 2=replace,
     * 3=ignore, 4=xmlcharrefreplace */
    int known_errorHandler = -1;

    /* Default to Latin-1 */
    if (mapping == NULL)
        return PyUnicode_EncodeLatin1(p, size, errors);

    /* allocate enough for a simple encoding without
       replacements, if we need more, we'll resize */
    res = PyBytes_FromStringAndSize(NULL, size);
    if (res == NULL)
        goto onError;
    if (size == 0)
        return res;

    while (inpos<size) {
        /* try to encode it */
        charmapencode_result x = charmapencode_output(p[inpos], mapping, &res, &respos);
        if (x==enc_EXCEPTION) /* error */
            goto onError;
        if (x==enc_FAILED) { /* unencodable character */
            if (charmap_encoding_error(p, size, &inpos, mapping,
                                       &exc,
                                       &known_errorHandler, &errorHandler, errors,
                                       &res, &respos)) {
                goto onError;
            }
        }
        else
            /* done with this character => adjust input position */
            ++inpos;
    }

    /* Resize if we allocated to much */
    if (respos<PyBytes_GET_SIZE(res))
        if (_PyBytes_Resize(&res, respos) < 0)
            goto onError;

    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return res;

  onError:
    Py_XDECREF(res);
    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return NULL;
}

PyObject *PyUnicode_AsCharmapString(PyObject *unicode,
                                    PyObject *mapping)
{
    if (!PyUnicode_Check(unicode) || mapping == NULL) {
        PyErr_BadArgument();
        return NULL;
    }
    return PyUnicode_EncodeCharmap(PyUnicode_AS_UNICODE(unicode),
                                   PyUnicode_GET_SIZE(unicode),
                                   mapping,
                                   NULL);
}

/* create or adjust a UnicodeTranslateError */
static void make_translate_exception(PyObject **exceptionObject,
                                     const Py_UNICODE *unicode, Py_ssize_t size,
                                     Py_ssize_t startpos, Py_ssize_t endpos,
                                     const char *reason)
{
    if (*exceptionObject == NULL) {
        *exceptionObject = PyUnicodeTranslateError_Create(
            unicode, size, startpos, endpos, reason);
    }
    else {
        if (PyUnicodeTranslateError_SetStart(*exceptionObject, startpos))
            goto onError;
        if (PyUnicodeTranslateError_SetEnd(*exceptionObject, endpos))
            goto onError;
        if (PyUnicodeTranslateError_SetReason(*exceptionObject, reason))
            goto onError;
        return;
      onError:
        Py_DECREF(*exceptionObject);
        *exceptionObject = NULL;
    }
}

/* raises a UnicodeTranslateError */
static void raise_translate_exception(PyObject **exceptionObject,
                                      const Py_UNICODE *unicode, Py_ssize_t size,
                                      Py_ssize_t startpos, Py_ssize_t endpos,
                                      const char *reason)
{
    make_translate_exception(exceptionObject,
                             unicode, size, startpos, endpos, reason);
    if (*exceptionObject != NULL)
        PyCodec_StrictErrors(*exceptionObject);
}

/* error handling callback helper:
   build arguments, call the callback and check the arguments,
   put the result into newpos and return the replacement string, which
   has to be freed by the caller */
static PyObject *unicode_translate_call_errorhandler(const char *errors,
                                                     PyObject **errorHandler,
                                                     const char *reason,
                                                     const Py_UNICODE *unicode, Py_ssize_t size, PyObject **exceptionObject,
                                                     Py_ssize_t startpos, Py_ssize_t endpos,
                                                     Py_ssize_t *newpos)
{
    static char *argparse = "O!n;translating error handler must return (str, int) tuple";

    Py_ssize_t i_newpos;
    PyObject *restuple;
    PyObject *resunicode;

    if (*errorHandler == NULL) {
        *errorHandler = PyCodec_LookupError(errors);
        if (*errorHandler == NULL)
            return NULL;
    }

    make_translate_exception(exceptionObject,
                             unicode, size, startpos, endpos, reason);
    if (*exceptionObject == NULL)
        return NULL;

    restuple = PyObject_CallFunctionObjArgs(
        *errorHandler, *exceptionObject, NULL);
    if (restuple == NULL)
        return NULL;
    if (!PyTuple_Check(restuple)) {
        PyErr_SetString(PyExc_TypeError, &argparse[4]);
        Py_DECREF(restuple);
        return NULL;
    }
    if (!PyArg_ParseTuple(restuple, argparse, &PyUnicode_Type,
                          &resunicode, &i_newpos)) {
        Py_DECREF(restuple);
        return NULL;
    }
    if (i_newpos<0)
        *newpos = size+i_newpos;
    else
        *newpos = i_newpos;
    if (*newpos<0 || *newpos>size) {
        PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", *newpos);
        Py_DECREF(restuple);
        return NULL;
    }
    Py_INCREF(resunicode);
    Py_DECREF(restuple);
    return resunicode;
}

/* Lookup the character ch in the mapping and put the result in result,
   which must be decrefed by the caller.
   Return 0 on success, -1 on error */
static
int charmaptranslate_lookup(Py_UNICODE c, PyObject *mapping, PyObject **result)
{
    PyObject *w = PyLong_FromLong((long)c);
    PyObject *x;

    if (w == NULL)
        return -1;
    x = PyObject_GetItem(mapping, w);
    Py_DECREF(w);
    if (x == NULL) {
        if (PyErr_ExceptionMatches(PyExc_LookupError)) {
            /* No mapping found means: use 1:1 mapping. */
            PyErr_Clear();
            *result = NULL;
            return 0;
        } else
            return -1;
    }
    else if (x == Py_None) {
        *result = x;
        return 0;
    }
    else if (PyLong_Check(x)) {
        long value = PyLong_AS_LONG(x);
        long max = PyUnicode_GetMax();
        if (value < 0 || value > max) {
            PyErr_Format(PyExc_TypeError,
                         "character mapping must be in range(0x%x)", max+1);
            Py_DECREF(x);
            return -1;
        }
        *result = x;
        return 0;
    }
    else if (PyUnicode_Check(x)) {
        *result = x;
        return 0;
    }
    else {
        /* wrong return value */
        PyErr_SetString(PyExc_TypeError,
                        "character mapping must return integer, None or str");
        Py_DECREF(x);
        return -1;
    }
}
/* ensure that *outobj is at least requiredsize characters long,
   if not reallocate and adjust various state variables.
   Return 0 on success, -1 on error */
static
int charmaptranslate_makespace(PyObject **outobj, Py_UNICODE **outp,
                               Py_ssize_t requiredsize)
{
    Py_ssize_t oldsize = PyUnicode_GET_SIZE(*outobj);
    if (requiredsize > oldsize) {
        /* remember old output position */
        Py_ssize_t outpos = *outp-PyUnicode_AS_UNICODE(*outobj);
        /* exponentially overallocate to minimize reallocations */
        if (requiredsize < 2 * oldsize)
            requiredsize = 2 * oldsize;
        if (PyUnicode_Resize(outobj, requiredsize) < 0)
            return -1;
        *outp = PyUnicode_AS_UNICODE(*outobj) + outpos;
    }
    return 0;
}
/* lookup the character, put the result in the output string and adjust
   various state variables. Return a new reference to the object that
   was put in the output buffer in *result, or Py_None, if the mapping was
   undefined (in which case no character was written).
   The called must decref result.
   Return 0 on success, -1 on error. */
static
int charmaptranslate_output(const Py_UNICODE *startinp, const Py_UNICODE *curinp,
                            Py_ssize_t insize, PyObject *mapping, PyObject **outobj, Py_UNICODE **outp,
                            PyObject **res)
{
    if (charmaptranslate_lookup(*curinp, mapping, res))
        return -1;
    if (*res==NULL) {
        /* not found => default to 1:1 mapping */
        *(*outp)++ = *curinp;
    }
    else if (*res==Py_None)
        ;
    else if (PyLong_Check(*res)) {
        /* no overflow check, because we know that the space is enough */
        *(*outp)++ = (Py_UNICODE)PyLong_AS_LONG(*res);
    }
    else if (PyUnicode_Check(*res)) {
        Py_ssize_t repsize = PyUnicode_GET_SIZE(*res);
        if (repsize==1) {
            /* no overflow check, because we know that the space is enough */
            *(*outp)++ = *PyUnicode_AS_UNICODE(*res);
        }
        else if (repsize!=0) {
            /* more than one character */
            Py_ssize_t requiredsize = (*outp-PyUnicode_AS_UNICODE(*outobj)) +
                (insize - (curinp-startinp)) +
                repsize - 1;
            if (charmaptranslate_makespace(outobj, outp, requiredsize))
                return -1;
            memcpy(*outp, PyUnicode_AS_UNICODE(*res), sizeof(Py_UNICODE)*repsize);
            *outp += repsize;
        }
    }
    else
        return -1;
    return 0;
}

PyObject *PyUnicode_TranslateCharmap(const Py_UNICODE *p,
                                     Py_ssize_t size,
                                     PyObject *mapping,
                                     const char *errors)
{
    /* output object */
    PyObject *res = NULL;
    /* pointers to the beginning and end+1 of input */
    const Py_UNICODE *startp = p;
    const Py_UNICODE *endp = p + size;
    /* pointer into the output */
    Py_UNICODE *str;
    /* current output position */
    Py_ssize_t respos = 0;
    char *reason = "character maps to <undefined>";
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;
    /* the following variable is used for caching string comparisons
     * -1=not initialized, 0=unknown, 1=strict, 2=replace,
     * 3=ignore, 4=xmlcharrefreplace */
    int known_errorHandler = -1;

    if (mapping == NULL) {
        PyErr_BadArgument();
        return NULL;
    }

    /* allocate enough for a simple 1:1 translation without
       replacements, if we need more, we'll resize */
    res = PyUnicode_FromUnicode(NULL, size);
    if (res == NULL)
        goto onError;
    if (size == 0)
        return res;
    str = PyUnicode_AS_UNICODE(res);

    while (p<endp) {
        /* try to encode it */
        PyObject *x = NULL;
        if (charmaptranslate_output(startp, p, size, mapping, &res, &str, &x)) {
            Py_XDECREF(x);
            goto onError;
        }
        Py_XDECREF(x);
        if (x!=Py_None) /* it worked => adjust input pointer */
            ++p;
        else { /* untranslatable character */
            PyObject *repunicode = NULL; /* initialize to prevent gcc warning */
            Py_ssize_t repsize;
            Py_ssize_t newpos;
            Py_UNICODE *uni2;
            /* startpos for collecting untranslatable chars */
            const Py_UNICODE *collstart = p;
            const Py_UNICODE *collend = p+1;
            const Py_UNICODE *coll;

            /* find all untranslatable characters */
            while (collend < endp) {
                if (charmaptranslate_lookup(*collend, mapping, &x))
                    goto onError;
                Py_XDECREF(x);
                if (x!=Py_None)
                    break;
                ++collend;
            }
            /* cache callback name lookup
             * (if not done yet, i.e. it's the first error) */
            if (known_errorHandler==-1) {
                if ((errors==NULL) || (!strcmp(errors, "strict")))
                    known_errorHandler = 1;
                else if (!strcmp(errors, "replace"))
                    known_errorHandler = 2;
                else if (!strcmp(errors, "ignore"))
                    known_errorHandler = 3;
                else if (!strcmp(errors, "xmlcharrefreplace"))
                    known_errorHandler = 4;
                else
                    known_errorHandler = 0;
            }
            switch (known_errorHandler) {
            case 1: /* strict */
                raise_translate_exception(&exc, startp, size, collstart-startp, collend-startp, reason);
                goto onError;
            case 2: /* replace */
                /* No need to check for space, this is a 1:1 replacement */
                for (coll = collstart; coll<collend; ++coll)
                    *str++ = '?';
                /* fall through */
            case 3: /* ignore */
                p = collend;
                break;
            case 4: /* xmlcharrefreplace */
                /* generate replacement (temporarily (mis)uses p) */
                for (p = collstart; p < collend; ++p) {
                    char buffer[2+29+1+1];
                    char *cp;
                    sprintf(buffer, "&#%d;", (int)*p);
                    if (charmaptranslate_makespace(&res, &str,
                                                   (str-PyUnicode_AS_UNICODE(res))+strlen(buffer)+(endp-collend)))
                        goto onError;
                    for (cp = buffer; *cp; ++cp)
                        *str++ = *cp;
                }
                p = collend;
                break;
            default:
                repunicode = unicode_translate_call_errorhandler(errors, &errorHandler,
                                                                 reason, startp, size, &exc,
                                                                 collstart-startp, collend-startp, &newpos);
                if (repunicode == NULL)
                    goto onError;
                /* generate replacement  */
                repsize = PyUnicode_GET_SIZE(repunicode);
                if (charmaptranslate_makespace(&res, &str,
                                               (str-PyUnicode_AS_UNICODE(res))+repsize+(endp-collend))) {
                    Py_DECREF(repunicode);
                    goto onError;
                }
                for (uni2 = PyUnicode_AS_UNICODE(repunicode); repsize-->0; ++uni2)
                    *str++ = *uni2;
                p = startp + newpos;
                Py_DECREF(repunicode);
            }
        }
    }
    /* Resize if we allocated to much */
    respos = str-PyUnicode_AS_UNICODE(res);
    if (respos<PyUnicode_GET_SIZE(res)) {
        if (PyUnicode_Resize(&res, respos) < 0)
            goto onError;
    }
    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return res;

  onError:
    Py_XDECREF(res);
    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return NULL;
}

