summaryrefslogtreecommitdiffstats
path: root/Lib/decimal.py
blob: 2e89d29082892869f2b77534361fafbec51cb8e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.

# Written by Eric Price <eprice at tjhsst.edu>
#    and Facundo Batista <facundo at taniquetil.com.ar>
#    and Raymond Hettinger <python at rcn.com>
#    and Aahz <aahz at pobox.com>
#    and Tim Peters

# This module is currently Py2.3 compatible and should be kept that way
# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
# strongly preferred, but not guaranteed.

# Also, this module should be kept in sync with the latest updates of
# the IBM specification as it evolves.  Those updates will be treated
# as bug fixes (deviation from the spec is a compatibility, usability
# bug) and will be backported.  At this point the spec is stabilizing
# and the updates are becoming fewer, smaller, and less significant.

"""
This is a Py2.3 implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:

    www2.hursley.ibm.com/decimal/decarith.html

and IEEE standard 854-1987:

    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html

Decimal floating point has finite precision with arbitrarily large bounds.

The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point.  The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of the expected Decimal('0.00') returned by decimal floating point).

Here are some examples of using the decimal module:

>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal('0')
>>> Decimal('1')
Decimal('1')
>>> Decimal('-.0123')
Decimal('-0.0123')
>>> Decimal(123456)
Decimal('123456')
>>> Decimal('123.45e12345678901234567890')
Decimal('1.2345E+12345678901234567892')
>>> Decimal('1.33') + Decimal('1.27')
Decimal('2.60')
>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
Decimal('-2.20')
>>> dig = Decimal(1)
>>> print(dig / Decimal(3))
0.333333333
>>> getcontext().prec = 18
>>> print(dig / Decimal(3))
0.333333333333333333
>>> print(dig.sqrt())
1
>>> print(Decimal(3).sqrt())
1.73205080756887729
>>> print(Decimal(3) ** 123)
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print(inf)
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print(neginf)
-Infinity
>>> print(neginf + inf)
NaN
>>> print(neginf * inf)
-Infinity
>>> print(dig / 0)
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print(dig / 0)
Traceback (most recent call last):
  ...
  ...
  ...
decimal.DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal('NaN')
>>> c.traps[InvalidOperation] = 1
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> print(c.divide(Decimal(0), Decimal(0)))
Traceback (most recent call last):
  ...
  ...
  ...
decimal.InvalidOperation: 0 / 0
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print(c.divide(Decimal(0), Decimal(0)))
NaN
>>> print(c.flags[InvalidOperation])
1
>>>
"""

__all__ = [
    # Two major classes
    'Decimal', 'Context',

    # Contexts
    'DefaultContext', 'BasicContext', 'ExtendedContext',

    # Exceptions
    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',

    # Constants for use in setting up contexts
    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',

    # Functions for manipulating contexts
    'setcontext', 'getcontext', 'localcontext'
]

import numbers as _numbers
import copy as _copy

try:
    from collections import namedtuple as _namedtuple
    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
except ImportError:
    DecimalTuple = lambda *args: args

# Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
ROUND_05UP = 'ROUND_05UP'

# Errors

class DecimalException(ArithmeticError):
    """Base exception class.

    Used exceptions derive from this.
    If an exception derives from another exception besides this (such as
    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
    called if the others are present.  This isn't actually used for
    anything, though.

    handle  -- Called when context._raise_error is called and the
               trap_enabler is set.  First argument is self, second is the
               context.  More arguments can be given, those being after
               the explanation in _raise_error (For example,
               context._raise_error(NewError, '(-x)!', self._sign) would
               call NewError().handle(context, self._sign).)

    To define a new exception, it should be sufficient to have it derive
    from DecimalException.
    """
    def handle(self, context, *args):
        pass


class Clamped(DecimalException):
    """Exponent of a 0 changed to fit bounds.

    This occurs and signals clamped if the exponent of a result has been
    altered in order to fit the constraints of a specific concrete
    representation.  This may occur when the exponent of a zero result would
    be outside the bounds of a representation, or when a large normal
    number would have an encoded exponent that cannot be represented.  In
    this latter case, the exponent is reduced to fit and the corresponding
    number of zero digits are appended to the coefficient ("fold-down").
    """

class InvalidOperation(DecimalException):
    """An invalid operation was performed.

    Various bad things cause this:

    Something creates a signaling NaN
    -INF + INF
    0 * (+-)INF
    (+-)INF / (+-)INF
    x % 0
    (+-)INF % x
    x._rescale( non-integer )
    sqrt(-x) , x > 0
    0 ** 0
    x ** (non-integer)
    x ** (+-)INF
    An operand is invalid

    The result of the operation after these is a quiet positive NaN,
    except when the cause is a signaling NaN, in which case the result is
    also a quiet NaN, but with the original sign, and an optional
    diagnostic information.
    """
    def handle(self, context, *args):
        if args:
            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
            return ans._fix_nan(context)
        return NaN

class ConversionSyntax(InvalidOperation):
    """Trying to convert badly formed string.

    This occurs and signals invalid-operation if an string is being
    converted to a number and it does not conform to the numeric string
    syntax.  The result is [0,qNaN].
    """
    def handle(self, context, *args):
        return NaN

class DivisionByZero(DecimalException, ZeroDivisionError):
    """Division by 0.

    This occurs and signals division-by-zero if division of a finite number
    by zero was attempted (during a divide-integer or divide operation, or a
    power operation with negative right-hand operand), and the dividend was
    not zero.

    The result of the operation is [sign,inf], where sign is the exclusive
    or of the signs of the operands for divide, or is 1 for an odd power of
    -0, for power.
    """

    def handle(self, context, sign, *args):
        return Infsign[sign]

class DivisionImpossible(InvalidOperation):
    """Cannot perform the division adequately.

    This occurs and signals invalid-operation if the integer result of a
    divide-integer or remainder operation had too many digits (would be
    longer than precision).  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return NaN

class DivisionUndefined(InvalidOperation, ZeroDivisionError):
    """Undefined result of division.

    This occurs and signals invalid-operation if division by zero was
    attempted (during a divide-integer, divide, or remainder operation), and
    the dividend is also zero.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return NaN

class Inexact(DecimalException):
    """Had to round, losing information.

    This occurs and signals inexact whenever the result of an operation is
    not exact (that is, it needed to be rounded and any discarded digits
    were non-zero), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The inexact signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) was inexact.
    """

class InvalidContext(InvalidOperation):
    """Invalid context.  Unknown rounding, for example.