PyObject *PyUnicode_Translate(PyObject *str,
                              PyObject *mapping,
                              const char *errors)
{
    PyObject *result;

    str = PyUnicode_FromObject(str);
    if (str == NULL)
        goto onError;
    result = PyUnicode_TranslateCharmap(PyUnicode_AS_UNICODE(str),
                                        PyUnicode_GET_SIZE(str),
                                        mapping,
                                        errors);
    Py_DECREF(str);
    return result;

  onError:
    Py_XDECREF(str);
    return NULL;
}

PyObject *
PyUnicode_TransformDecimalToASCII(Py_UNICODE *s,
                                  Py_ssize_t length)
{
    PyObject *result;
    Py_UNICODE *p; /* write pointer into result */
    Py_ssize_t i;
    /* Copy to a new string */
    result = (PyObject *)_PyUnicode_New(length);
    Py_UNICODE_COPY(PyUnicode_AS_UNICODE(result), s, length);
    if (result == NULL)
        return result;
    p = PyUnicode_AS_UNICODE(result);
    /* Iterate over code points */
    for (i = 0; i < length; i++) {
        Py_UNICODE ch =s[i];
        if (ch > 127) {
            int decimal = Py_UNICODE_TODECIMAL(ch);
            if (decimal >= 0)
                p[i] = '0' + decimal;
        }
    }
    return result;
}
/* --- Decimal Encoder ---------------------------------------------------- */

int PyUnicode_EncodeDecimal(Py_UNICODE *s,
                            Py_ssize_t length,
                            char *output,
                            const char *errors)
{
    Py_UNICODE *p, *end;
    PyObject *errorHandler = NULL;
    PyObject *exc = NULL;
    const char *encoding = "decimal";
    const char *reason = "invalid decimal Unicode string";
    /* the following variable is used for caching string comparisons
     * -1=not initialized, 0=unknown, 1=strict, 2=replace, 3=ignore, 4=xmlcharrefreplace */
    int known_errorHandler = -1;

    if (output == NULL) {
        PyErr_BadArgument();
        return -1;
    }

    p = s;
    end = s + length;
    while (p < end) {
        register Py_UNICODE ch = *p;
        int decimal;
        PyObject *repunicode;
        Py_ssize_t repsize;
        Py_ssize_t newpos;
        Py_UNICODE *uni2;
        Py_UNICODE *collstart;
        Py_UNICODE *collend;

        if (Py_UNICODE_ISSPACE(ch)) {
            *output++ = ' ';
            ++p;
            continue;
        }
        decimal = Py_UNICODE_TODECIMAL(ch);
        if (decimal >= 0) {
            *output++ = '0' + decimal;
            ++p;
            continue;
        }
        if (0 < ch && ch < 256) {
            *output++ = (char)ch;
            ++p;
            continue;
        }
        /* All other characters are considered unencodable */
        collstart = p;
        collend = p+1;
        while (collend < end) {
            if ((0 < *collend && *collend < 256) ||
                !Py_UNICODE_ISSPACE(*collend) ||
                Py_UNICODE_TODECIMAL(*collend))
                break;
        }
        /* cache callback name lookup
         * (if not done yet, i.e. it's the first error) */
        if (known_errorHandler==-1) {
            if ((errors==NULL) || (!strcmp(errors, "strict")))
                known_errorHandler = 1;
            else if (!strcmp(errors, "replace"))
                known_errorHandler = 2;
            else if (!strcmp(errors, "ignore"))
                known_errorHandler = 3;
            else if (!strcmp(errors, "xmlcharrefreplace"))
                known_errorHandler = 4;
            else
                known_errorHandler = 0;
        }
        switch (known_errorHandler) {
        case 1: /* strict */
            raise_encode_exception(&exc, encoding, s, length, collstart-s, collend-s, reason);
            goto onError;
        case 2: /* replace */
            for (p = collstart; p < collend; ++p)
                *output++ = '?';
            /* fall through */
        case 3: /* ignore */
            p = collend;
            break;
        case 4: /* xmlcharrefreplace */
            /* generate replacement (temporarily (mis)uses p) */
            for (p = collstart; p < collend; ++p)
                output += sprintf(output, "&#%d;", (int)*p);
            p = collend;
            break;
        default:
            repunicode = unicode_encode_call_errorhandler(errors, &errorHandler,
                                                          encoding, reason, s, length, &exc,
                                                          collstart-s, collend-s, &newpos);
            if (repunicode == NULL)
                goto onError;
            if (!PyUnicode_Check(repunicode)) {
                /* Byte results not supported, since they have no decimal property. */
                PyErr_SetString(PyExc_TypeError, "error handler should return unicode");
                Py_DECREF(repunicode);
                goto onError;
            }
            /* generate replacement  */
            repsize = PyUnicode_GET_SIZE(repunicode);
            for (uni2 = PyUnicode_AS_UNICODE(repunicode); repsize-->0; ++uni2) {
                Py_UNICODE ch = *uni2;
                if (Py_UNICODE_ISSPACE(ch))
                    *output++ = ' ';
                else {
                    decimal = Py_UNICODE_TODECIMAL(ch);
                    if (decimal >= 0)
                        *output++ = '0' + decimal;
                    else if (0 < ch && ch < 256)
                        *output++ = (char)ch;
                    else {
                        Py_DECREF(repunicode);
                        raise_encode_exception(&exc, encoding,
                                               s, length, collstart-s, collend-s, reason);
                        goto onError;
                    }
                }
            }
            p = s + newpos;
            Py_DECREF(repunicode);
        }
    }
    /* 0-terminate the output string */
    *output++ = '\0';
    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return 0;

  onError:
    Py_XDECREF(exc);
    Py_XDECREF(errorHandler);
    return -1;
}

/* --- Helpers ------------------------------------------------------------ */

#include "stringlib/unicodedefs.h"
#include "stringlib/fastsearch.h"

#include "stringlib/count.h"
#include "stringlib/find.h"
#include "stringlib/partition.h"
#include "stringlib/split.h"

#define _Py_InsertThousandsGrouping _PyUnicode_InsertThousandsGrouping
#define _Py_InsertThousandsGroupingLocale _PyUnicode_InsertThousandsGroupingLocale
#include "stringlib/localeutil.h"

/* helper macro to fixup start/end slice values */
#define ADJUST_INDICES(start, end, len)         \
    if (end > len)                              \
        end = len;                              \
    else if (end < 0) {                         \
        end += len;                             \
        if (end < 0)                            \
            end = 0;                            \
    }                                           \
    if (start < 0) {                            \
        start += len;                           \
        if (start < 0)                          \
            start = 0;                          \
    }

Py_ssize_t PyUnicode_Count(PyObject *str,
                           PyObject *substr,
                           Py_ssize_t start,
                           Py_ssize_t end)
{
    Py_ssize_t result;
    PyUnicodeObject* str_obj;
    PyUnicodeObject* sub_obj;

    str_obj = (PyUnicodeObject*) PyUnicode_FromObject(str);
    if (!str_obj)
        return -1;
    sub_obj = (PyUnicodeObject*) PyUnicode_FromObject(substr);
    if (!sub_obj) {
        Py_DECREF(str_obj);
        return -1;
    }

    ADJUST_INDICES(start, end, str_obj->length);
    result = stringlib_count(
        str_obj->str + start, end - start, sub_obj->str, sub_obj->length,
        PY_SSIZE_T_MAX
        );

    Py_DECREF(sub_obj);
    Py_DECREF(str_obj);

    return result;
}

Py_ssize_t PyUnicode_Find(PyObject *str,
                          PyObject *sub,
                          Py_ssize_t start,
                          Py_ssize_t end,
                          int direction)
{
    Py_ssize_t result;

    str = PyUnicode_FromObject(str);
    if (!str)
        return -2;
    sub = PyUnicode_FromObject(sub);
    if (!sub) {
        Py_DECREF(str);
        return -2;
    }

    if (direction > 0)
        result = stringlib_find_slice(
            PyUnicode_AS_UNICODE(str), PyUnicode_GET_SIZE(str),
            PyUnicode_AS_UNICODE(sub), PyUnicode_GET_SIZE(sub),
            start, end
            );
    else
        result = stringlib_rfind_slice(
            PyUnicode_AS_UNICODE(str), PyUnicode_GET_SIZE(str),
            PyUnicode_AS_UNICODE(sub), PyUnicode_GET_SIZE(sub),
            start, end
            );

    Py_DECREF(str);
    Py_DECREF(sub);

    return result;
}

static
int tailmatch(PyUnicodeObject *self,
              PyUnicodeObject *substring,
              Py_ssize_t start,
              Py_ssize_t end,
              int direction)
{
    if (substring->length == 0)
        return 1;

    ADJUST_INDICES(start, end, self->length);
    end -= substring->length;
    if (end < start)
        return 0;

    if (direction > 0) {
        if (Py_UNICODE_MATCH(self, end, substring))
            return 1;
    } else {
        if (Py_UNICODE_MATCH(self, start, substring))
            return 1;
    }

    return 0;
}

Py_ssize_t PyUnicode_Tailmatch(PyObject *str,
                               PyObject *substr,
                               Py_ssize_t start,
                               Py_ssize_t end,
                               int direction)
{
    Py_ssize_t result;

    str = PyUnicode_FromObject(str);
    if (str == NULL)
        return -1;
    substr = PyUnicode_FromObject(substr);
    if (substr == NULL) {
        Py_DECREF(str);
        return -1;
    }

    result = tailmatch((PyUnicodeObject *)str,
                       (PyUnicodeObject *)substr,
                       start, end, direction);
    Py_DECREF(str);
    Py_DECREF(substr);
    return result;
}

/* Apply fixfct filter to the Unicode object self and return a
   reference to the modified object */

static
PyObject *fixup(PyUnicodeObject *self,
                int (*fixfct)(PyUnicodeObject *s))
{

    PyUnicodeObject *u;

    u = (PyUnicodeObject*) PyUnicode_FromUnicode(NULL, self->length);
    if (u == NULL)
        return NULL;

    Py_UNICODE_COPY(u->str, self->str, self->length);

    if (!fixfct(u) && PyUnicode_CheckExact(self)) {
        /* fixfct should return TRUE if it modified the buffer. If
           FALSE, return a reference to the original buffer instead
           (to save space, not time) */
        Py_INCREF(self);
        Py_DECREF(u);
        return (PyObject*) self;
    }
    return (PyObject*) u;
}

static
int fixupper(PyUnicodeObject *self)
{
    Py_ssize_t len = self->length;
    Py_UNICODE *s = self->str;
    int status = 0;

    while (len-- > 0) {
        register Py_UNICODE ch;

        ch = Py_UNICODE_TOUPPER(*s);
        if (ch != *s) {
            status = 1;
            *s = ch;
        }
        s++;
    }

    return status;
}

static
int fixlower(PyUnicodeObject *self)
{
    Py_ssize_t len = self->length;
    Py_UNICODE *s = self->str;
    int status = 0;

    while (len-- > 0) {
        register Py_UNICODE ch;

        ch = Py_UNICODE_TOLOWER(*s);
        if (ch != *s) {
            status = 1;
            *s = ch;
        }
        s++;
    }

    return status;
}

static
int fixswapcase(PyUnicodeObject *self)
{
    Py_ssize_t len = self->length;
    Py_UNICODE *s = self->str;
    int status = 0;

    while (len-- > 0) {
        if (Py_UNICODE_ISUPPER(*s)) {
            *s = Py_UNICODE_TOLOWER(*s);
            status = 1;
        } else if (Py_UNICODE_ISLOWER(*s)) {
            *s = Py_UNICODE_TOUPPER(*s);
            status = 1;
        }
        s++;
    }

    return status;
}

static
int fixcapitalize(PyUnicodeObject *self)
{
    Py_ssize_t len = self->length;
    Py_UNICODE *s = self->str;
    int status = 0;

    if (len == 0)
        return 0;
    if (!Py_UNICODE_ISUPPER(*s)) {
        *s = Py_UNICODE_TOUPPER(*s);
        status = 1;
    }
    s++;
    while (--len > 0) {
        if (!Py_UNICODE_ISLOWER(*s)) {
            *s = Py_UNICODE_TOLOWER(*s);
            status = 1;
        }
        s++;
    }
    return status;
}

static
int fixtitle(PyUnicodeObject *self)
{
    register Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register Py_UNICODE *e;
    int previous_is_cased;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1) {
        Py_UNICODE ch = Py_UNICODE_TOTITLE(*p);
        if (*p != ch) {
            *p = ch;
            return 1;
        }
        else
            return 0;
    }

    e = p + PyUnicode_GET_SIZE(self);
    previous_is_cased = 0;
    for (; p < e; p++) {
        register const Py_UNICODE ch = *p;

        if (previous_is_cased)
            *p = Py_UNICODE_TOLOWER(ch);
        else
            *p = Py_UNICODE_TOTITLE(ch);

        if (Py_UNICODE_ISLOWER(ch) ||
            Py_UNICODE_ISUPPER(ch) ||
            Py_UNICODE_ISTITLE(ch))
            previous_is_cased = 1;
        else
            previous_is_cased = 0;
    }
    return 1;
}

PyObject *
PyUnicode_Join(PyObject *separator, PyObject *seq)
{
    const Py_UNICODE blank = ' ';
    const Py_UNICODE *sep = &blank;
    Py_ssize_t seplen = 1;
    PyUnicodeObject *res = NULL; /* the result */
    Py_UNICODE *res_p;       /* pointer to free byte in res's string area */
    PyObject *fseq;          /* PySequence_Fast(seq) */
    Py_ssize_t seqlen;       /* len(fseq) -- number of items in sequence */
    PyObject **items;
    PyObject *item;
    Py_ssize_t sz, i;

    fseq = PySequence_Fast(seq, "");
    if (fseq == NULL) {
        return NULL;
    }

    /* NOTE: the following code can't call back into Python code,
     * so we are sure that fseq won't be mutated.
     */

    seqlen = PySequence_Fast_GET_SIZE(fseq);
    /* If empty sequence, return u"". */
    if (seqlen == 0) {
        res = _PyUnicode_New(0);  /* empty sequence; return u"" */
        goto Done;
    }
    items = PySequence_Fast_ITEMS(fseq);
    /* If singleton sequence with an exact Unicode, return that. */
    if (seqlen == 1) {
        item = items[0];
        if (PyUnicode_CheckExact(item)) {
            Py_INCREF(item);
            res = (PyUnicodeObject *)item;
            goto Done;
        }
    }
    else {
        /* Set up sep and seplen */
        if (separator == NULL) {
            sep = &blank;
            seplen = 1;
        }
        else {
            if (!PyUnicode_Check(separator)) {
                PyErr_Format(PyExc_TypeError,
                             "separator: expected str instance,"
                             " %.80s found",
                             Py_TYPE(separator)->tp_name);
                goto onError;
            }
            sep = PyUnicode_AS_UNICODE(separator);
            seplen = PyUnicode_GET_SIZE(separator);
        }
    }

    /* There are at least two things to join, or else we have a subclass
     * of str in the sequence.
     * Do a pre-pass to figure out the total amount of space we'll
     * need (sz), and see whether all argument are strings.
     */
    sz = 0;
    for (i = 0; i < seqlen; i++) {
        const Py_ssize_t old_sz = sz;
        item = items[i];
        if (!PyUnicode_Check(item)) {
            PyErr_Format(PyExc_TypeError,
                         "sequence item %zd: expected str instance,"
                         " %.80s found",
                         i, Py_TYPE(item)->tp_name);
            goto onError;
        }
        sz += PyUnicode_GET_SIZE(item);
        if (i != 0)
            sz += seplen;
        if (sz < old_sz || sz > PY_SSIZE_T_MAX) {
            PyErr_SetString(PyExc_OverflowError,
                            "join() result is too long for a Python string");
            goto onError;
        }
    }

    res = _PyUnicode_New(sz);
    if (res == NULL)
        goto onError;

    /* Catenate everything. */
    res_p = PyUnicode_AS_UNICODE(res);
    for (i = 0; i < seqlen; ++i) {
        Py_ssize_t itemlen;
        item = items[i];
        itemlen = PyUnicode_GET_SIZE(item);
        /* Copy item, and maybe the separator. */
        if (i) {
            Py_UNICODE_COPY(res_p, sep, seplen);
            res_p += seplen;
        }
        Py_UNICODE_COPY(res_p, PyUnicode_AS_UNICODE(item), itemlen);
        res_p += itemlen;
    }