    This occurs and signals invalid-operation if an invalid context was
    detected during an operation.  This can occur if contexts are not checked
    on creation and either the precision exceeds the capability of the
    underlying concrete representation or an unknown or unsupported rounding
    was specified.  These aspects of the context need only be checked when
    the values are required to be used.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return NaN

class Rounded(DecimalException):
    """Number got rounded (not  necessarily changed during rounding).

    This occurs and signals rounded whenever the result of an operation is
    rounded (that is, some zero or non-zero digits were discarded from the
    coefficient), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The rounded signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) caused a loss of precision.
    """

class Subnormal(DecimalException):
    """Exponent < Emin before rounding.

    This occurs and signals subnormal whenever the result of a conversion or
    operation is subnormal (that is, its adjusted exponent is less than
    Emin, before any rounding).  The result in all cases is unchanged.

    The subnormal signal may be tested (or trapped) to determine if a given
    or operation (or sequence of operations) yielded a subnormal result.
    """

class Overflow(Inexact, Rounded):
    """Numerical overflow.

    This occurs and signals overflow if the adjusted exponent of a result
    (from a conversion or from an operation that is not an attempt to divide
    by zero), after rounding, would be greater than the largest value that
    can be handled by the implementation (the value Emax).

    The result depends on the rounding mode:

    For round-half-up and round-half-even (and for round-half-down and
    round-up, if implemented), the result of the operation is [sign,inf],
    where sign is the sign of the intermediate result.  For round-down, the
    result is the largest finite number that can be represented in the
    current precision, with the sign of the intermediate result.  For
    round-ceiling, the result is the same as for round-down if the sign of
    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
    the result is the same as for round-down if the sign of the intermediate
    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
    will also be raised.
    """

    def handle(self, context, sign, *args):
        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
                                ROUND_HALF_DOWN, ROUND_UP):
            return Infsign[sign]
        if sign == 0:
            if context.rounding == ROUND_CEILING:
                return Infsign[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                            context.Emax-context.prec+1)
        if sign == 1:
            if context.rounding == ROUND_FLOOR:
                return Infsign[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                             context.Emax-context.prec+1)


class Underflow(Inexact, Rounded, Subnormal):
    """Numerical underflow with result rounded to 0.

    This occurs and signals underflow if a result is inexact and the
    adjusted exponent of the result would be smaller (more negative) than
    the smallest value that can be handled by the implementation (the value
    Emin).  That is, the result is both inexact and subnormal.

    The result after an underflow will be a subnormal number rounded, if
    necessary, so that its exponent is not less than Etiny.  This may result
    in 0 with the sign of the intermediate result and an exponent of Etiny.

    In all cases, Inexact, Rounded, and Subnormal will also be raised.
    """

# List of public traps and flags
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
           Underflow, InvalidOperation, Subnormal]

# Map conditions (per the spec) to signals
_condition_map = {ConversionSyntax:InvalidOperation,
                  DivisionImpossible:InvalidOperation,
                  DivisionUndefined:InvalidOperation,
                  InvalidContext:InvalidOperation}

##### Context Functions ##################################################

# The getcontext() and setcontext() function manage access to a thread-local
# current context.  Py2.4 offers direct support for thread locals.  If that
# is not available, use threading.currentThread() which is slower but will
# work for older Pythons.  If threads are not part of the build, create a
# mock threading object with threading.local() returning the module namespace.

try:
    import threading
except ImportError:
    # Python was compiled without threads; create a mock object instead
    import sys
    class MockThreading(object):
        def local(self, sys=sys):
            return sys.modules[__name__]
    threading = MockThreading()
    del sys, MockThreading

try:
    threading.local

except AttributeError:

    # To fix reloading, force it to create a new context
    # Old contexts have different exceptions in their dicts, making problems.
    if hasattr(threading.currentThread(), '__decimal_context__'):
        del threading.currentThread().__decimal_context__

    def setcontext(context):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        threading.currentThread().__decimal_context__ = context

    def getcontext():
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return threading.currentThread().__decimal_context__
        except AttributeError:
            context = Context()
            threading.currentThread().__decimal_context__ = context
            return context

else:

    local = threading.local()
    if hasattr(local, '__decimal_context__'):
        del local.__decimal_context__

    def getcontext(_local=local):
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return _local.__decimal_context__
        except AttributeError:
            context = Context()
            _local.__decimal_context__ = context
            return context

    def setcontext(context, _local=local):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        _local.__decimal_context__ = context

    del threading, local        # Don't contaminate the namespace

def localcontext(ctx=None):
    """Return a context manager for a copy of the supplied context

    Uses a copy of the current context if no context is specified
    The returned context manager creates a local decimal context
    in a with statement:
        def sin(x):
             with localcontext() as ctx:
                 ctx.prec += 2
                 # Rest of sin calculation algorithm
                 # uses a precision 2 greater than normal
             return +s  # Convert result to normal precision

         def sin(x):
             with localcontext(ExtendedContext):
                 # Rest of sin calculation algorithm
                 # uses the Extended Context from the
                 # General Decimal Arithmetic Specification
             return +s  # Convert result to normal context

    """
    # The string below can't be included in the docstring until Python 2.6
    # as the doctest module doesn't understand __future__ statements
    """
    >>> from __future__ import with_statement
    >>> print(getcontext().prec)
    28
    >>> with localcontext():
    ...     ctx = getcontext()
    ...     ctx.prec += 2
    ...     print(ctx.prec)
    ...
    30
    >>> with localcontext(ExtendedContext):
    ...     print(getcontext().prec)
    ...
    9
    >>> print(getcontext().prec)
    28
    """
    if ctx is None: ctx = getcontext()
    return _ContextManager(ctx)


##### Decimal class #######################################################

class Decimal(_numbers.Real, _numbers.Inexact):
    """Floating point class for decimal arithmetic."""

    __slots__ = ('_exp','_int','_sign', '_is_special')
    # Generally, the value of the Decimal instance is given by
    #  (-1)**_sign * _int * 10**_exp
    # Special values are signified by _is_special == True

    # We're immutable, so use __new__ not __init__
    def __new__(cls, value="0", context=None):
        """Create a decimal point instance.

        >>> Decimal('3.14')              # string input
        Decimal('3.14')
        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
        Decimal('3.14')
        >>> Decimal(314)                 # int
        Decimal('314')
        >>> Decimal(Decimal(314))        # another decimal instance
        Decimal('314')
        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
        Decimal('3.14')
        """

        # Note that the coefficient, self._int, is actually stored as
        # a string rather than as a tuple of digits.  This speeds up
        # the "digits to integer" and "integer to digits" conversions
        # that are used in almost every arithmetic operation on
        # Decimals.  This is an internal detail: the as_tuple function
        # and the Decimal constructor still deal with tuples of
        # digits.

        self = object.__new__(cls)

        # From a string
        # REs insist on real strings, so we can too.
        if isinstance(value, str):
            m = _parser(value.strip())
            if m is None:
                if context is None:
                    context = getcontext()
                return context._raise_error(ConversionSyntax,
                                "Invalid literal for Decimal: %r" % value)

            if m.group('sign') == "-":
                self._sign = 1
            else:
                self._sign = 0
            intpart = m.group('int')
            if intpart is not None:
                # finite number
                fracpart = m.group('frac')
                exp = int(m.group('exp') or '0')
                if fracpart is not None:
                    self._int = (intpart+fracpart).lstrip('0') or '0'
                    self._exp = exp - len(fracpart)
                else:
                    self._int = intpart.lstrip('0') or '0'
                    self._exp = exp
                self._is_special = False
            else:
                diag = m.group('diag')
                if diag is not None:
                    # NaN
                    self._int = diag.lstrip('0')
                    if m.group('signal'):
                        self._exp = 'N'
                    else:
                        self._exp = 'n'
                else:
                    # infinity
                    self._int = '0'
                    self._exp = 'F'
                self._is_special = True
            return self

        # From an integer
        if isinstance(value, int):
            if value >= 0:
                self._sign = 0
            else:
                self._sign = 1
            self._exp = 0
            self._int = str(abs(value))
            self._is_special = False
            return self

        # From another decimal
        if isinstance(value, Decimal):
            self._exp  = value._exp
            self._sign = value._sign
            self._int  = value._int
            self._is_special  = value._is_special
            return self

        # From an internal working value
        if isinstance(value, _WorkRep):
            self._sign = value.sign
            self._int = str(value.int)
            self._exp = int(value.exp)
            self._is_special = False
            return self

        # tuple/list conversion (possibly from as_tuple())
        if isinstance(value, (list,tuple)):
            if len(value) != 3:
                raise ValueError('Invalid tuple size in creation of Decimal '
                                 'from list or tuple.  The list or tuple '
                                 'should have exactly three elements.')
            # process sign.  The isinstance test rejects floats
            if not (isinstance(value[0], int) and value[0] in (0,1)):
                raise ValueError("Invalid sign.  The first value in the tuple "
                                 "should be an integer; either 0 for a "
                                 "positive number or 1 for a negative number.")
            self._sign = value[0]
            if value[2] == 'F':
                # infinity: value[1] is ignored
                self._int = '0'
                self._exp = value[2]
                self._is_special = True
            else:
                # process and validate the digits in value[1]
                digits = []
                for digit in value[1]:
                    if isinstance(digit, int) and 0 <= digit <= 9:
                        # skip leading zeros
                        if digits or digit != 0:
                            digits.append(digit)
                    else:
                        raise ValueError("The second value in the tuple must "
                                         "be composed of integers in the range "
                                         "0 through 9.")
                if value[2] in ('n', 'N'):
                    # NaN: digits form the diagnostic
                    self._int = ''.join(map(str, digits))
                    self._exp = value[2]
                    self._is_special = True
                elif isinstance(value[2], int):
                    # finite number: digits give the coefficient
                    self._int = ''.join(map(str, digits or [0]))
                    self._exp = value[2]
                    self._is_special = False
                else:
                    raise ValueError("The third value in the tuple must "
                                     "be an integer, or one of the "
                                     "strings 'F', 'n', 'N'.")
            return self

        if isinstance(value, float):
            raise TypeError("Cannot convert float to Decimal.  " +
                            "First convert the float to a string")

        raise TypeError("Cannot convert %r to Decimal" % value)

    def _isnan(self):
        """Returns whether the number is not actually one.

        0 if a number
        1 if NaN
        2 if sNaN
        """
        if self._is_special:
            exp = self._exp
            if exp == 'n':
                return 1
            elif exp == 'N':
                return 2
        return 0

    def _isinfinity(self):
        """Returns whether the number is infinite

        0 if finite or not a number
        1 if +INF
        -1 if -INF
        """
        if self._exp == 'F':
            if self._sign:
                return -1
            return 1
        return 0

    def _check_nans(self, other=None, context=None):
        """Returns whether the number is not actually one.

        if self, other are sNaN, signal
        if self, other are NaN return nan
        return 0

        Done before operations.
        """

        self_is_nan = self._isnan()
        if other is None:
            other_is_nan = False
        else:
            other_is_nan = other._isnan()

        if self_is_nan or other_is_nan:
            if context is None:
                context = getcontext()

            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if self_is_nan:
                return self._fix_nan(context)

            return other._fix_nan(context)
        return 0

    def _compare_check_nans(self, other, context):
        """Version of _check_nans used for the signaling comparisons
        compare_signal, __le__, __lt__, __ge__, __gt__.

        Signal InvalidOperation if either self or other is a (quiet
        or signaling) NaN.  Signaling NaNs take precedence over quiet
        NaNs.

        Return 0 if neither operand is a NaN.

        """
        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            if self.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            self)
            elif other.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            other)
            elif self.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            self)
            elif other.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            other)
        return 0

    def __bool__(self):
        """Return True if self is nonzero; otherwise return False.

        NaNs and infinities are considered nonzero.
        """
        return self._is_special or self._int != '0'

    def _cmp(self, other):
        """Compare the two non-NaN decimal instances self and other.