  Done:
    Py_DECREF(fseq);
    return (PyObject *)res;

  onError:
    Py_DECREF(fseq);
    Py_XDECREF(res);
    return NULL;
}

static
PyUnicodeObject *pad(PyUnicodeObject *self,
                     Py_ssize_t left,
                     Py_ssize_t right,
                     Py_UNICODE fill)
{
    PyUnicodeObject *u;

    if (left < 0)
        left = 0;
    if (right < 0)
        right = 0;

    if (left == 0 && right == 0 && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return self;
    }

    if (left > PY_SSIZE_T_MAX - self->length ||
        right > PY_SSIZE_T_MAX - (left + self->length)) {
        PyErr_SetString(PyExc_OverflowError, "padded string is too long");
        return NULL;
    }
    u = _PyUnicode_New(left + self->length + right);
    if (u) {
        if (left)
            Py_UNICODE_FILL(u->str, fill, left);
        Py_UNICODE_COPY(u->str + left, self->str, self->length);
        if (right)
            Py_UNICODE_FILL(u->str + left + self->length, fill, right);
    }

    return u;
}

PyObject *PyUnicode_Splitlines(PyObject *string, int keepends)
{
    PyObject *list;

    string = PyUnicode_FromObject(string);
    if (string == NULL)
        return NULL;

    list = stringlib_splitlines(
        (PyObject*) string, PyUnicode_AS_UNICODE(string),
        PyUnicode_GET_SIZE(string), keepends);

    Py_DECREF(string);
    return list;
}

static
PyObject *split(PyUnicodeObject *self,
                PyUnicodeObject *substring,
                Py_ssize_t maxcount)
{
    if (maxcount < 0)
        maxcount = PY_SSIZE_T_MAX;

    if (substring == NULL)
        return stringlib_split_whitespace(
            (PyObject*) self,  self->str, self->length, maxcount
            );

    return stringlib_split(
        (PyObject*) self,  self->str, self->length,
        substring->str, substring->length,
        maxcount
        );
}

static
PyObject *rsplit(PyUnicodeObject *self,
                 PyUnicodeObject *substring,
                 Py_ssize_t maxcount)
{
    if (maxcount < 0)
        maxcount = PY_SSIZE_T_MAX;

    if (substring == NULL)
        return stringlib_rsplit_whitespace(
            (PyObject*) self,  self->str, self->length, maxcount
            );

    return stringlib_rsplit(
        (PyObject*) self,  self->str, self->length,
        substring->str, substring->length,
        maxcount
        );
}

static
PyObject *replace(PyUnicodeObject *self,
                  PyUnicodeObject *str1,
                  PyUnicodeObject *str2,
                  Py_ssize_t maxcount)
{
    PyUnicodeObject *u;

    if (maxcount < 0)
        maxcount = PY_SSIZE_T_MAX;
    else if (maxcount == 0 || self->length == 0)
        goto nothing;

    if (str1->length == str2->length) {
        Py_ssize_t i;
        /* same length */
        if (str1->length == 0)
            goto nothing;
        if (str1->length == 1) {
            /* replace characters */
            Py_UNICODE u1, u2;
            if (!findchar(self->str, self->length, str1->str[0]))
                goto nothing;
            u = (PyUnicodeObject*) PyUnicode_FromUnicode(NULL, self->length);
            if (!u)
                return NULL;
            Py_UNICODE_COPY(u->str, self->str, self->length);
            u1 = str1->str[0];
            u2 = str2->str[0];
            for (i = 0; i < u->length; i++)
                if (u->str[i] == u1) {
                    if (--maxcount < 0)
                        break;
                    u->str[i] = u2;
                }
        } else {
            i = stringlib_find(
                self->str, self->length, str1->str, str1->length, 0
                );
            if (i < 0)
                goto nothing;
            u = (PyUnicodeObject*) PyUnicode_FromUnicode(NULL, self->length);
            if (!u)
                return NULL;
            Py_UNICODE_COPY(u->str, self->str, self->length);

            /* change everything in-place, starting with this one */
            Py_UNICODE_COPY(u->str+i, str2->str, str2->length);
            i += str1->length;

            while ( --maxcount > 0) {
                i = stringlib_find(self->str+i, self->length-i,
                                   str1->str, str1->length,
                                   i);
                if (i == -1)
                    break;
                Py_UNICODE_COPY(u->str+i, str2->str, str2->length);
                i += str1->length;
            }
        }
    } else {

        Py_ssize_t n, i, j, e;
        Py_ssize_t product, new_size, delta;
        Py_UNICODE *p;

        /* replace strings */
        n = stringlib_count(self->str, self->length, str1->str, str1->length,
                            maxcount);
        if (n == 0)
            goto nothing;
        /* new_size = self->length + n * (str2->length - str1->length)); */
        delta = (str2->length - str1->length);
        if (delta == 0) {
            new_size = self->length;
        } else {
            product = n * (str2->length - str1->length);
            if ((product / (str2->length - str1->length)) != n) {
                PyErr_SetString(PyExc_OverflowError,
                                "replace string is too long");
                return NULL;
            }
            new_size = self->length + product;
            if (new_size < 0) {
                PyErr_SetString(PyExc_OverflowError,
                                "replace string is too long");
                return NULL;
            }
        }
        u = _PyUnicode_New(new_size);
        if (!u)
            return NULL;
        i = 0;
        p = u->str;
        e = self->length - str1->length;
        if (str1->length > 0) {
            while (n-- > 0) {
                /* look for next match */
                j = stringlib_find(self->str+i, self->length-i,
                                   str1->str, str1->length,
                                   i);
                if (j == -1)
                    break;
                else if (j > i) {
                    /* copy unchanged part [i:j] */
                    Py_UNICODE_COPY(p, self->str+i, j-i);
                    p += j - i;
                }
                /* copy substitution string */
                if (str2->length > 0) {
                    Py_UNICODE_COPY(p, str2->str, str2->length);
                    p += str2->length;
                }
                i = j + str1->length;
            }
            if (i < self->length)
                /* copy tail [i:] */
                Py_UNICODE_COPY(p, self->str+i, self->length-i);
        } else {
            /* interleave */
            while (n > 0) {
                Py_UNICODE_COPY(p, str2->str, str2->length);
                p += str2->length;
                if (--n <= 0)
                    break;
                *p++ = self->str[i++];
            }
            Py_UNICODE_COPY(p, self->str+i, self->length-i);
        }
    }
    return (PyObject *) u;

  nothing:
    /* nothing to replace; return original string (when possible) */
    if (PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject *) self;
    }
    return PyUnicode_FromUnicode(self->str, self->length);
}

/* --- Unicode Object Methods --------------------------------------------- */

PyDoc_STRVAR(title__doc__,
             "S.title() -> str\n\
\n\
Return a titlecased version of S, i.e. words start with title case\n\
characters, all remaining cased characters have lower case.");

static PyObject*
unicode_title(PyUnicodeObject *self)
{
    return fixup(self, fixtitle);
}

PyDoc_STRVAR(capitalize__doc__,
             "S.capitalize() -> str\n\
\n\
Return a capitalized version of S, i.e. make the first character\n\
have upper case and the rest lower case.");

static PyObject*
unicode_capitalize(PyUnicodeObject *self)
{
    return fixup(self, fixcapitalize);
}

#if 0
PyDoc_STRVAR(capwords__doc__,
             "S.capwords() -> str\n\
\n\
Apply .capitalize() to all words in S and return the result with\n\
normalized whitespace (all whitespace strings are replaced by ' ').");

static PyObject*
unicode_capwords(PyUnicodeObject *self)
{
    PyObject *list;
    PyObject *item;
    Py_ssize_t i;

    /* Split into words */
    list = split(self, NULL, -1);
    if (!list)
        return NULL;

    /* Capitalize each word */
    for (i = 0; i < PyList_GET_SIZE(list); i++) {
        item = fixup((PyUnicodeObject *)PyList_GET_ITEM(list, i),
                     fixcapitalize);
        if (item == NULL)
            goto onError;
        Py_DECREF(PyList_GET_ITEM(list, i));
        PyList_SET_ITEM(list, i, item);
    }

    /* Join the words to form a new string */
    item = PyUnicode_Join(NULL, list);

  onError:
    Py_DECREF(list);
    return (PyObject *)item;
}
#endif

/* Argument converter.  Coerces to a single unicode character */

static int
convert_uc(PyObject *obj, void *addr)
{
    Py_UNICODE *fillcharloc = (Py_UNICODE *)addr;
    PyObject *uniobj;
    Py_UNICODE *unistr;

    uniobj = PyUnicode_FromObject(obj);
    if (uniobj == NULL) {
        PyErr_SetString(PyExc_TypeError,
                        "The fill character cannot be converted to Unicode");
        return 0;
    }
    if (PyUnicode_GET_SIZE(uniobj) != 1) {
        PyErr_SetString(PyExc_TypeError,
                        "The fill character must be exactly one character long");
        Py_DECREF(uniobj);
        return 0;
    }
    unistr = PyUnicode_AS_UNICODE(uniobj);
    *fillcharloc = unistr[0];
    Py_DECREF(uniobj);
    return 1;
}

PyDoc_STRVAR(center__doc__,
             "S.center(width[, fillchar]) -> str\n\
\n\
Return S centered in a string of length width. Padding is\n\
done using the specified fill character (default is a space)");

static PyObject *
unicode_center(PyUnicodeObject *self, PyObject *args)
{
    Py_ssize_t marg, left;
    Py_ssize_t width;
    Py_UNICODE fillchar = ' ';

    if (!PyArg_ParseTuple(args, "n|O&:center", &width, convert_uc, &fillchar))
        return NULL;

    if (self->length >= width && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject*) self;
    }

    marg = width - self->length;
    left = marg / 2 + (marg & width & 1);

    return (PyObject*) pad(self, left, marg - left, fillchar);
}

#if 0

/* This code should go into some future Unicode collation support
   module. The basic comparison should compare ordinals on a naive
   basis (this is what Java does and thus Jython too). */

/* speedy UTF-16 code point order comparison */
/* gleaned from: */
/* http://www-4.ibm.com/software/developer/library/utf16.html?dwzone=unicode */

static short utf16Fixup[32] =
{
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0x2000, -0x800, -0x800, -0x800, -0x800
};

static int
unicode_compare(PyUnicodeObject *str1, PyUnicodeObject *str2)
{
    Py_ssize_t len1, len2;

    Py_UNICODE *s1 = str1->str;
    Py_UNICODE *s2 = str2->str;

    len1 = str1->length;
    len2 = str2->length;

    while (len1 > 0 && len2 > 0) {
        Py_UNICODE c1, c2;

        c1 = *s1++;
        c2 = *s2++;

        if (c1 > (1<<11) * 26)
            c1 += utf16Fixup[c1>>11];
        if (c2 > (1<<11) * 26)
            c2 += utf16Fixup[c2>>11];
        /* now c1 and c2 are in UTF-32-compatible order */

        if (c1 != c2)
            return (c1 < c2) ? -1 : 1;

        len1--; len2--;
    }

    return (len1 < len2) ? -1 : (len1 != len2);
}

#else

static int
unicode_compare(PyUnicodeObject *str1, PyUnicodeObject *str2)
{
    register Py_ssize_t len1, len2;

    Py_UNICODE *s1 = str1->str;
    Py_UNICODE *s2 = str2->str;

    len1 = str1->length;
    len2 = str2->length;

    while (len1 > 0 && len2 > 0) {
        Py_UNICODE c1, c2;

        c1 = *s1++;
        c2 = *s2++;

        if (c1 != c2)
            return (c1 < c2) ? -1 : 1;

        len1--; len2--;
    }

    return (len1 < len2) ? -1 : (len1 != len2);
}

#endif

int PyUnicode_Compare(PyObject *left,
                      PyObject *right)
{
    if (PyUnicode_Check(left) && PyUnicode_Check(right))
        return unicode_compare((PyUnicodeObject *)left,
                               (PyUnicodeObject *)right);
    PyErr_Format(PyExc_TypeError,
                 "Can't compare %.100s and %.100s",
                 left->ob_type->tp_name,
                 right->ob_type->tp_name);
    return -1;
}

int
PyUnicode_CompareWithASCIIString(PyObject* uni, const char* str)
{
    int i;
    Py_UNICODE *id;
    assert(PyUnicode_Check(uni));
    id = PyUnicode_AS_UNICODE(uni);
    /* Compare Unicode string and source character set string */
    for (i = 0; id[i] && str[i]; i++)
        if (id[i] != str[i])
            return ((int)id[i] < (int)str[i]) ? -1 : 1;
    /* This check keeps Python strings that end in '\0' from comparing equal
     to C strings identical up to that point. */
    if (PyUnicode_GET_SIZE(uni) != i || id[i])
        return 1; /* uni is longer */
    if (str[i])
        return -1; /* str is longer */
    return 0;
}


#define TEST_COND(cond)                         \
    ((cond) ? Py_True : Py_False)

PyObject *PyUnicode_RichCompare(PyObject *left,
                                PyObject *right,
                                int op)
{
    int result;

    if (PyUnicode_Check(left) && PyUnicode_Check(right)) {
        PyObject *v;
        if (((PyUnicodeObject *) left)->length !=
            ((PyUnicodeObject *) right)->length) {
            if (op == Py_EQ) {
                Py_INCREF(Py_False);
                return Py_False;
            }
            if (op == Py_NE) {
                Py_INCREF(Py_True);
                return Py_True;
            }
        }
        if (left == right)
            result = 0;
        else
            result = unicode_compare((PyUnicodeObject *)left,
                                     (PyUnicodeObject *)right);

        /* Convert the return value to a Boolean */
        switch (op) {
        case Py_EQ:
            v = TEST_COND(result == 0);
            break;
        case Py_NE:
            v = TEST_COND(result != 0);
            break;
        case Py_LE:
            v = TEST_COND(result <= 0);
            break;
        case Py_GE:
            v = TEST_COND(result >= 0);
            break;
        case Py_LT:
            v = TEST_COND(result == -1);
            break;
        case Py_GT:
            v = TEST_COND(result == 1);
            break;
        default:
            PyErr_BadArgument();
            return NULL;
        }
        Py_INCREF(v);
        return v;
    }

    Py_INCREF(Py_NotImplemented);
    return Py_NotImplemented;
}

int PyUnicode_Contains(PyObject *container,
                       PyObject *element)
{
    PyObject *str, *sub;
    int result;

    /* Coerce the two arguments */
    sub = PyUnicode_FromObject(element);
    if (!sub) {
        PyErr_Format(PyExc_TypeError,
                     "'in <string>' requires string as left operand, not %s",
                     element->ob_type->tp_name);
        return -1;
    }

    str = PyUnicode_FromObject(container);
    if (!str) {
        Py_DECREF(sub);
        return -1;
    }

    result = stringlib_contains_obj(str, sub);

    Py_DECREF(str);
    Py_DECREF(sub);

    return result;
}

/* Concat to string or Unicode object giving a new Unicode object. */

PyObject *PyUnicode_Concat(PyObject *left,
                           PyObject *right)
{
    PyUnicodeObject *u = NULL, *v = NULL, *w;

    /* Coerce the two arguments */
    u = (PyUnicodeObject *)PyUnicode_FromObject(left);
    if (u == NULL)
        goto onError;
    v = (PyUnicodeObject *)PyUnicode_FromObject(right);
    if (v == NULL)
        goto onError;

    /* Shortcuts */
    if (v == unicode_empty) {
        Py_DECREF(v);
        return (PyObject *)u;
    }
    if (u == unicode_empty) {
        Py_DECREF(u);
        return (PyObject *)v;
    }

    /* Concat the two Unicode strings */
    w = _PyUnicode_New(u->length + v->length);
    if (w == NULL)
        goto onError;
    Py_UNICODE_COPY(w->str, u->str, u->length);
    Py_UNICODE_COPY(w->str + u->length, v->str, v->length);

    Py_DECREF(u);
    Py_DECREF(v);
    return (PyObject *)w;

  onError:
    Py_XDECREF(u);
    Py_XDECREF(v);
    return NULL;
}

void
PyUnicode_Append(PyObject **pleft, PyObject *right)
{
    PyObject *new;
    if (*pleft == NULL)
        return;
    if (right == NULL || !PyUnicode_Check(*pleft)) {
        Py_DECREF(*pleft);
        *pleft = NULL;
        return;
    }
    new = PyUnicode_Concat(*pleft, right);
    Py_DECREF(*pleft);
    *pleft = new;
}

void
PyUnicode_AppendAndDel(PyObject **pleft, PyObject *right)
{
    PyUnicode_Append(pleft, right);
    Py_XDECREF(right);
}

PyDoc_STRVAR(count__doc__,
             "S.count(sub[, start[, end]]) -> int\n\
\n\
Return the number of non-overlapping occurrences of substring sub in\n\
string S[start:end].  Optional arguments start and end are\n\
interpreted as in slice notation.");

static PyObject *
unicode_count(PyUnicodeObject *self, PyObject *args)
{
    PyUnicodeObject *substring;
    Py_ssize_t start = 0;
    Py_ssize_t end = PY_SSIZE_T_MAX;
    PyObject *result;

    if (!stringlib_parse_args_finds_unicode("count", args, &substring,
                                            &start, &end))
        return NULL;

    ADJUST_INDICES(start, end, self->length);
    result = PyLong_FromSsize_t(
        stringlib_count(self->str + start, end - start,
                        substring->str, substring->length,
                        PY_SSIZE_T_MAX)
        );

    Py_DECREF(substring);

    return result;
}

PyDoc_STRVAR(encode__doc__,
             "S.encode(encoding='utf-8', errors='strict') -> bytes\n\
\n\
Encode S using the codec registered for encoding. Default encoding\n\
is 'utf-8'. errors may be given to set a different error\n\
handling scheme. Default is 'strict' meaning that encoding errors raise\n\
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and\n\
'xmlcharrefreplace' as well as any other name registered with\n\
codecs.register_error that can handle UnicodeEncodeErrors.");

static PyObject *
unicode_encode(PyUnicodeObject *self, PyObject *args, PyObject *kwargs)
{
    static char *kwlist[] = {"encoding", "errors", 0};
    char *encoding = NULL;
    char *errors = NULL;

    if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ss:encode",
                                     kwlist, &encoding, &errors))
        return NULL;
    return PyUnicode_AsEncodedString((PyObject *)self, encoding, errors);
}

PyDoc_STRVAR(expandtabs__doc__,
             "S.expandtabs([tabsize]) -> str\n\
\n\
Return a copy of S where all tab characters are expanded using spaces.\n\
If tabsize is not given, a tab size of 8 characters is assumed.");

static PyObject*
unicode_expandtabs(PyUnicodeObject *self, PyObject *args)
{
    Py_UNICODE *e;
    Py_UNICODE *p;
    Py_UNICODE *q;
    Py_UNICODE *qe;
    Py_ssize_t i, j, incr;
    PyUnicodeObject *u;
    int tabsize = 8;

    if (!PyArg_ParseTuple(args, "|i:expandtabs", &tabsize))
        return NULL;

    /* First pass: determine size of output string */
    i = 0; /* chars up to and including most recent \n or \r */
    j = 0; /* chars since most recent \n or \r (use in tab calculations) */
    e = self->str + self->length; /* end of input */
    for (p = self->str; p < e; p++)
        if (*p == '\t') {
            if (tabsize > 0) {
                incr = tabsize - (j % tabsize); /* cannot overflow */
                if (j > PY_SSIZE_T_MAX - incr)
                    goto overflow1;
                j += incr;
            }
        }
        else {
            if (j > PY_SSIZE_T_MAX - 1)
                goto overflow1;
            j++;
            if (*p == '\n' || *p == '\r') {
                if (i > PY_SSIZE_T_MAX - j)
                    goto overflow1;
                i += j;
                j = 0;
            }
        }

    if (i > PY_SSIZE_T_MAX - j)
        goto overflow1;

    /* Second pass: create output string and fill it */
    u = _PyUnicode_New(i + j);
    if (!u)
        return NULL;

    j = 0; /* same as in first pass */
    q = u->str; /* next output char */
    qe = u->str + u->length; /* end of output */

    for (p = self->str; p < e; p++)
        if (*p == '\t') {
            if (tabsize > 0) {
                i = tabsize - (j % tabsize);
                j += i;
                while (i--) {
                    if (q >= qe)
                        goto overflow2;
                    *q++ = ' ';
                }
            }
        }
        else {
            if (q >= qe)
                goto overflow2;
            *q++ = *p;
            j++;
            if (*p == '\n' || *p == '\r')
                j = 0;
        }

    return (PyObject*) u;

  overflow2:
    Py_DECREF(u);
  overflow1:
    PyErr_SetString(PyExc_OverflowError, "new string is too long");
    return NULL;
}

PyDoc_STRVAR(find__doc__,
             "S.find(sub[, start[, end]]) -> int\n\
\n\
Return the lowest index in S where substring sub is found,\n\
such that sub is contained within S[start:end].  Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");

static PyObject *
unicode_find(PyUnicodeObject *self, PyObject *args)
{
    PyUnicodeObject *substring;
    Py_ssize_t start;
    Py_ssize_t end;
    Py_ssize_t result;

    if (!stringlib_parse_args_finds_unicode("find", args, &substring,
                                            &start, &end))
        return NULL;

    result = stringlib_find_slice(
        PyUnicode_AS_UNICODE(self), PyUnicode_GET_SIZE(self),
        PyUnicode_AS_UNICODE(substring), PyUnicode_GET_SIZE(substring),
        start, end
        );

    Py_DECREF(substring);

    return PyLong_FromSsize_t(result);
}

static PyObject *
unicode_getitem(PyUnicodeObject *self, Py_ssize_t index)
{
    if (index < 0 || index >= self->length) {
        PyErr_SetString(PyExc_IndexError, "string index out of range");
        return NULL;
    }

    return (PyObject*) PyUnicode_FromUnicode(&self->str[index], 1);
}

/* Believe it or not, this produces the same value for ASCII strings
   as string_hash(). */
static Py_hash_t
unicode_hash(PyUnicodeObject *self)
{
    Py_ssize_t len;
    Py_UNICODE *p;
    Py_hash_t x;

    if (self->hash != -1)
        return self->hash;
    len = Py_SIZE(self);
    p = self->str;
    x = *p << 7;
    while (--len >= 0)
        x = (1000003*x) ^ *p++;
    x ^= Py_SIZE(self);
    if (x == -1)
        x = -2;
    self->hash = x;
    return x;
}

PyDoc_STRVAR(index__doc__,
             "S.index(sub[, start[, end]]) -> int\n\
\n\
Like S.find() but raise ValueError when the substring is not found.");

static PyObject *
unicode_index(PyUnicodeObject *self, PyObject *args)
{
    Py_ssize_t result;
    PyUnicodeObject *substring;
    Py_ssize_t start;
    Py_ssize_t end;

    if (!stringlib_parse_args_finds_unicode("index", args, &substring,
                                            &start, &end))
        return NULL;

    result = stringlib_find_slice(
        PyUnicode_AS_UNICODE(self), PyUnicode_GET_SIZE(self),
        PyUnicode_AS_UNICODE(substring), PyUnicode_GET_SIZE(substring),
        start, end
        );

    Py_DECREF(substring);

    if (result < 0) {
        PyErr_SetString(PyExc_ValueError, "substring not found");
        return NULL;
    }

    return PyLong_FromSsize_t(result);
}

PyDoc_STRVAR(islower__doc__,
             "S.islower() -> bool\n\
\n\
Return True if all cased characters in S are lowercase and there is\n\
at least one cased character in S, False otherwise.");

static PyObject*
unicode_islower(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;
    int cased;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1)
        return PyBool_FromLong(Py_UNICODE_ISLOWER(*p));

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    cased = 0;
    for (; p < e; p++) {
        register const Py_UNICODE ch = *p;

        if (Py_UNICODE_ISUPPER(ch) || Py_UNICODE_ISTITLE(ch))
            return PyBool_FromLong(0);
        else if (!cased && Py_UNICODE_ISLOWER(ch))
            cased = 1;
    }
    return PyBool_FromLong(cased);
}

PyDoc_STRVAR(isupper__doc__,
             "S.isupper() -> bool\n\
\n\
Return True if all cased characters in S are uppercase and there is\n\
at least one cased character in S, False otherwise.");

static PyObject*
unicode_isupper(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;
    int cased;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1)
        return PyBool_FromLong(Py_UNICODE_ISUPPER(*p) != 0);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    cased = 0;
    for (; p < e; p++) {
        register const Py_UNICODE ch = *p;

        if (Py_UNICODE_ISLOWER(ch) || Py_UNICODE_ISTITLE(ch))
            return PyBool_FromLong(0);
        else if (!cased && Py_UNICODE_ISUPPER(ch))
            cased = 1;
    }
    return PyBool_FromLong(cased);
}

PyDoc_STRVAR(istitle__doc__,
             "S.istitle() -> bool\n\
\n\
Return True if S is a titlecased string and there is at least one\n\
character in S, i.e. upper- and titlecase characters may only\n\
follow uncased characters and lowercase characters only cased ones.\n\
Return False otherwise.");

static PyObject*
unicode_istitle(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;
    int cased, previous_is_cased;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1)
        return PyBool_FromLong((Py_UNICODE_ISTITLE(*p) != 0) ||
                               (Py_UNICODE_ISUPPER(*p) != 0));

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    cased = 0;
    previous_is_cased = 0;
    for (; p < e; p++) {
        register const Py_UNICODE ch = *p;

        if (Py_UNICODE_ISUPPER(ch) || Py_UNICODE_ISTITLE(ch)) {
            if (previous_is_cased)
                return PyBool_FromLong(0);
            previous_is_cased = 1;
            cased = 1;
        }
        else if (Py_UNICODE_ISLOWER(ch)) {
            if (!previous_is_cased)
                return PyBool_FromLong(0);
            previous_is_cased = 1;
            cased = 1;
        }
        else
            previous_is_cased = 0;
    }
    return PyBool_FromLong(cased);
}

PyDoc_STRVAR(isspace__doc__,
             "S.isspace() -> bool\n\
\n\
Return True if all characters in S are whitespace\n\
and there is at least one character in S, False otherwise.");

static PyObject*
unicode_isspace(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISSPACE(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISSPACE(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

PyDoc_STRVAR(isalpha__doc__,
             "S.isalpha() -> bool\n\
\n\
Return True if all characters in S are alphabetic\n\
and there is at least one character in S, False otherwise.");

static PyObject*
unicode_isalpha(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISALPHA(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISALPHA(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

PyDoc_STRVAR(isalnum__doc__,
             "S.isalnum() -> bool\n\
\n\
Return True if all characters in S are alphanumeric\n\
and there is at least one character in S, False otherwise.");

static PyObject*
unicode_isalnum(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISALNUM(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISALNUM(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

PyDoc_STRVAR(isdecimal__doc__,
             "S.isdecimal() -> bool\n\
\n\
Return True if there are only decimal characters in S,\n\
False otherwise.");

static PyObject*
unicode_isdecimal(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISDECIMAL(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISDECIMAL(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

PyDoc_STRVAR(isdigit__doc__,
             "S.isdigit() -> bool\n\
\n\
Return True if all characters in S are digits\n\
and there is at least one character in S, False otherwise.");

static PyObject*
unicode_isdigit(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISDIGIT(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISDIGIT(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

PyDoc_STRVAR(isnumeric__doc__,
             "S.isnumeric() -> bool\n\
\n\
Return True if there are only numeric characters in S,\n\
False otherwise.");

static PyObject*
unicode_isnumeric(PyUnicodeObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 &&
        Py_UNICODE_ISNUMERIC(*p))
        return PyBool_FromLong(1);

    /* Special case for empty strings */
    if (PyUnicode_GET_SIZE(self) == 0)
        return PyBool_FromLong(0);

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISNUMERIC(*p))
            return PyBool_FromLong(0);
    }
    return PyBool_FromLong(1);
}

static Py_UCS4
decode_ucs4(const Py_UNICODE *s, Py_ssize_t *i, Py_ssize_t size)
{
    Py_UCS4 ch;
    assert(*i < size);
    ch = s[(*i)++];
#ifndef Py_UNICODE_WIDE
    if ((ch & 0xfffffc00) == 0xd800 &&
        *i < size
        && (s[*i] & 0xFFFFFC00) == 0xDC00)
        ch = ((Py_UCS4)ch << 10UL) + (Py_UCS4)(s[(*i)++]) - 0x35fdc00;
#endif
    return ch;
}

int
PyUnicode_IsIdentifier(PyObject *self)
{
    Py_ssize_t i = 0, size = PyUnicode_GET_SIZE(self);
    Py_UCS4 first;
    const Py_UNICODE *p = PyUnicode_AS_UNICODE((PyUnicodeObject*)self);

    /* Special case for empty strings */
    if (!size)
        return 0;

    /* PEP 3131 says that the first character must be in
       XID_Start and subsequent characters in XID_Continue,
       and for the ASCII range, the 2.x rules apply (i.e
       start with letters and underscore, continue with
       letters, digits, underscore). However, given the current
       definition of XID_Start and XID_Continue, it is sufficient
       to check just for these, except that _ must be allowed
       as starting an identifier.  */
    first = decode_ucs4(p, &i, size);
    if (!_PyUnicode_IsXidStart(first) && first != 0x5F /* LOW LINE */)
        return 0;

    while (i < size)
        if (!_PyUnicode_IsXidContinue(decode_ucs4(p, &i, size)))
            return 0;
    return 1;
}

PyDoc_STRVAR(isidentifier__doc__,
             "S.isidentifier() -> bool\n\
\n\
Return True if S is a valid identifier according\n\
to the language definition.");

static PyObject*
unicode_isidentifier(PyObject *self)
{
    return PyBool_FromLong(PyUnicode_IsIdentifier(self));
}