        Returns -1 if self < other, 0 if self == other and 1
        if self > other.  This routine is for internal use only."""

        if self._is_special or other._is_special:
            return cmp(self._isinfinity(), other._isinfinity())

        # check for zeros;  note that cmp(0, -0) should return 0
        if not self:
            if not other:
                return 0
            else:
                return -((-1)**other._sign)
        if not other:
            return (-1)**self._sign

        # If different signs, neg one is less
        if other._sign < self._sign:
            return -1
        if self._sign < other._sign:
            return 1

        self_adjusted = self.adjusted()
        other_adjusted = other.adjusted()
        if self_adjusted == other_adjusted:
            self_padded = self._int + '0'*(self._exp - other._exp)
            other_padded = other._int + '0'*(other._exp - self._exp)
            return cmp(self_padded, other_padded) * (-1)**self._sign
        elif self_adjusted > other_adjusted:
            return (-1)**self._sign
        else: # self_adjusted < other_adjusted
            return -((-1)**self._sign)

    # Note: The Decimal standard doesn't cover rich comparisons for
    # Decimals.  In particular, the specification is silent on the
    # subject of what should happen for a comparison involving a NaN.
    # We take the following approach:
    #
    #   == comparisons involving a NaN always return False
    #   != comparisons involving a NaN always return True
    #   <, >, <= and >= comparisons involving a (quiet or signaling)
    #      NaN signal InvalidOperation, and return False if the
    #      InvalidOperation is not trapped.
    #
    # This behavior is designed to conform as closely as possible to
    # that specified by IEEE 754.

    def __eq__(self, other):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        if self.is_nan() or other.is_nan():
            return False
        return self._cmp(other) == 0

    def __ne__(self, other):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        if self.is_nan() or other.is_nan():
            return True
        return self._cmp(other) != 0


    def __lt__(self, other, context=None):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) < 0

    def __le__(self, other, context=None):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) <= 0

    def __gt__(self, other, context=None):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) > 0

    def __ge__(self, other, context=None):
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) >= 0

    def compare(self, other, context=None):
        """Compares one to another.

        -1 => a < b
        0  => a = b
        1  => a > b
        NaN => one is NaN
        Like __cmp__, but returns Decimal instances.
        """
        other = _convert_other(other, raiseit=True)

        # Compare(NaN, NaN) = NaN
        if (self._is_special or other and other._is_special):
            ans = self._check_nans(other, context)
            if ans:
                return ans

        return Decimal(self._cmp(other))

    def __hash__(self):
        """x.__hash__() <==> hash(x)"""
        # Decimal integers must hash the same as the ints
        #
        # The hash of a nonspecial noninteger Decimal must depend only
        # on the value of that Decimal, and not on its representation.
        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
        if self._is_special:
            if self._isnan():
                raise TypeError('Cannot hash a NaN value.')
            return hash(str(self))
        if not self:
            return 0
        if self._isinteger():
            op = _WorkRep(self.to_integral_value())
            # to make computation feasible for Decimals with large
            # exponent, we use the fact that hash(n) == hash(m) for
            # any two nonzero integers n and m such that (i) n and m
            # have the same sign, and (ii) n is congruent to m modulo
            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
            # hash((-1)**s*c*pow(10, e, 2**64-1).
            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
        # The value of a nonzero nonspecial Decimal instance is
        # faithfully represented by the triple consisting of its sign,
        # its adjusted exponent, and its coefficient with trailing
        # zeros removed.
        return hash((self._sign,
                     self._exp+len(self._int),
                     self._int.rstrip('0')))

    def as_tuple(self):
        """Represents the number as a triple tuple.

        To show the internals exactly as they are.
        """
        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)

    def __repr__(self):
        """Represents the number as an instance of Decimal."""
        # Invariant:  eval(repr(d)) == d
        return "Decimal('%s')" % str(self)

    def __str__(self, eng=False, context=None):
        """Return string representation of the number in scientific notation.

        Captures all of the information in the underlying representation.
        """

        sign = ['', '-'][self._sign]
        if self._is_special:
            if self._exp == 'F':
                return sign + 'Infinity'
            elif self._exp == 'n':
                return sign + 'NaN' + self._int
            else: # self._exp == 'N'
                return sign + 'sNaN' + self._int

        # number of digits of self._int to left of decimal point
        leftdigits = self._exp + len(self._int)

        # dotplace is number of digits of self._int to the left of the
        # decimal point in the mantissa of the output string (that is,
        # after adjusting the exponent)
        if self._exp <= 0 and leftdigits > -6:
            # no exponent required
            dotplace = leftdigits
        elif not eng:
            # usual scientific notation: 1 digit on left of the point
            dotplace = 1
        elif self._int == '0':
            # engineering notation, zero
            dotplace = (leftdigits + 1) % 3 - 1
        else:
            # engineering notation, nonzero
            dotplace = (leftdigits - 1) % 3 + 1

        if dotplace <= 0:
            intpart = '0'
            fracpart = '.' + '0'*(-dotplace) + self._int
        elif dotplace >= len(self._int):
            intpart = self._int+'0'*(dotplace-len(self._int))
            fracpart = ''
        else:
            intpart = self._int[:dotplace]
            fracpart = '.' + self._int[dotplace:]
        if leftdigits == dotplace:
            exp = ''
        else:
            if context is None:
                context = getcontext()
            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)

        return sign + intpart + fracpart + exp

    def to_eng_string(self, context=None):
        """Convert to engineering-type string.

        Engineering notation has an exponent which is a multiple of 3, so there
        are up to 3 digits left of the decimal place.

        Same rules for when in exponential and when as a value as in __str__.
        """
        return self.__str__(eng=True, context=context)

    def __neg__(self, context=None):
        """Returns a copy with the sign switched.

        Rounds, if it has reason.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if not self:
            # -Decimal('0') is Decimal('0'), not Decimal('-0')
            ans = self.copy_abs()
        else:
            ans = self.copy_negate()

        if context is None:
            context = getcontext()
        return ans._fix(context)

    def __pos__(self, context=None):
        """Returns a copy, unless it is a sNaN.

        Rounds the number (if more then precision digits)
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if not self:
            # + (-0) = 0
            ans = self.copy_abs()
        else:
            ans = Decimal(self)

        if context is None:
            context = getcontext()
        return ans._fix(context)

    def __abs__(self, round=True, context=None):
        """Returns the absolute value of self.

        If the keyword argument 'round' is false, do not round.  The
        expression self.__abs__(round=False) is equivalent to
        self.copy_abs().
        """
        if not round:
            return self.copy_abs()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if self._sign:
            ans = self.__neg__(context=context)
        else:
            ans = self.__pos__(context=context)

        return ans

    def __add__(self, other, context=None):
        """Returns self + other.