PyDoc_STRVAR(isprintable__doc__,
             "S.isprintable() -> bool\n\
\n\
Return True if all characters in S are considered\n\
printable in repr() or S is empty, False otherwise.");

static PyObject*
unicode_isprintable(PyObject *self)
{
    register const Py_UNICODE *p = PyUnicode_AS_UNICODE(self);
    register const Py_UNICODE *e;

    /* Shortcut for single character strings */
    if (PyUnicode_GET_SIZE(self) == 1 && Py_UNICODE_ISPRINTABLE(*p)) {
        Py_RETURN_TRUE;
    }

    e = p + PyUnicode_GET_SIZE(self);
    for (; p < e; p++) {
        if (!Py_UNICODE_ISPRINTABLE(*p)) {
            Py_RETURN_FALSE;
        }
    }
    Py_RETURN_TRUE;
}

PyDoc_STRVAR(join__doc__,
             "S.join(iterable) -> str\n\
\n\
Return a string which is the concatenation of the strings in the\n\
iterable.  The separator between elements is S.");

static PyObject*
unicode_join(PyObject *self, PyObject *data)
{
    return PyUnicode_Join(self, data);
}

static Py_ssize_t
unicode_length(PyUnicodeObject *self)
{
    return self->length;
}

PyDoc_STRVAR(ljust__doc__,
             "S.ljust(width[, fillchar]) -> str\n\
\n\
Return S left-justified in a Unicode string of length width. Padding is\n\
done using the specified fill character (default is a space).");

static PyObject *
unicode_ljust(PyUnicodeObject *self, PyObject *args)
{
    Py_ssize_t width;
    Py_UNICODE fillchar = ' ';

    if (!PyArg_ParseTuple(args, "n|O&:ljust", &width, convert_uc, &fillchar))
        return NULL;

    if (self->length >= width && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject*) self;
    }

    return (PyObject*) pad(self, 0, width - self->length, fillchar);
}

PyDoc_STRVAR(lower__doc__,
             "S.lower() -> str\n\
\n\
Return a copy of the string S converted to lowercase.");

static PyObject*
unicode_lower(PyUnicodeObject *self)
{
    return fixup(self, fixlower);
}

#define LEFTSTRIP 0
#define RIGHTSTRIP 1
#define BOTHSTRIP 2

/* Arrays indexed by above */
static const char *stripformat[] = {"|O:lstrip", "|O:rstrip", "|O:strip"};

#define STRIPNAME(i) (stripformat[i]+3)

/* externally visible for str.strip(unicode) */
PyObject *
_PyUnicode_XStrip(PyUnicodeObject *self, int striptype, PyObject *sepobj)
{
    Py_UNICODE *s = PyUnicode_AS_UNICODE(self);
    Py_ssize_t len = PyUnicode_GET_SIZE(self);
    Py_UNICODE *sep = PyUnicode_AS_UNICODE(sepobj);
    Py_ssize_t seplen = PyUnicode_GET_SIZE(sepobj);
    Py_ssize_t i, j;

    BLOOM_MASK sepmask = make_bloom_mask(sep, seplen);

    i = 0;
    if (striptype != RIGHTSTRIP) {
        while (i < len && BLOOM_MEMBER(sepmask, s[i], sep, seplen)) {
            i++;
        }
    }

    j = len;
    if (striptype != LEFTSTRIP) {
        do {
            j--;
        } while (j >= i && BLOOM_MEMBER(sepmask, s[j], sep, seplen));
        j++;
    }

    if (i == 0 && j == len && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject*)self;
    }
    else
        return PyUnicode_FromUnicode(s+i, j-i);
}


static PyObject *
do_strip(PyUnicodeObject *self, int striptype)
{
    Py_UNICODE *s = PyUnicode_AS_UNICODE(self);
    Py_ssize_t len = PyUnicode_GET_SIZE(self), i, j;

    i = 0;
    if (striptype != RIGHTSTRIP) {
        while (i < len && Py_UNICODE_ISSPACE(s[i])) {
            i++;
        }
    }

    j = len;
    if (striptype != LEFTSTRIP) {
        do {
            j--;
        } while (j >= i && Py_UNICODE_ISSPACE(s[j]));
        j++;
    }

    if (i == 0 && j == len && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject*)self;
    }
    else
        return PyUnicode_FromUnicode(s+i, j-i);
}


static PyObject *
do_argstrip(PyUnicodeObject *self, int striptype, PyObject *args)
{
    PyObject *sep = NULL;

    if (!PyArg_ParseTuple(args, (char *)stripformat[striptype], &sep))
        return NULL;

    if (sep != NULL && sep != Py_None) {
        if (PyUnicode_Check(sep))
            return _PyUnicode_XStrip(self, striptype, sep);
        else {
            PyErr_Format(PyExc_TypeError,
                         "%s arg must be None or str",
                         STRIPNAME(striptype));
            return NULL;
        }
    }

    return do_strip(self, striptype);
}


PyDoc_STRVAR(strip__doc__,
             "S.strip([chars]) -> str\n\
\n\
Return a copy of the string S with leading and trailing\n\
whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");

static PyObject *
unicode_strip(PyUnicodeObject *self, PyObject *args)
{
    if (PyTuple_GET_SIZE(args) == 0)
        return do_strip(self, BOTHSTRIP); /* Common case */
    else
        return do_argstrip(self, BOTHSTRIP, args);
}


PyDoc_STRVAR(lstrip__doc__,
             "S.lstrip([chars]) -> str\n\
\n\
Return a copy of the string S with leading whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");

static PyObject *
unicode_lstrip(PyUnicodeObject *self, PyObject *args)
{
    if (PyTuple_GET_SIZE(args) == 0)
        return do_strip(self, LEFTSTRIP); /* Common case */
    else
        return do_argstrip(self, LEFTSTRIP, args);
}


PyDoc_STRVAR(rstrip__doc__,
             "S.rstrip([chars]) -> str\n\
\n\
Return a copy of the string S with trailing whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");

static PyObject *
unicode_rstrip(PyUnicodeObject *self, PyObject *args)
{
    if (PyTuple_GET_SIZE(args) == 0)
        return do_strip(self, RIGHTSTRIP); /* Common case */
    else
        return do_argstrip(self, RIGHTSTRIP, args);
}


static PyObject*
unicode_repeat(PyUnicodeObject *str, Py_ssize_t len)
{
    PyUnicodeObject *u;
    Py_UNICODE *p;
    Py_ssize_t nchars;
    size_t nbytes;

    if (len < 1) {
        Py_INCREF(unicode_empty);
        return (PyObject *)unicode_empty;
    }

    if (len == 1 && PyUnicode_CheckExact(str)) {
        /* no repeat, return original string */
        Py_INCREF(str);
        return (PyObject*) str;
    }

    /* ensure # of chars needed doesn't overflow int and # of bytes
     * needed doesn't overflow size_t
     */
    nchars = len * str->length;
    if (nchars / len != str->length) {
        PyErr_SetString(PyExc_OverflowError,
                        "repeated string is too long");
        return NULL;
    }
    nbytes = (nchars + 1) * sizeof(Py_UNICODE);
    if (nbytes / sizeof(Py_UNICODE) != (size_t)(nchars + 1)) {
        PyErr_SetString(PyExc_OverflowError,
                        "repeated string is too long");
        return NULL;
    }
    u = _PyUnicode_New(nchars);
    if (!u)
        return NULL;

    p = u->str;

    if (str->length == 1) {
        Py_UNICODE_FILL(p, str->str[0], len);
    } else {
        Py_ssize_t done = str->length; /* number of characters copied this far */
        Py_UNICODE_COPY(p, str->str, str->length);
        while (done < nchars) {
            Py_ssize_t n = (done <= nchars-done) ? done : nchars-done;
            Py_UNICODE_COPY(p+done, p, n);
            done += n;
        }
    }

    return (PyObject*) u;
}

PyObject *PyUnicode_Replace(PyObject *obj,
                            PyObject *subobj,
                            PyObject *replobj,
                            Py_ssize_t maxcount)
{
    PyObject *self;
    PyObject *str1;
    PyObject *str2;
    PyObject *result;

    self = PyUnicode_FromObject(obj);
    if (self == NULL)
        return NULL;
    str1 = PyUnicode_FromObject(subobj);
    if (str1 == NULL) {
        Py_DECREF(self);
        return NULL;
    }
    str2 = PyUnicode_FromObject(replobj);
    if (str2 == NULL) {
        Py_DECREF(self);
        Py_DECREF(str1);
        return NULL;
    }
    result = replace((PyUnicodeObject *)self,
                     (PyUnicodeObject *)str1,
                     (PyUnicodeObject *)str2,
                     maxcount);
    Py_DECREF(self);
    Py_DECREF(str1);
    Py_DECREF(str2);
    return result;
}

PyDoc_STRVAR(replace__doc__,
             "S.replace(old, new[, count]) -> str\n\
\n\
Return a copy of S with all occurrences of substring\n\
old replaced by new.  If the optional argument count is\n\
given, only the first count occurrences are replaced.");

static PyObject*
unicode_replace(PyUnicodeObject *self, PyObject *args)
{
    PyUnicodeObject *str1;
    PyUnicodeObject *str2;
    Py_ssize_t maxcount = -1;
    PyObject *result;

    if (!PyArg_ParseTuple(args, "OO|n:replace", &str1, &str2, &maxcount))
        return NULL;
    str1 = (PyUnicodeObject *)PyUnicode_FromObject((PyObject *)str1);
    if (str1 == NULL)
        return NULL;
    str2 = (PyUnicodeObject *)PyUnicode_FromObject((PyObject *)str2);
    if (str2 == NULL) {
        Py_DECREF(str1);
        return NULL;
    }

    result = replace(self, str1, str2, maxcount);

    Py_DECREF(str1);
    Py_DECREF(str2);
    return result;
}

static
PyObject *unicode_repr(PyObject *unicode)
{
    PyObject *repr;
    Py_UNICODE *p;
    Py_UNICODE *s = PyUnicode_AS_UNICODE(unicode);
    Py_ssize_t size = PyUnicode_GET_SIZE(unicode);

    /* XXX(nnorwitz): rather than over-allocating, it would be
       better to choose a different scheme.  Perhaps scan the
       first N-chars of the string and allocate based on that size.
    */
    /* Initial allocation is based on the longest-possible unichr
       escape.

       In wide (UTF-32) builds '\U00xxxxxx' is 10 chars per source
       unichr, so in this case it's the longest unichr escape. In
       narrow (UTF-16) builds this is five chars per source unichr
       since there are two unichrs in the surrogate pair, so in narrow
       (UTF-16) builds it's not the longest unichr escape.

       In wide or narrow builds '\uxxxx' is 6 chars per source unichr,
       so in the narrow (UTF-16) build case it's the longest unichr
       escape.
    */

    repr = PyUnicode_FromUnicode(NULL,
                                 2 /* quotes */
#ifdef Py_UNICODE_WIDE
                                 + 10*size
#else
                                 + 6*size
#endif
                                 + 1);
    if (repr == NULL)
        return NULL;

    p = PyUnicode_AS_UNICODE(repr);

    /* Add quote */
    *p++ = (findchar(s, size, '\'') &&
            !findchar(s, size, '"')) ? '"' : '\'';
    while (size-- > 0) {
        Py_UNICODE ch = *s++;

        /* Escape quotes and backslashes */
        if ((ch == PyUnicode_AS_UNICODE(repr)[0]) || (ch == '\\')) {
            *p++ = '\\';
            *p++ = ch;
            continue;
        }

        /* Map special whitespace to '\t', \n', '\r' */
        if (ch == '\t') {
            *p++ = '\\';
            *p++ = 't';
        }
        else if (ch == '\n') {
            *p++ = '\\';
            *p++ = 'n';
        }
        else if (ch == '\r') {
            *p++ = '\\';
            *p++ = 'r';
        }

        /* Map non-printable US ASCII to '\xhh' */
        else if (ch < ' ' || ch == 0x7F) {
            *p++ = '\\';
            *p++ = 'x';
            *p++ = hexdigits[(ch >> 4) & 0x000F];
            *p++ = hexdigits[ch & 0x000F];
        }

        /* Copy ASCII characters as-is */
        else if (ch < 0x7F) {
            *p++ = ch;
        }

        /* Non-ASCII characters */
        else {
            Py_UCS4 ucs = ch;

#ifndef Py_UNICODE_WIDE
            Py_UNICODE ch2 = 0;
            /* Get code point from surrogate pair */
            if (size > 0) {
                ch2 = *s;
                if (ch >= 0xD800 && ch < 0xDC00 && ch2 >= 0xDC00
                    && ch2 <= 0xDFFF) {
                    ucs = (((ch & 0x03FF) << 10) | (ch2 & 0x03FF))
                        + 0x00010000;
                    s++;
                    size--;
                }
            }
#endif
            /* Map Unicode whitespace and control characters
               (categories Z* and C* except ASCII space)
            */
            if (!Py_UNICODE_ISPRINTABLE(ucs)) {
                /* Map 8-bit characters to '\xhh' */
                if (ucs <= 0xff) {
                    *p++ = '\\';
                    *p++ = 'x';
                    *p++ = hexdigits[(ch >> 4) & 0x000F];
                    *p++ = hexdigits[ch & 0x000F];
                }
                /* Map 21-bit characters to '\U00xxxxxx' */
                else if (ucs >= 0x10000) {
                    *p++ = '\\';
                    *p++ = 'U';
                    *p++ = hexdigits[(ucs >> 28) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 24) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 20) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 16) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 12) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 8) & 0x0000000F];
                    *p++ = hexdigits[(ucs >> 4) & 0x0000000F];
                    *p++ = hexdigits[ucs & 0x0000000F];
                }
                /* Map 16-bit characters to '\uxxxx' */
                else {
                    *p++ = '\\';
                    *p++ = 'u';
                    *p++ = hexdigits[(ucs >> 12) & 0x000F];
                    *p++ = hexdigits[(ucs >> 8) & 0x000F];
                    *p++ = hexdigits[(ucs >> 4) & 0x000F];
                    *p++ = hexdigits[ucs & 0x000F];
                }
            }
            /* Copy characters as-is */
            else {
                *p++ = ch;
#ifndef Py_UNICODE_WIDE
                if (ucs >= 0x10000)
                    *p++ = ch2;
#endif
            }
        }
    }
    /* Add quote */
    *p++ = PyUnicode_AS_UNICODE(repr)[0];

    *p = '\0';
    PyUnicode_Resize(&repr, p - PyUnicode_AS_UNICODE(repr));
    return repr;
}

PyDoc_STRVAR(rfind__doc__,
             "S.rfind(sub[, start[, end]]) -> int\n\
\n\
Return the highest index in S where substring sub is found,\n\
such that sub is contained within S[start:end].  Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");

static PyObject *
unicode_rfind(PyUnicodeObject *self, PyObject *args)
{
    PyUnicodeObject *substring;
    Py_ssize_t start;
    Py_ssize_t end;
    Py_ssize_t result;

    if (!stringlib_parse_args_finds_unicode("rfind", args, &substring,
                                            &start, &end))
        return NULL;

    result = stringlib_rfind_slice(
        PyUnicode_AS_UNICODE(self), PyUnicode_GET_SIZE(self),
        PyUnicode_AS_UNICODE(substring), PyUnicode_GET_SIZE(substring),
        start, end
        );

    Py_DECREF(substring);

    return PyLong_FromSsize_t(result);
}

PyDoc_STRVAR(rindex__doc__,
             "S.rindex(sub[, start[, end]]) -> int\n\
\n\
Like S.rfind() but raise ValueError when the substring is not found.");

static PyObject *
unicode_rindex(PyUnicodeObject *self, PyObject *args)
{
    PyUnicodeObject *substring;
    Py_ssize_t start;
    Py_ssize_t end;
    Py_ssize_t result;

    if (!stringlib_parse_args_finds_unicode("rindex", args, &substring,
                                            &start, &end))
        return NULL;

    result = stringlib_rfind_slice(
        PyUnicode_AS_UNICODE(self), PyUnicode_GET_SIZE(self),
        PyUnicode_AS_UNICODE(substring), PyUnicode_GET_SIZE(substring),
        start, end
        );

    Py_DECREF(substring);

    if (result < 0) {
        PyErr_SetString(PyExc_ValueError, "substring not found");
        return NULL;
    }
    return PyLong_FromSsize_t(result);
}

PyDoc_STRVAR(rjust__doc__,
             "S.rjust(width[, fillchar]) -> str\n\
\n\
Return S right-justified in a string of length width. Padding is\n\
done using the specified fill character (default is a space).");

static PyObject *
unicode_rjust(PyUnicodeObject *self, PyObject *args)
{
    Py_ssize_t width;
    Py_UNICODE fillchar = ' ';

    if (!PyArg_ParseTuple(args, "n|O&:rjust", &width, convert_uc, &fillchar))
        return NULL;

    if (self->length >= width && PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject*) self;
    }

    return (PyObject*) pad(self, width - self->length, 0, fillchar);
}

PyObject *PyUnicode_Split(PyObject *s,
                          PyObject *sep,
                          Py_ssize_t maxsplit)
{
    PyObject *result;

    s = PyUnicode_FromObject(s);
    if (s == NULL)
        return NULL;
    if (sep != NULL) {
        sep = PyUnicode_FromObject(sep);
        if (sep == NULL) {
            Py_DECREF(s);
            return NULL;
        }
    }

    result = split((PyUnicodeObject *)s, (PyUnicodeObject *)sep, maxsplit);

    Py_DECREF(s);
    Py_XDECREF(sep);
    return result;
}

PyDoc_STRVAR(split__doc__,
             "S.split([sep[, maxsplit]]) -> list of strings\n\
\n\
Return a list of the words in S, using sep as the\n\
delimiter string.  If maxsplit is given, at most maxsplit\n\
splits are done. If sep is not specified or is None, any\n\
whitespace string is a separator and empty strings are\n\
removed from the result.");

static PyObject*
unicode_split(PyUnicodeObject *self, PyObject *args)
{
    PyObject *substring = Py_None;
    Py_ssize_t maxcount = -1;

    if (!PyArg_ParseTuple(args, "|On:split", &substring, &maxcount))
        return NULL;

    if (substring == Py_None)
        return split(self, NULL, maxcount);
    else if (PyUnicode_Check(substring))
        return split(self, (PyUnicodeObject *)substring, maxcount);
    else
        return PyUnicode_Split((PyObject *)self, substring, maxcount);
}

PyObject *
PyUnicode_Partition(PyObject *str_in, PyObject *sep_in)
{
    PyObject* str_obj;
    PyObject* sep_obj;
    PyObject* out;

    str_obj = PyUnicode_FromObject(str_in);
    if (!str_obj)
        return NULL;
    sep_obj = PyUnicode_FromObject(sep_in);
    if (!sep_obj) {
        Py_DECREF(str_obj);
        return NULL;
    }

    out = stringlib_partition(
        str_obj, PyUnicode_AS_UNICODE(str_obj), PyUnicode_GET_SIZE(str_obj),
        sep_obj, PyUnicode_AS_UNICODE(sep_obj), PyUnicode_GET_SIZE(sep_obj)
        );

    Py_DECREF(sep_obj);
    Py_DECREF(str_obj);

    return out;
}


PyObject *
PyUnicode_RPartition(PyObject *str_in, PyObject *sep_in)
{
    PyObject* str_obj;
    PyObject* sep_obj;
    PyObject* out;

    str_obj = PyUnicode_FromObject(str_in);
    if (!str_obj)
        return NULL;
    sep_obj = PyUnicode_FromObject(sep_in);
    if (!sep_obj) {
        Py_DECREF(str_obj);
        return NULL;
    }

    out = stringlib_rpartition(
        str_obj, PyUnicode_AS_UNICODE(str_obj), PyUnicode_GET_SIZE(str_obj),
        sep_obj, PyUnicode_AS_UNICODE(sep_obj), PyUnicode_GET_SIZE(sep_obj)
        );

    Py_DECREF(sep_obj);
    Py_DECREF(str_obj);

    return out;
}

PyDoc_STRVAR(partition__doc__,
             "S.partition(sep) -> (head, sep, tail)\n\
\n\
Search for the separator sep in S, and return the part before it,\n\
the separator itself, and the part after it.  If the separator is not\n\
found, return S and two empty strings.");

static PyObject*
unicode_partition(PyUnicodeObject *self, PyObject *separator)
{
    return PyUnicode_Partition((PyObject *)self, separator);
}

PyDoc_STRVAR(rpartition__doc__,
             "S.rpartition(sep) -> (head, sep, tail)\n\
\n\
Search for the separator sep in S, starting at the end of S, and return\n\
the part before it, the separator itself, and the part after it.  If the\n\
separator is not found, return two empty strings and S.");

static PyObject*
unicode_rpartition(PyUnicodeObject *self, PyObject *separator)
{
    return PyUnicode_RPartition((PyObject *)self, separator);
}

PyObject *PyUnicode_RSplit(PyObject *s,
                           PyObject *sep,
                           Py_ssize_t maxsplit)
{
    PyObject *result;

    s = PyUnicode_FromObject(s);
    if (s == NULL)
        return NULL;
    if (sep != NULL) {
        sep = PyUnicode_FromObject(sep);
        if (sep == NULL) {
            Py_DECREF(s);
            return NULL;
        }
    }

    result = rsplit((PyUnicodeObject *)s, (PyUnicodeObject *)sep, maxsplit);

    Py_DECREF(s);
    Py_XDECREF(sep);
    return result;
}

PyDoc_STRVAR(rsplit__doc__,
             "S.rsplit([sep[, maxsplit]]) -> list of strings\n\
\n\
Return a list of the words in S, using sep as the\n\
delimiter string, starting at the end of the string and\n\
working to the front.  If maxsplit is given, at most maxsplit\n\
splits are done. If sep is not specified, any whitespace string\n\
is a separator.");

static PyObject*
unicode_rsplit(PyUnicodeObject *self, PyObject *args)
{
    PyObject *substring = Py_None;
    Py_ssize_t maxcount = -1;

    if (!PyArg_ParseTuple(args, "|On:rsplit", &substring, &maxcount))
        return NULL;

    if (substring == Py_None)
        return rsplit(self, NULL, maxcount);
    else if (PyUnicode_Check(substring))
        return rsplit(self, (PyUnicodeObject *)substring, maxcount);
    else
        return PyUnicode_RSplit((PyObject *)self, substring, maxcount);
}

PyDoc_STRVAR(splitlines__doc__,
             "S.splitlines([keepends]) -> list of strings\n\
\n\
Return a list of the lines in S, breaking at line boundaries.\n\
Line breaks are not included in the resulting list unless keepends\n\
is given and true.");

static PyObject*
unicode_splitlines(PyUnicodeObject *self, PyObject *args)
{
    int keepends = 0;

    if (!PyArg_ParseTuple(args, "|i:splitlines", &keepends))
        return NULL;

    return PyUnicode_Splitlines((PyObject *)self, keepends);
}

static
PyObject *unicode_str(PyObject *self)
{
    if (PyUnicode_CheckExact(self)) {
        Py_INCREF(self);
        return self;
    } else
        /* Subtype -- return genuine unicode string with the same value. */
        return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(self),
                                     PyUnicode_GET_SIZE(self));
}

PyDoc_STRVAR(swapcase__doc__,
             "S.swapcase() -> str\n\
\n\
Return a copy of S with uppercase characters converted to lowercase\n\
and vice versa.");

static PyObject*
unicode_swapcase(PyUnicodeObject *self)
{
    return fixup(self, fixswapcase);
}

PyDoc_STRVAR(maketrans__doc__,
             "str.maketrans(x[, y[, z]]) -> dict (static method)\n\
\n\
Return a translation table usable for str.translate().\n\
If there is only one argument, it must be a dictionary mapping Unicode\n\
ordinals (integers) or characters to Unicode ordinals, strings or None.\n\
Character keys will be then converted to ordinals.\n\
If there are two arguments, they must be strings of equal length, and\n\
in the resulting dictionary, each character in x will be mapped to the\n\
character at the same position in y. If there is a third argument, it\n\
must be a string, whose characters will be mapped to None in the result.");

static PyObject*
unicode_maketrans(PyUnicodeObject *null, PyObject *args)
{
    PyObject *x, *y = NULL, *z = NULL;
    PyObject *new = NULL, *key, *value;
    Py_ssize_t i = 0;
    int res;

    if (!PyArg_ParseTuple(args, "O|UU:maketrans", &x, &y, &z))
        return NULL;
    new = PyDict_New();
    if (!new)
        return NULL;
    if (y != NULL) {
        /* x must be a string too, of equal length */
        Py_ssize_t ylen = PyUnicode_GET_SIZE(y);
        if (!PyUnicode_Check(x)) {
            PyErr_SetString(PyExc_TypeError, "first maketrans argument must "
                            "be a string if there is a second argument");
            goto err;
        }
        if (PyUnicode_GET_SIZE(x) != ylen) {
            PyErr_SetString(PyExc_ValueError, "the first two maketrans "
                            "arguments must have equal length");
            goto err;
        }
        /* create entries for translating chars in x to those in y */
        for (i = 0; i < PyUnicode_GET_SIZE(x); i++) {
            key = PyLong_FromLong(PyUnicode_AS_UNICODE(x)[i]);
            value = PyLong_FromLong(PyUnicode_AS_UNICODE(y)[i]);
            if (!key || !value)
                goto err;
            res = PyDict_SetItem(new, key, value);
            Py_DECREF(key);
            Py_DECREF(value);
            if (res < 0)
                goto err;
        }
        /* create entries for deleting chars in z */
        if (z != NULL) {
            for (i = 0; i < PyUnicode_GET_SIZE(z); i++) {
                key = PyLong_FromLong(PyUnicode_AS_UNICODE(z)[i]);
                if (!key)
                    goto err;
                res = PyDict_SetItem(new, key, Py_None);
                Py_DECREF(key);
                if (res < 0)
                    goto err;
            }
        }
    } else {
        /* x must be a dict */
        if (!PyDict_CheckExact(x)) {
            PyErr_SetString(PyExc_TypeError, "if you give only one argument "
                            "to maketrans it must be a dict");
            goto err;
        }
        /* copy entries into the new dict, converting string keys to int keys */
        while (PyDict_Next(x, &i, &key, &value)) {
            if (PyUnicode_Check(key)) {
                /* convert string keys to integer keys */
                PyObject *newkey;
                if (PyUnicode_GET_SIZE(key) != 1) {
                    PyErr_SetString(PyExc_ValueError, "string keys in translate "
                                    "table must be of length 1");
                    goto err;
                }
                newkey = PyLong_FromLong(PyUnicode_AS_UNICODE(key)[0]);
                if (!newkey)
                    goto err;
                res = PyDict_SetItem(new, newkey, value);
                Py_DECREF(newkey);
                if (res < 0)
                    goto err;
            } else if (PyLong_Check(key)) {
                /* just keep integer keys */
                if (PyDict_SetItem(new, key, value) < 0)
                    goto err;
            } else {
                PyErr_SetString(PyExc_TypeError, "keys in translate table must "
                                "be strings or integers");
                goto err;
            }
        }
    }
    return new;
  err:
    Py_DECREF(new);
    return NULL;
}

PyDoc_STRVAR(translate__doc__,
             "S.translate(table) -> str\n\
\n\
Return a copy of the string S, where all characters have been mapped\n\
through the given translation table, which must be a mapping of\n\
Unicode ordinals to Unicode ordinals, strings, or None.\n\
Unmapped characters are left untouched. Characters mapped to None\n\
are deleted.");

static PyObject*
unicode_translate(PyUnicodeObject *self, PyObject *table)
{
    return PyUnicode_TranslateCharmap(self->str, self->length, table, "ignore");
}

PyDoc_STRVAR(upper__doc__,
             "S.upper() -> str\n\
\n\
Return a copy of S converted to uppercase.");

static PyObject*
unicode_upper(PyUnicodeObject *self)
{
    return fixup(self, fixupper);
}

PyDoc_STRVAR(zfill__doc__,
             "S.zfill(width) -> str\n\
\n\
Pad a numeric string S with zeros on the left, to fill a field\n\
of the specified width. The string S is never truncated.");

static PyObject *
unicode_zfill(PyUnicodeObject *self, PyObject *args)
{
    Py_ssize_t fill;
    PyUnicodeObject *u;

    Py_ssize_t width;
    if (!PyArg_ParseTuple(args, "n:zfill", &width))
        return NULL;

    if (self->length >= width) {
        if (PyUnicode_CheckExact(self)) {
            Py_INCREF(self);
            return (PyObject*) self;
        }
        else
            return PyUnicode_FromUnicode(
                PyUnicode_AS_UNICODE(self),
                PyUnicode_GET_SIZE(self)
                );
    }

    fill = width - self->length;

    u = pad(self, fill, 0, '0');

    if (u == NULL)
        return NULL;

    if (u->str[fill] == '+' || u->str[fill] == '-') {
        /* move sign to beginning of string */
        u->str[0] = u->str[fill];
        u->str[fill] = '0';
    }

    return (PyObject*) u;
}

#if 0
static PyObject*
unicode_freelistsize(PyUnicodeObject *self)
{
    return PyLong_FromLong(numfree);
}

static PyObject *
unicode__decimal2ascii(PyObject *self)
{
    return PyUnicode_TransformDecimalToASCII(PyUnicode_AS_UNICODE(self),
                                             PyUnicode_GET_SIZE(self));
}
#endif