        -INF + INF (or the reverse) cause InvalidOperation errors.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                # If both INF, same sign => same as both, opposite => error.
                if self._sign != other._sign and other._isinfinity():
                    return context._raise_error(InvalidOperation, '-INF + INF')
                return Decimal(self)
            if other._isinfinity():
                return Decimal(other)  # Can't both be infinity here

        exp = min(self._exp, other._exp)
        negativezero = 0
        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
            # If the answer is 0, the sign should be negative, in this case.
            negativezero = 1

        if not self and not other:
            sign = min(self._sign, other._sign)
            if negativezero:
                sign = 1
            ans = _dec_from_triple(sign, '0', exp)
            ans = ans._fix(context)
            return ans
        if not self:
            exp = max(exp, other._exp - context.prec-1)
            ans = other._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans
        if not other:
            exp = max(exp, self._exp - context.prec-1)
            ans = self._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        op1, op2 = _normalize(op1, op2, context.prec)

        result = _WorkRep()
        if op1.sign != op2.sign:
            # Equal and opposite
            if op1.int == op2.int:
                ans = _dec_from_triple(negativezero, '0', exp)
                ans = ans._fix(context)
                return ans
            if op1.int < op2.int:
                op1, op2 = op2, op1
                # OK, now abs(op1) > abs(op2)
            if op1.sign == 1:
                result.sign = 1
                op1.sign, op2.sign = op2.sign, op1.sign
            else:
                result.sign = 0
                # So we know the sign, and op1 > 0.
        elif op1.sign == 1:
            result.sign = 1
            op1.sign, op2.sign = (0, 0)
        else:
            result.sign = 0
        # Now, op1 > abs(op2) > 0

        if op2.sign == 0:
            result.int = op1.int + op2.int
        else:
            result.int = op1.int - op2.int

        result.exp = op1.exp
        ans = Decimal(result)
        ans = ans._fix(context)
        return ans

    __radd__ = __add__

    def __sub__(self, other, context=None):
        """Return self - other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context=context)
            if ans:
                return ans

        # self - other is computed as self + other.copy_negate()
        return self.__add__(other.copy_negate(), context=context)

    def __rsub__(self, other, context=None):
        """Return other - self"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        return other.__sub__(self, context=context)

    def __mul__(self, other, context=None):
        """Return self * other.

        (+-) INF * 0 (or its reverse) raise InvalidOperation.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        resultsign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                if not other:
                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
                return Infsign[resultsign]

            if other._isinfinity():
                if not self:
                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
                return Infsign[resultsign]

        resultexp = self._exp + other._exp

        # Special case for multiplying by zero
        if not self or not other:
            ans = _dec_from_triple(resultsign, '0', resultexp)
            # Fixing in case the exponent is out of bounds
            ans = ans._fix(context)
            return ans

        # Special case for multiplying by power of 10
        if self._int == '1':
            ans = _dec_from_triple(resultsign, other._int, resultexp)
            ans = ans._fix(context)
            return ans
        if other._int == '1':
            ans = _dec_from_triple(resultsign, self._int, resultexp)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)

        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
        ans = ans._fix(context)

        return ans
    __rmul__ = __mul__

    def __truediv__(self, other, context=None):
        """Return self / other."""
        other = _convert_other(other)
        if other is NotImplemented:
            return NotImplemented

        if context is None:
            context = getcontext()

        sign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity() and other._isinfinity():
                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')

            if self._isinfinity():
                return Infsign[sign]

            if other._isinfinity():
                context._raise_error(Clamped, 'Division by infinity')
                return _dec_from_triple(sign, '0', context.Etiny())

        # Special cases for zeroes
        if not other:
            if not self:
                return context._raise_error(DivisionUndefined, '0 / 0')
            return context._raise_error(DivisionByZero, 'x / 0', sign)

        if not self:
            exp = self._exp - other._exp
            coeff = 0
        else:
            # OK, so neither = 0, INF or NaN
            shift = len(other._int) - len(self._int) + context.prec + 1
            exp = self._exp - other._exp - shift
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if shift >= 0:
                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
            else:
                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
            if remainder:
                # result is not exact; adjust to ensure correct rounding
                if coeff % 5 == 0:
                    coeff += 1
            else:
                # result is exact; get as close to ideal exponent as possible
                ideal_exp = self._exp - other._exp
                while exp < ideal_exp and coeff % 10 == 0:
                    coeff //= 10
                    exp += 1

        ans = _dec_from_triple(sign, str(coeff), exp)
        return ans._fix(context)

    def _divide(self, other, context):
        """Return (self // other, self % other), to context.prec precision.

        Assumes that neither self nor other is a NaN, that self is not
        infinite and that other is nonzero.
        """
        sign = self._sign ^ other._sign
        if other._isinfinity():
            ideal_exp = self._exp
        else:
            ideal_exp = min(self._exp, other._exp)

        expdiff = self.adjusted() - other.adjusted()
        if not self or other._isinfinity() or expdiff <= -2:
            return (_dec_from_triple(sign, '0', 0),
                    self._rescale(ideal_exp, context.rounding))
        if expdiff <= context.prec:
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if op1.exp >= op2.exp:
                op1.int *= 10**(op1.exp - op2.exp)
            else:
                op2.int *= 10**(op2.exp - op1.exp)
            q, r = divmod(op1.int, op2.int)
            if q < 10**context.prec:
                return (_dec_from_triple(sign, str(q), 0),
                        _dec_from_triple(self._sign, str(r), ideal_exp))

        # Here the quotient is too large to be representable
        ans = context._raise_error(DivisionImpossible,
                                   'quotient too large in //, % or divmod')
        return ans, ans

    def __rtruediv__(self, other, context=None):
        """Swaps self/other and returns __truediv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__truediv__(self, context=context)

    def __divmod__(self, other, context=None):
        """
        Return (self // other, self % other)
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return (ans, ans)

        sign = self._sign ^ other._sign
        if self._isinfinity():
            if other._isinfinity():
                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
                return ans, ans
            else:
                return (Infsign[sign],
                        context._raise_error(InvalidOperation, 'INF % x'))

        if not other:
            if not self:
                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
                return ans, ans
            else:
                return (context._raise_error(DivisionByZero, 'x // 0', sign),
                        context._raise_error(InvalidOperation, 'x % 0'))

        quotient, remainder = self._divide(other, context)
        remainder = remainder._fix(context)
        return quotient, remainder

    def __rdivmod__(self, other, context=None):
        """Swaps self/other and returns __divmod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__divmod__(self, context=context)

    def __mod__(self, other, context=None):
        """
        self % other
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            return context._raise_error(InvalidOperation, 'INF % x')
        elif not other:
            if self:
                return context._raise_error(InvalidOperation, 'x % 0')
            else:
                return context._raise_error(DivisionUndefined, '0 % 0')

        remainder = self._divide(other, context)[1]
        remainder = remainder._fix(context)
        return remainder

    def __rmod__(self, other, context=None):
        """Swaps self/other and returns __mod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__mod__(self, context=context)

    def remainder_near(self, other, context=None):
        """
        Remainder nearest to 0-  abs(remainder-near) <= other/2
        """
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        # self == +/-infinity -> InvalidOperation
        if self._isinfinity():
            return context._raise_error(InvalidOperation,
                                        'remainder_near(infinity, x)')