PyDoc_STRVAR(startswith__doc__,
             "S.startswith(prefix[, start[, end]]) -> bool\n\
\n\
Return True if S starts with the specified prefix, False otherwise.\n\
With optional start, test S beginning at that position.\n\
With optional end, stop comparing S at that position.\n\
prefix can also be a tuple of strings to try.");

static PyObject *
unicode_startswith(PyUnicodeObject *self,
                   PyObject *args)
{
    PyObject *subobj;
    PyUnicodeObject *substring;
    Py_ssize_t start = 0;
    Py_ssize_t end = PY_SSIZE_T_MAX;
    int result;

    if (!stringlib_parse_args_finds("startswith", args, &subobj, &start, &end))
        return NULL;
    if (PyTuple_Check(subobj)) {
        Py_ssize_t i;
        for (i = 0; i < PyTuple_GET_SIZE(subobj); i++) {
            substring = (PyUnicodeObject *)PyUnicode_FromObject(
                PyTuple_GET_ITEM(subobj, i));
            if (substring == NULL)
                return NULL;
            result = tailmatch(self, substring, start, end, -1);
            Py_DECREF(substring);
            if (result) {
                Py_RETURN_TRUE;
            }
        }
        /* nothing matched */
        Py_RETURN_FALSE;
    }
    substring = (PyUnicodeObject *)PyUnicode_FromObject(subobj);
    if (substring == NULL) {
        if (PyErr_ExceptionMatches(PyExc_TypeError))
            PyErr_Format(PyExc_TypeError, "startswith first arg must be str or "
                         "a tuple of str, not %s", Py_TYPE(subobj)->tp_name);
        return NULL;
    }
    result = tailmatch(self, substring, start, end, -1);
    Py_DECREF(substring);
    return PyBool_FromLong(result);
}


PyDoc_STRVAR(endswith__doc__,
             "S.endswith(suffix[, start[, end]]) -> bool\n\
\n\
Return True if S ends with the specified suffix, False otherwise.\n\
With optional start, test S beginning at that position.\n\
With optional end, stop comparing S at that position.\n\
suffix can also be a tuple of strings to try.");

static PyObject *
unicode_endswith(PyUnicodeObject *self,
                 PyObject *args)
{
    PyObject *subobj;
    PyUnicodeObject *substring;
    Py_ssize_t start = 0;
    Py_ssize_t end = PY_SSIZE_T_MAX;
    int result;

    if (!stringlib_parse_args_finds("endswith", args, &subobj, &start, &end))
        return NULL;
    if (PyTuple_Check(subobj)) {
        Py_ssize_t i;
        for (i = 0; i < PyTuple_GET_SIZE(subobj); i++) {
            substring = (PyUnicodeObject *)PyUnicode_FromObject(
                PyTuple_GET_ITEM(subobj, i));
            if (substring == NULL)
                return NULL;
            result = tailmatch(self, substring, start, end, +1);
            Py_DECREF(substring);
            if (result) {
                Py_RETURN_TRUE;
            }
        }
        Py_RETURN_FALSE;
    }
    substring = (PyUnicodeObject *)PyUnicode_FromObject(subobj);
    if (substring == NULL) {
        if (PyErr_ExceptionMatches(PyExc_TypeError))
            PyErr_Format(PyExc_TypeError, "endswith first arg must be str or "
                         "a tuple of str, not %s", Py_TYPE(subobj)->tp_name);
        return NULL;
    }
    result = tailmatch(self, substring, start, end, +1);
    Py_DECREF(substring);
    return PyBool_FromLong(result);
}

#include "stringlib/string_format.h"

PyDoc_STRVAR(format__doc__,
             "S.format(*args, **kwargs) -> str\n\
\n\
Return a formatted version of S, using substitutions from args and kwargs.\n\
The substitutions are identified by braces ('{' and '}').");

PyDoc_STRVAR(format_map__doc__,
             "S.format_map(mapping) -> str\n\
\n\
Return a formatted version of S, using substitutions from mapping.\n\
The substitutions are identified by braces ('{' and '}').");

static PyObject *
unicode__format__(PyObject* self, PyObject* args)
{
    PyObject *format_spec;

    if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
        return NULL;

    return _PyUnicode_FormatAdvanced(self,
                                     PyUnicode_AS_UNICODE(format_spec),
                                     PyUnicode_GET_SIZE(format_spec));
}

PyDoc_STRVAR(p_format__doc__,
             "S.__format__(format_spec) -> str\n\
\n\
Return a formatted version of S as described by format_spec.");

static PyObject *
unicode__sizeof__(PyUnicodeObject *v)
{
    return PyLong_FromSsize_t(sizeof(PyUnicodeObject) +
                              sizeof(Py_UNICODE) * (v->length + 1));
}

PyDoc_STRVAR(sizeof__doc__,
             "S.__sizeof__() -> size of S in memory, in bytes");

static PyObject *
unicode_getnewargs(PyUnicodeObject *v)
{
    return Py_BuildValue("(u#)", v->str, v->length);
}

static PyMethodDef unicode_methods[] = {

    /* Order is according to common usage: often used methods should
       appear first, since lookup is done sequentially. */

    {"encode", (PyCFunction) unicode_encode, METH_VARARGS | METH_KEYWORDS, encode__doc__},
    {"replace", (PyCFunction) unicode_replace, METH_VARARGS, replace__doc__},
    {"split", (PyCFunction) unicode_split, METH_VARARGS, split__doc__},
    {"rsplit", (PyCFunction) unicode_rsplit, METH_VARARGS, rsplit__doc__},
    {"join", (PyCFunction) unicode_join, METH_O, join__doc__},
    {"capitalize", (PyCFunction) unicode_capitalize, METH_NOARGS, capitalize__doc__},
    {"title", (PyCFunction) unicode_title, METH_NOARGS, title__doc__},
    {"center", (PyCFunction) unicode_center, METH_VARARGS, center__doc__},
    {"count", (PyCFunction) unicode_count, METH_VARARGS, count__doc__},
    {"expandtabs", (PyCFunction) unicode_expandtabs, METH_VARARGS, expandtabs__doc__},
    {"find", (PyCFunction) unicode_find, METH_VARARGS, find__doc__},
    {"partition", (PyCFunction) unicode_partition, METH_O, partition__doc__},
    {"index", (PyCFunction) unicode_index, METH_VARARGS, index__doc__},
    {"ljust", (PyCFunction) unicode_ljust, METH_VARARGS, ljust__doc__},
    {"lower", (PyCFunction) unicode_lower, METH_NOARGS, lower__doc__},
    {"lstrip", (PyCFunction) unicode_lstrip, METH_VARARGS, lstrip__doc__},
    {"rfind", (PyCFunction) unicode_rfind, METH_VARARGS, rfind__doc__},
    {"rindex", (PyCFunction) unicode_rindex, METH_VARARGS, rindex__doc__},
    {"rjust", (PyCFunction) unicode_rjust, METH_VARARGS, rjust__doc__},
    {"rstrip", (PyCFunction) unicode_rstrip, METH_VARARGS, rstrip__doc__},
    {"rpartition", (PyCFunction) unicode_rpartition, METH_O, rpartition__doc__},
    {"splitlines", (PyCFunction) unicode_splitlines, METH_VARARGS, splitlines__doc__},
    {"strip", (PyCFunction) unicode_strip, METH_VARARGS, strip__doc__},
    {"swapcase", (PyCFunction) unicode_swapcase, METH_NOARGS, swapcase__doc__},
    {"translate", (PyCFunction) unicode_translate, METH_O, translate__doc__},
    {"upper", (PyCFunction) unicode_upper, METH_NOARGS, upper__doc__},
    {"startswith", (PyCFunction) unicode_startswith, METH_VARARGS, startswith__doc__},
    {"endswith", (PyCFunction) unicode_endswith, METH_VARARGS, endswith__doc__},
    {"islower", (PyCFunction) unicode_islower, METH_NOARGS, islower__doc__},
    {"isupper", (PyCFunction) unicode_isupper, METH_NOARGS, isupper__doc__},
    {"istitle", (PyCFunction) unicode_istitle, METH_NOARGS, istitle__doc__},
    {"isspace", (PyCFunction) unicode_isspace, METH_NOARGS, isspace__doc__},
    {"isdecimal", (PyCFunction) unicode_isdecimal, METH_NOARGS, isdecimal__doc__},
    {"isdigit", (PyCFunction) unicode_isdigit, METH_NOARGS, isdigit__doc__},
    {"isnumeric", (PyCFunction) unicode_isnumeric, METH_NOARGS, isnumeric__doc__},
    {"isalpha", (PyCFunction) unicode_isalpha, METH_NOARGS, isalpha__doc__},
    {"isalnum", (PyCFunction) unicode_isalnum, METH_NOARGS, isalnum__doc__},
    {"isidentifier", (PyCFunction) unicode_isidentifier, METH_NOARGS, isidentifier__doc__},
    {"isprintable", (PyCFunction) unicode_isprintable, METH_NOARGS, isprintable__doc__},
    {"zfill", (PyCFunction) unicode_zfill, METH_VARARGS, zfill__doc__},
    {"format", (PyCFunction) do_string_format, METH_VARARGS | METH_KEYWORDS, format__doc__},
    {"format_map", (PyCFunction) do_string_format_map, METH_O, format_map__doc__},
    {"__format__", (PyCFunction) unicode__format__, METH_VARARGS, p_format__doc__},
    {"maketrans", (PyCFunction) unicode_maketrans,
     METH_VARARGS | METH_STATIC, maketrans__doc__},
    {"__sizeof__", (PyCFunction) unicode__sizeof__, METH_NOARGS, sizeof__doc__},
#if 0
    {"capwords", (PyCFunction) unicode_capwords, METH_NOARGS, capwords__doc__},
#endif

#if 0
    /* These methods are just used for debugging the implementation. */
    {"freelistsize", (PyCFunction) unicode_freelistsize, METH_NOARGS},
    {"_decimal2ascii", (PyCFunction) unicode__decimal2ascii, METH_NOARGS},
#endif

    {"__getnewargs__",  (PyCFunction)unicode_getnewargs, METH_NOARGS},
    {NULL, NULL}
};

static PyObject *
unicode_mod(PyObject *v, PyObject *w)
{
    if (!PyUnicode_Check(v)) {
        Py_INCREF(Py_NotImplemented);
        return Py_NotImplemented;
    }
    return PyUnicode_Format(v, w);
}

static PyNumberMethods unicode_as_number = {
    0,              /*nb_add*/
    0,              /*nb_subtract*/
    0,              /*nb_multiply*/
    unicode_mod,            /*nb_remainder*/
};

static PySequenceMethods unicode_as_sequence = {
    (lenfunc) unicode_length,       /* sq_length */
    PyUnicode_Concat,           /* sq_concat */
    (ssizeargfunc) unicode_repeat,  /* sq_repeat */
    (ssizeargfunc) unicode_getitem,     /* sq_item */
    0,                  /* sq_slice */
    0,                  /* sq_ass_item */
    0,                  /* sq_ass_slice */
    PyUnicode_Contains,         /* sq_contains */
};

static PyObject*
unicode_subscript(PyUnicodeObject* self, PyObject* item)
{
    if (PyIndex_Check(item)) {
        Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
        if (i == -1 && PyErr_Occurred())
            return NULL;
        if (i < 0)
            i += PyUnicode_GET_SIZE(self);
        return unicode_getitem(self, i);
    } else if (PySlice_Check(item)) {
        Py_ssize_t start, stop, step, slicelength, cur, i;
        Py_UNICODE* source_buf;
        Py_UNICODE* result_buf;
        PyObject* result;

        if (PySlice_GetIndicesEx(item, PyUnicode_GET_SIZE(self),
                                 &start, &stop, &step, &slicelength) < 0) {
            return NULL;
        }

        if (slicelength <= 0) {
            return PyUnicode_FromUnicode(NULL, 0);
        } else if (start == 0 && step == 1 && slicelength == self->length &&
                   PyUnicode_CheckExact(self)) {
            Py_INCREF(self);
            return (PyObject *)self;
        } else if (step == 1) {
            return PyUnicode_FromUnicode(self->str + start, slicelength);
        } else {
            source_buf = PyUnicode_AS_UNICODE((PyObject*)self);
            result_buf = (Py_UNICODE *)PyObject_MALLOC(slicelength*
                                                       sizeof(Py_UNICODE));

            if (result_buf == NULL)
                return PyErr_NoMemory();

            for (cur = start, i = 0; i < slicelength; cur += step, i++) {
                result_buf[i] = source_buf[cur];
            }

            result = PyUnicode_FromUnicode(result_buf, slicelength);
            PyObject_FREE(result_buf);
            return result;
        }
    } else {
        PyErr_SetString(PyExc_TypeError, "string indices must be integers");
        return NULL;
    }
}

static PyMappingMethods unicode_as_mapping = {
    (lenfunc)unicode_length,        /* mp_length */
    (binaryfunc)unicode_subscript,  /* mp_subscript */
    (objobjargproc)0,           /* mp_ass_subscript */
};


/* Helpers for PyUnicode_Format() */

static PyObject *
getnextarg(PyObject *args, Py_ssize_t arglen, Py_ssize_t *p_argidx)
{
    Py_ssize_t argidx = *p_argidx;
    if (argidx < arglen) {
        (*p_argidx)++;
        if (arglen < 0)
            return args;
        else
            return PyTuple_GetItem(args, argidx);
    }
    PyErr_SetString(PyExc_TypeError,
                    "not enough arguments for format string");
    return NULL;
}

/* Returns a new reference to a PyUnicode object, or NULL on failure. */

static PyObject *
formatfloat(PyObject *v, int flags, int prec, int type)
{
    char *p;
    PyObject *result;
    double x;

    x = PyFloat_AsDouble(v);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;

    if (prec < 0)
        prec = 6;

    p = PyOS_double_to_string(x, type, prec,
                              (flags & F_ALT) ? Py_DTSF_ALT : 0, NULL);
    if (p == NULL)
        return NULL;
    result = PyUnicode_FromStringAndSize(p, strlen(p));
    PyMem_Free(p);
    return result;
}

static PyObject*
formatlong(PyObject *val, int flags, int prec, int type)
{
    char *buf;
    int len;
    PyObject *str; /* temporary string object. */
    PyObject *result;

    str = _PyBytes_FormatLong(val, flags, prec, type, &buf, &len);
    if (!str)
        return NULL;
    result = PyUnicode_FromStringAndSize(buf, len);
    Py_DECREF(str);
    return result;
}

static int
formatchar(Py_UNICODE *buf,
           size_t buflen,
           PyObject *v)
{
    /* presume that the buffer is at least 3 characters long */
    if (PyUnicode_Check(v)) {
        if (PyUnicode_GET_SIZE(v) == 1) {
            buf[0] = PyUnicode_AS_UNICODE(v)[0];
            buf[1] = '\0';
            return 1;
        }
#ifndef Py_UNICODE_WIDE
        if (PyUnicode_GET_SIZE(v) == 2) {
            /* Decode a valid surrogate pair */
            int c0 = PyUnicode_AS_UNICODE(v)[0];
            int c1 = PyUnicode_AS_UNICODE(v)[1];
            if (0xD800 <= c0 && c0 <= 0xDBFF &&
                0xDC00 <= c1 && c1 <= 0xDFFF) {
                buf[0] = c0;
                buf[1] = c1;
                buf[2] = '\0';
                return 2;
            }
        }
#endif
        goto onError;
    }
    else {
        /* Integer input truncated to a character */
        long x;
        x = PyLong_AsLong(v);
        if (x == -1 && PyErr_Occurred())
            goto onError;

        if (x < 0 || x > 0x10ffff) {
            PyErr_SetString(PyExc_OverflowError,
                            "%c arg not in range(0x110000)");
            return -1;
        }