        # other == 0 -> either InvalidOperation or DivisionUndefined
        if not other:
            if self:
                return context._raise_error(InvalidOperation,
                                            'remainder_near(x, 0)')
            else:
                return context._raise_error(DivisionUndefined,
                                            'remainder_near(0, 0)')

        # other = +/-infinity -> remainder = self
        if other._isinfinity():
            ans = Decimal(self)
            return ans._fix(context)

        # self = 0 -> remainder = self, with ideal exponent
        ideal_exponent = min(self._exp, other._exp)
        if not self:
            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
            return ans._fix(context)

        # catch most cases of large or small quotient
        expdiff = self.adjusted() - other.adjusted()
        if expdiff >= context.prec + 1:
            # expdiff >= prec+1 => abs(self/other) > 10**prec
            return context._raise_error(DivisionImpossible)
        if expdiff <= -2:
            # expdiff <= -2 => abs(self/other) < 0.1
            ans = self._rescale(ideal_exponent, context.rounding)
            return ans._fix(context)

        # adjust both arguments to have the same exponent, then divide
        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        if op1.exp >= op2.exp:
            op1.int *= 10**(op1.exp - op2.exp)
        else:
            op2.int *= 10**(op2.exp - op1.exp)
        q, r = divmod(op1.int, op2.int)
        # remainder is r*10**ideal_exponent; other is +/-op2.int *
        # 10**ideal_exponent.   Apply correction to ensure that
        # abs(remainder) <= abs(other)/2
        if 2*r + (q&1) > op2.int:
            r -= op2.int
            q += 1

        if q >= 10**context.prec:
            return context._raise_error(DivisionImpossible)

        # result has same sign as self unless r is negative
        sign = self._sign
        if r < 0:
            sign = 1-sign
            r = -r

        ans = _dec_from_triple(sign, str(r), ideal_exponent)
        return ans._fix(context)

    def __floordiv__(self, other, context=None):
        """self // other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            if other._isinfinity():
                return context._raise_error(InvalidOperation, 'INF // INF')
            else:
                return Infsign[self._sign ^ other._sign]

        if not other:
            if self:
                return context._raise_error(DivisionByZero, 'x // 0',
                                            self._sign ^ other._sign)
            else:
                return context._raise_error(DivisionUndefined, '0 // 0')

        return self._divide(other, context)[0]

    def __rfloordiv__(self, other, context=None):
        """Swaps self/other and returns __floordiv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__floordiv__(self, context=context)

    def __float__(self):
        """Float representation."""
        return float(str(self))

    def __int__(self):
        """Converts self to an int, truncating if necessary."""
        if self._is_special:
            if self._isnan():
                context = getcontext()
                return context._raise_error(InvalidContext)
            elif self._isinfinity():
                raise OverflowError("Cannot convert infinity to int")
        s = (-1)**self._sign
        if self._exp >= 0:
            return s*int(self._int)*10**self._exp
        else:
            return s*int(self._int[:self._exp] or '0')

    __trunc__ = __int__

    @property
    def real(self):
        return self

    @property
    def imag(self):
        return Decimal(0)

    def conjugate(self):
        return self

    def __complex__(self):
        return complex(float(self))

    def _fix_nan(self, context):
        """Decapitate the payload of a NaN to fit the context"""
        payload = self._int

        # maximum length of payload is precision if _clamp=0,
        # precision-1 if _clamp=1.
        max_payload_len = context.prec - context._clamp
        if len(payload) > max_payload_len:
            payload = payload[len(payload)-max_payload_len:].lstrip('0')
            return _dec_from_triple(self._sign, payload, self._exp, True)
        return Decimal(self)

    def _fix(self, context):
        """Round if it is necessary to keep self within prec precision.

        Rounds and fixes the exponent.  Does not raise on a sNaN.

        Arguments:
        self - Decimal instance
        context - context used.
        """

        if self._is_special:
            if self._isnan():
                # decapitate payload if necessary
                return self._fix_nan(context)
            else:
                # self is +/-Infinity; return unaltered
                return Decimal(self)

        # if self is zero then exponent should be between Etiny and
        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
        Etiny = context.Etiny()
        Etop = context.Etop()
        if not self:
            exp_max = [context.Emax, Etop][context._clamp]
            new_exp = min(max(self._exp, Etiny), exp_max)
            if new_exp != self._exp:
                context._raise_error(Clamped)
                return _dec_from_triple(self._sign, '0', new_exp)
            else:
                return Decimal(self)

        # exp_min is the smallest allowable exponent of the result,
        # equal to max(self.adjusted()-context.prec+1, Etiny)
        exp_min = len(self._int) + self._exp - context.prec
        if exp_min > Etop:
            # overflow: exp_min > Etop iff self.adjusted() > Emax
            context._raise_error(Inexact)
            context._raise_error(Rounded)
            return context._raise_error(Overflow, 'above Emax', self._sign)
        self_is_subnormal = exp_min < Etiny
        if self_is_subnormal:
            context._raise_error(Subnormal)
            exp_min = Etiny

        # round if self has too many digits
        if self._exp < exp_min:
            context._raise_error(Rounded)
            digits = len(self._int) + self._exp - exp_min
            if digits < 0:
                self = _dec_from_triple(self._sign, '1', exp_min-1)
                digits = 0
            this_function = getattr(self, self._pick_rounding_function[context.rounding])
            changed = this_function(digits)
            coeff = self._int[:digits] or '0'
            if changed == 1:
                coeff = str(int(coeff)+1)
            ans = _dec_from_triple(self._sign, coeff, exp_min)

            if changed:
                context._raise_error(Inexact)
                if self_is_subnormal:
                    context._raise_error(Underflow)
                    if not ans:
                        # raise Clamped on underflow to 0
                        context._raise_error(Clamped)
                elif len(ans._int) == context.prec+1:
                    # we get here only if rescaling rounds the
                    # cofficient up to exactly 10**context.prec
                    if ans._exp < Etop:
                        ans = _dec_from_triple(ans._sign,
                                                   ans._int[:-1], ans._exp+1)
                    else:
                        # Inexact and Rounded have already been raised
                        ans = context._raise_error(Overflow, 'above Emax',
                                                   self._sign)
            return ans