#ifndef Py_UNICODE_WIDE
        if (x > 0xffff) {
            x -= 0x10000;
            buf[0] = (Py_UNICODE)(0xD800 | (x >> 10));
            buf[1] = (Py_UNICODE)(0xDC00 | (x & 0x3FF));
            return 2;
        }
#endif
        buf[0] = (Py_UNICODE) x;
        buf[1] = '\0';
        return 1;
    }

  onError:
    PyErr_SetString(PyExc_TypeError,
                    "%c requires int or char");
    return -1;
}

/* fmt%(v1,v2,...) is roughly equivalent to sprintf(fmt, v1, v2, ...)
   FORMATBUFLEN is the length of the buffer in which chars are formatted.
*/
#define FORMATBUFLEN (size_t)10

PyObject *PyUnicode_Format(PyObject *format,
                           PyObject *args)
{
    Py_UNICODE *fmt, *res;
    Py_ssize_t fmtcnt, rescnt, reslen, arglen, argidx;
    int args_owned = 0;
    PyUnicodeObject *result = NULL;
    PyObject *dict = NULL;
    PyObject *uformat;

    if (format == NULL || args == NULL) {
        PyErr_BadInternalCall();
        return NULL;
    }
    uformat = PyUnicode_FromObject(format);
    if (uformat == NULL)
        return NULL;
    fmt = PyUnicode_AS_UNICODE(uformat);
    fmtcnt = PyUnicode_GET_SIZE(uformat);

    reslen = rescnt = fmtcnt + 100;
    result = _PyUnicode_New(reslen);
    if (result == NULL)
        goto onError;
    res = PyUnicode_AS_UNICODE(result);

    if (PyTuple_Check(args)) {
        arglen = PyTuple_Size(args);
        argidx = 0;
    }
    else {
        arglen = -1;
        argidx = -2;
    }
    if (Py_TYPE(args)->tp_as_mapping && !PyTuple_Check(args) &&
        !PyUnicode_Check(args))
        dict = args;

    while (--fmtcnt >= 0) {
        if (*fmt != '%') {
            if (--rescnt < 0) {
                rescnt = fmtcnt + 100;
                reslen += rescnt;
                if (_PyUnicode_Resize(&result, reslen) < 0)
                    goto onError;
                res = PyUnicode_AS_UNICODE(result) + reslen - rescnt;
                --rescnt;
            }
            *res++ = *fmt++;
        }
        else {
            /* Got a format specifier */
            int flags = 0;
            Py_ssize_t width = -1;
            int prec = -1;
            Py_UNICODE c = '\0';
            Py_UNICODE fill;
            int isnumok;
            PyObject *v = NULL;
            PyObject *temp = NULL;
            Py_UNICODE *pbuf;
            Py_UNICODE sign;
            Py_ssize_t len;
            Py_UNICODE formatbuf[FORMATBUFLEN]; /* For formatchar() */

            fmt++;
            if (*fmt == '(') {
                Py_UNICODE *keystart;
                Py_ssize_t keylen;
                PyObject *key;
                int pcount = 1;

                if (dict == NULL) {
                    PyErr_SetString(PyExc_TypeError,
                                    "format requires a mapping");
                    goto onError;
                }
                ++fmt;
                --fmtcnt;
                keystart = fmt;
                /* Skip over balanced parentheses */
                while (pcount > 0 && --fmtcnt >= 0) {
                    if (*fmt == ')')
                        --pcount;
                    else if (*fmt == '(')
                        ++pcount;
                    fmt++;
                }
                keylen = fmt - keystart - 1;
                if (fmtcnt < 0 || pcount > 0) {
                    PyErr_SetString(PyExc_ValueError,
                                    "incomplete format key");
                    goto onError;
                }
#if 0
                /* keys are converted to strings using UTF-8 and
                   then looked up since Python uses strings to hold
                   variables names etc. in its namespaces and we
                   wouldn't want to break common idioms. */
                key = PyUnicode_EncodeUTF8(keystart,
                                           keylen,
                                           NULL);
#else
                key = PyUnicode_FromUnicode(keystart, keylen);
#endif
                if (key == NULL)
                    goto onError;
                if (args_owned) {
                    Py_DECREF(args);
                    args_owned = 0;
                }
                args = PyObject_GetItem(dict, key);
                Py_DECREF(key);
                if (args == NULL) {
                    goto onError;
                }
                args_owned = 1;
                arglen = -1;
                argidx = -2;
            }
            while (--fmtcnt >= 0) {
                switch (c = *fmt++) {
                case '-': flags |= F_LJUST; continue;
                case '+': flags |= F_SIGN; continue;
                case ' ': flags |= F_BLANK; continue;
                case '#': flags |= F_ALT; continue;
                case '0': flags |= F_ZERO; continue;
                }
                break;
            }
            if (c == '*') {
                v = getnextarg(args, arglen, &argidx);
                if (v == NULL)
                    goto onError;
                if (!PyLong_Check(v)) {
                    PyErr_SetString(PyExc_TypeError,
                                    "* wants int");
                    goto onError;
                }
                width = PyLong_AsLong(v);
                if (width == -1 && PyErr_Occurred())
                    goto onError;
                if (width < 0) {
                    flags |= F_LJUST;
                    width = -width;
                }
                if (--fmtcnt >= 0)
                    c = *fmt++;
            }
            else if (c >= '0' && c <= '9') {
                width = c - '0';
                while (--fmtcnt >= 0) {
                    c = *fmt++;
                    if (c < '0' || c > '9')
                        break;
                    if ((width*10) / 10 != width) {
                        PyErr_SetString(PyExc_ValueError,
                                        "width too big");
                        goto onError;
                    }
                    width = width*10 + (c - '0');
                }
            }
            if (c == '.') {
                prec = 0;
                if (--fmtcnt >= 0)
                    c = *fmt++;
                if (c == '*') {
                    v = getnextarg(args, arglen, &argidx);
                    if (v == NULL)
                        goto onError;
                    if (!PyLong_Check(v)) {
                        PyErr_SetString(PyExc_TypeError,
                                        "* wants int");
                        goto onError;
                    }
                    prec = PyLong_AsLong(v);
                    if (prec == -1 && PyErr_Occurred())
                        goto onError;
                    if (prec < 0)
                        prec = 0;
                    if (--fmtcnt >= 0)
                        c = *fmt++;
                }
                else if (c >= '0' && c <= '9') {
                    prec = c - '0';
                    while (--fmtcnt >= 0) {
                        c = *fmt++;
                        if (c < '0' || c > '9')
                            break;
                        if ((prec*10) / 10 != prec) {
                            PyErr_SetString(PyExc_ValueError,
                                            "prec too big");
                            goto onError;
                        }
                        prec = prec*10 + (c - '0');
                    }
                }
            } /* prec */
            if (fmtcnt >= 0) {
                if (c == 'h' || c == 'l' || c == 'L') {
                    if (--fmtcnt >= 0)
                        c = *fmt++;
                }
            }
            if (fmtcnt < 0) {
                PyErr_SetString(PyExc_ValueError,
                                "incomplete format");
                goto onError;
            }
            if (c != '%') {
                v = getnextarg(args, arglen, &argidx);
                if (v == NULL)
                    goto onError;
            }
            sign = 0;
            fill = ' ';
            switch (c) {

            case '%':
                pbuf = formatbuf;
                /* presume that buffer length is at least 1 */
                pbuf[0] = '%';
                len = 1;
                break;

            case 's':
            case 'r':
            case 'a':
                if (PyUnicode_CheckExact(v) && c == 's') {
                    temp = v;
                    Py_INCREF(temp);
                }
                else {
                    if (c == 's')
                        temp = PyObject_Str(v);
                    else if (c == 'r')
                        temp = PyObject_Repr(v);
                    else
                        temp = PyObject_ASCII(v);
                    if (temp == NULL)
                        goto onError;
                    if (PyUnicode_Check(temp))
                        /* nothing to do */;
                    else {
                        Py_DECREF(temp);
                        PyErr_SetString(PyExc_TypeError,
                                        "%s argument has non-string str()");
                        goto onError;
                    }
                }
                pbuf = PyUnicode_AS_UNICODE(temp);
                len = PyUnicode_GET_SIZE(temp);
                if (prec >= 0 && len > prec)
                    len = prec;
                break;

            case 'i':
            case 'd':
            case 'u':
            case 'o':
            case 'x':
            case 'X':
                isnumok = 0;
                if (PyNumber_Check(v)) {
                    PyObject *iobj=NULL;

                    if (PyLong_Check(v)) {
                        iobj = v;
                        Py_INCREF(iobj);
                    }
                    else {
                        iobj = PyNumber_Long(v);
                    }
                    if (iobj!=NULL) {
                        if (PyLong_Check(iobj)) {
                            isnumok = 1;
                            temp = formatlong(iobj, flags, prec, (c == 'i'? 'd': c));
                            Py_DECREF(iobj);
                            if (!temp)
                                goto onError;
                            pbuf = PyUnicode_AS_UNICODE(temp);
                            len = PyUnicode_GET_SIZE(temp);
                            sign = 1;
                        }
                        else {
                            Py_DECREF(iobj);
                        }
                    }
                }
                if (!isnumok) {
                    PyErr_Format(PyExc_TypeError,
                                 "%%%c format: a number is required, "
                                 "not %.200s", (char)c, Py_TYPE(v)->tp_name);
                    goto onError;
                }
                if (flags & F_ZERO)
                    fill = '0';
                break;

            case 'e':
            case 'E':
            case 'f':
            case 'F':
            case 'g':
            case 'G':
                temp = formatfloat(v, flags, prec, c);
                if (!temp)
                    goto onError;
                pbuf = PyUnicode_AS_UNICODE(temp);
                len = PyUnicode_GET_SIZE(temp);
                sign = 1;
                if (flags & F_ZERO)
                    fill = '0';
                break;

            case 'c':
                pbuf = formatbuf;
                len = formatchar(pbuf, sizeof(formatbuf)/sizeof(Py_UNICODE), v);
                if (len < 0)
                    goto onError;
                break;

            default:
                PyErr_Format(PyExc_ValueError,
                             "unsupported format character '%c' (0x%x) "
                             "at index %zd",
                             (31<=c && c<=126) ? (char)c : '?',
                             (int)c,
                             (Py_ssize_t)(fmt - 1 -
                                          PyUnicode_AS_UNICODE(uformat)));
                goto onError;
            }
            if (sign) {
                if (*pbuf == '-' || *pbuf == '+') {
                    sign = *pbuf++;
                    len--;
                }
                else if (flags & F_SIGN)
                    sign = '+';
                else if (flags & F_BLANK)
                    sign = ' ';
                else
                    sign = 0;
            }
            if (width < len)
                width = len;
            if (rescnt - (sign != 0) < width) {
                reslen -= rescnt;
                rescnt = width + fmtcnt + 100;
                reslen += rescnt;
                if (reslen < 0) {
                    Py_XDECREF(temp);
                    PyErr_NoMemory();
                    goto onError;
                }
                if (_PyUnicode_Resize(&result, reslen) < 0) {
                    Py_XDECREF(temp);
                    goto onError;
                }
                res = PyUnicode_AS_UNICODE(result)
                    + reslen - rescnt;
            }
            if (sign) {
                if (fill != ' ')
                    *res++ = sign;
                rescnt--;
                if (width > len)
                    width--;
            }
            if ((flags & F_ALT) && (c == 'x' || c == 'X' || c == 'o')) {
                assert(pbuf[0] == '0');
                assert(pbuf[1] == c);
                if (fill != ' ') {
                    *res++ = *pbuf++;
                    *res++ = *pbuf++;
                }
                rescnt -= 2;
                width -= 2;
                if (width < 0)
                    width = 0;
                len -= 2;
            }
            if (width > len && !(flags & F_LJUST)) {
                do {
                    --rescnt;
                    *res++ = fill;
                } while (--width > len);
            }
            if (fill == ' ') {
                if (sign)
                    *res++ = sign;
                if ((flags & F_ALT) && (c == 'x' || c == 'X' || c == 'o')) {
                    assert(pbuf[0] == '0');
                    assert(pbuf[1] == c);
                    *res++ = *pbuf++;
                    *res++ = *pbuf++;
                }
            }
            Py_UNICODE_COPY(res, pbuf, len);
            res += len;
            rescnt -= len;
            while (--width >= len) {
                --rescnt;
                *res++ = ' ';
            }
            if (dict && (argidx < arglen) && c != '%') {
                PyErr_SetString(PyExc_TypeError,
                                "not all arguments converted during string formatting");
                Py_XDECREF(temp);
                goto onError;
            }
            Py_XDECREF(temp);
        } /* '%' */
    } /* until end */
    if (argidx < arglen && !dict) {
        PyErr_SetString(PyExc_TypeError,
                        "not all arguments converted during string formatting");
        goto onError;
    }

    if (_PyUnicode_Resize(&result, reslen - rescnt) < 0)
        goto onError;
    if (args_owned) {
        Py_DECREF(args);
    }
    Py_DECREF(uformat);
    return (PyObject *)result;

  onError:
    Py_XDECREF(result);
    Py_DECREF(uformat);
    if (args_owned) {
        Py_DECREF(args);
    }
    return NULL;
}

static PyObject *
unicode_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);

static PyObject *
unicode_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    PyObject *x = NULL;
    static char *kwlist[] = {"object", "encoding", "errors", 0};
    char *encoding = NULL;
    char *errors = NULL;

    if (type != &PyUnicode_Type)
        return unicode_subtype_new(type, args, kwds);
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oss:str",
                                     kwlist, &x, &encoding, &errors))
        return NULL;
    if (x == NULL)
        return (PyObject *)_PyUnicode_New(0);
    if (encoding == NULL && errors == NULL)
        return PyObject_Str(x);
    else
        return PyUnicode_FromEncodedObject(x, encoding, errors);
}

static PyObject *
unicode_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    PyUnicodeObject *tmp, *pnew;
    Py_ssize_t n;

    assert(PyType_IsSubtype(type, &PyUnicode_Type));
    tmp = (PyUnicodeObject *)unicode_new(&PyUnicode_Type, args, kwds);
    if (tmp == NULL)
        return NULL;
    assert(PyUnicode_Check(tmp));
    pnew = (PyUnicodeObject *) type->tp_alloc(type, n = tmp->length);
    if (pnew == NULL) {
        Py_DECREF(tmp);
        return NULL;
    }
    pnew->str = (Py_UNICODE*) PyObject_MALLOC(sizeof(Py_UNICODE) * (n+1));
    if (pnew->str == NULL) {