        # fold down if _clamp == 1 and self has too few digits
        if context._clamp == 1 and self._exp > Etop:
            context._raise_error(Clamped)
            self_padded = self._int + '0'*(self._exp - Etop)
            return _dec_from_triple(self._sign, self_padded, Etop)

        # here self was representable to begin with; return unchanged
        return Decimal(self)

    _pick_rounding_function = {}

    # for each of the rounding functions below:
    #   self is a finite, nonzero Decimal
    #   prec is an integer satisfying 0 <= prec < len(self._int)
    #
    # each function returns either -1, 0, or 1, as follows:
    #   1 indicates that self should be rounded up (away from zero)
    #   0 indicates that self should be truncated, and that all the
    #     digits to be truncated are zeros (so the value is unchanged)
    #  -1 indicates that there are nonzero digits to be truncated

    def _round_down(self, prec):
        """Also known as round-towards-0, truncate."""
        if _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_up(self, prec):
        """Rounds away from 0."""
        return -self._round_down(prec)

    def _round_half_up(self, prec):
        """Rounds 5 up (away from 0)"""
        if self._int[prec] in '56789':
            return 1
        elif _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_half_down(self, prec):
        """Round 5 down"""
        if _exact_half(self._int, prec):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_half_even(self, prec):
        """Round 5 to even, rest to nearest."""
        if _exact_half(self._int, prec) and \
                (prec == 0 or self._int[prec-1] in '02468'):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_ceiling(self, prec):
        """Rounds up (not away from 0 if negative.)"""
        if self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_floor(self, prec):
        """Rounds down (not towards 0 if negative)"""
        if not self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_05up(self, prec):
        """Round down unless digit prec-1 is 0 or 5."""
        if prec and self._int[prec-1] not in '05':
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def fma(self, other, third, context=None):
        """Fused multiply-add.

        Returns self*other+third with no rounding of the intermediate
        product self*other.

        self and other are multiplied together, with no rounding of
        the result.  The third operand is then added to the result,
        and a single final rounding is performed.
        """

        other = _convert_other(other, raiseit=True)

        # compute product; raise InvalidOperation if either operand is
        # a signaling NaN or if the product is zero times infinity.
        if self._is_special or other._is_special:
            if context is None:
                context = getcontext()
            if self._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', self)
            if other._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', other)
            if self._exp == 'n':
                product = self
            elif other._exp == 'n':
                product = other
            elif self._exp == 'F':
                if not other:
                    return context._raise_error(InvalidOperation,
                                                'INF * 0 in fma')
                product = Infsign[self._sign ^ other._sign]
            elif other._exp == 'F':
                if not self:
                    return context._raise_error(InvalidOperation,
                                                '0 * INF in fma')
                product = Infsign[self._sign ^ other._sign]
        else:
            product = _dec_from_triple(self._sign ^ other._sign,
                                       str(int(self._int) * int(other._int)),
                                       self._exp + other._exp)

        third = _convert_other(third, raiseit=True)
        return product.__add__(third, context)

    def _power_modulo(self, other, modulo, context=None):
        """Three argument version of __pow__"""

        # if can't convert other and modulo to Decimal, raise
        # TypeError; there's no point returning NotImplemented (no
        # equivalent of __rpow__ for three argument pow)
        other = _convert_other(other, raiseit=True)
        modulo = _convert_other(modulo, raiseit=True)

        if context is None:
            context = getcontext()

        # deal with NaNs: if there are any sNaNs then first one wins,
        # (i.e. behaviour for NaNs is identical to that of fma)
        self_is_nan = self._isnan()
        other_is_nan = other._isnan()
        modulo_is_nan = modulo._isnan()
        if self_is_nan or other_is_nan or modulo_is_nan:
            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if modulo_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        modulo)
            if self_is_nan:
                return self._fix_nan(context)
            if other_is_nan:
                return other._fix_nan(context)
            return modulo._fix_nan(context)

        # check inputs: we apply same restrictions as Python's pow()
        if not (self._isinteger() and
                other._isinteger() and
                modulo._isinteger()):
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument not allowed '
                                        'unless all arguments are integers')
        if other < 0:
            return context._raise_error(InvalidOperation,
                                        'pow() 2nd argument cannot be '
                                        'negative when 3rd argument specified')
        if not modulo:
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument cannot be 0')

        # additional restriction for decimal: the modulus must be less
        # than 10**prec in absolute value
        if modulo.adjusted() >= context.prec:
            return context._raise_error(InvalidOperation,
                                        'insufficient precision: pow() 3rd '
                                        'argument must not have more than '
                                        'precision digits')

        # define 0**0 == NaN, for consistency with two-argument pow
        # (even though it hurts!)
        if not other and not self:
            return context._raise_error(InvalidOperation,
                                        'at least one of pow() 1st argument '
                                        'and 2nd argument must be nonzero ;'
                                        '0**0 is not defined')

        # compute sign of result
        if other._iseven():
            sign = 0
        else:
            sign = self._sign

        # convert modulo to a Python integer, and self and other to
        # Decimal integers (i.e. force their exponents to be >= 0)
        modulo = abs(int(modulo))
        base = _WorkRep(self.to_integral_value())
        exponent = _WorkRep(other.to_integral_value())

        # compute result using integer pow()
        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
        for i in range(exponent.exp):
            base = pow(base, 10, modulo)
        base = pow(base, exponent.int, modulo)

        return _dec_from_triple(sign, str(base), 0)

    def _power_exact(self, other, p):
        """Attempt to compute self**other exactly.

        Given Decimals self and other and an integer p, attempt to
        compute an exact result for the power self**other, with p
        digits of precision.  Return None if self**other is not
        exactly representable in p digits.

        Assumes that elimination of special cases has already been
        performed: self and other must both be nonspecial; self must
        be positive and not numerically equal to 1; other must be
        nonzero.  For efficiency, other._exp should not be too large,
        so that 10**abs(other._exp) is a feasible calculation."""

        # In the comments below, we write x for the value of self and
        # y for the value of other.  Write x = xc*10**xe and y =
        # yc*10**ye.

        # The main purpose of this method is to identify the *failure*
        # of x**y to be exactly representable with as little effort as
        # possible.  So we look for cheap and easy tests that
        # eliminate the possibility of x**y being exact.  Only if all
        # these tests are passed do we go on to actually compute x**y.

        # Here's the main idea.  First normalize both x and y.  We
        # express y as a rational m/n, with m and n relatively prime
        # and n>0.  Then for x**y to be exactly representable (at
        # *any* precision), xc must be the nth power of a positive
        # integer and xe must be divisible by n.  If m is negative
        # then additionally xc must be a power of either 2 or 5, hence
        # a power of 2**n or 5**n.
        #
        # There's a limit to how small |y| can be: if y=m/n as above
        # then:
        #
        #  (1) if xc != 1 then for the result to be representable we
        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
        #      representable.
        #
        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
        #      |y| < 1/|xe| then the result is not representable.
        #
        # Note that since x is not equal to 1, at least one of (1) and
        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
        #
        # There's also a limit to how large y can be, at least if it's
        # positive: the normalized result will have coefficient xc**y,
        # so if it's representable then xc**y < 10**p, and y <
        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
        # not exactly representable.

        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
        # so |y| < 1/xe and the result is not representable.
        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
        # < 1/nbits(xc).

        x = _WorkRep(self)
        xc, xe = x.int, x.exp
        while xc % 10 == 0:
            xc //= 10
            xe += 1

        y = _WorkRep(other)
        yc, ye = y.int, y.exp
        while yc % 10 == 0:
            yc //= 10
            ye += 1

        # case where xc == 1: result is 10**(xe*y), with xe*y
        # required to be an integer
        if xc == 1:
            if ye >= 0:
                exponent = xe*yc*10**ye
            else:
                exponent, remainder = divmod(xe*yc, 10**-ye)
                if remainder:
                    return None
            if y.sign == 1:
                exponent = -exponent
            # if other is a nonnegative integer, use ideal exponent
            if other._isinteger() and other._sign == 0:
                ideal_exponent = self._exp*int(other)
                zeros = min(exponent-ideal_exponent, p-1)
            else:
                zeros = 0
            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)

        # case where y is negative: xc must be either a power
        # of 2 or a power of 5.
        if y.sign == 1:
            last_digit = xc % 10
            if last_digit in (2,4,6,8):
                # quick test for power of 2
                if xc & -xc != xc:
                    return None
                # now xc is a power of 2; e is its exponent
                e = _nbits(xc)-1
                # find e*y and xe*y; both must be integers
                if ye >= 0:
                    y_as_int = yc*10**ye
                    e = e*y_as_int
                    xe = xe*y_as_int
                else:
                    ten_pow = 10**-ye
                    e, remainder = divmod(e*yc, ten_pow)
                    if remainder:
                        return None
                    xe, remainder = divmod(xe*yc, ten_pow)
                    if remainder:
                        return None

                if e*65 >= p*93: # 93/65 > log(10)/log(5)
                    return None
                xc = 5**e

            elif last_digit == 5:
                # e >= log_5(xc) if xc is a power of 5; we have
                # equality all the way up to xc=5**2658
                e = _nbits(xc)*28//65
                xc, remainder = divmod(5**e, xc)
                if remainder:
                    return None
                while xc % 5 == 0:
                    xc //= 5
                    e -= 1
                if ye >= 0:
                    y_as_integer = yc*10**ye
                    e = e*y_as_integer
                    xe = xe*y_as_integer
                else:
                    ten_pow = 10**-ye
                    e, remainder = divmod(e*yc, ten_pow)
                    if remainder:
                        return None
                    xe, remainder = divmod(xe*yc, ten_pow)
                    if remainder:
                        return None
                if e*3 >= p*10: # 10/3 > log(10)/log(2)
                    return None
                xc = 2**e
            else:
                return None

            if xc >= 10**p:
                return None
            xe = -e-xe
            return _dec_from_triple(0, str(xc), xe)

        # now y is positive; find m and n such that y = m/n
        if ye >= 0:
            m, n = yc*10**ye, 1
        else:
            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
                return None
            xc_bits = _nbits(xc)
            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
                return None
            m, n = yc, 10**(-ye)
            while m % 2 == n % 2 == 0:
                m //= 2
                n //= 2
            while m % 5 == n % 5 == 0:
                m //= 5
                n //= 5

        # compute nth root of xc*10**xe
        if n > 1:
            # if 1 < xc < 2**n then xc isn't an nth power
            if xc != 1 and xc_bits <= n:
                return None

            xe, rem = divmod(xe, n)
            if rem != 0:
                return None

            # compute nth root of xc using Newton's method
            a = 1 << -(-_nbits(xc)//n) # initial estimate
            while True:
                q, r = divmod(xc, a**(n-1))
                if a <= q:
                    break
                else:
                    a = (a*(n-1) + q)//n
            if not (a == q and r == 0):
                return None
            xc = a

        # now xc*10**xe is the nth root of the original xc*10**xe
        # compute mth power of xc*10**xe

        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
        # 10**p and the result is not representable.
        if xc > 1 and m > p*100//_log10_lb(xc):
            return None
        xc = xc**m
        xe *= m
        if xc > 10**p:
            return None

        # by this point the result *is* exactly representable
        # adjust the exponent to get as close as possible to the ideal
        # exponent, if necessary
        str_xc = str(xc)
        if other._isinteger() and other._sign == 0:
            ideal_exponent = self._exp*int(other)
            zeros = min(xe-ideal_exponent, p-len(str_xc))
        else:
            zeros = 0
        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)

    def __pow__(self, other, modulo=None, context=None):
        """Return self ** other [ % modulo].

        With two arguments, compute self**other.

        With three arguments, compute (self**other) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - other must be nonnegative
         - either self or other (or both) must be nonzero
         - modulo must be nonzero and must have at most p digits,
           where p is the context precision.

        If any of these restrictions is violated the InvalidOperation
        flag is raised.

        The result of pow(self, other, modulo) is identical to the
        result that would be obtained by computing (self**other) %
        modulo with unbounded precision, but is computed more
        efficiently.  It is always exact.
        """

        if modulo is not None:
            return self._power_modulo(other, modulo, context)

        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        # either argument is a NaN => result is NaN
        ans = self._check_nans(other, context)
        if ans:
            return ans

        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
        if not other:
            if not self:
                return context._raise_error(InvalidOperation, '0 ** 0')
            else:
                return Dec_p1

        # result has sign 1 iff self._sign is 1 and other is an odd integer
        result_sign = 0
        if self._sign == 1:
            if other._isinteger():
                if not other._iseven():
                    result_sign = 1
            else:
                # -ve**noninteger = NaN
                # (-0)**noninteger = 0**noninteger
                if self:
                    return context._raise_error(InvalidOperation,
                        'x ** y with x negative and y not an integer')
            # negate self, without doing any unwanted rounding
            self = self.copy_negate()

        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
        if not self:
            if other._sign == 0:
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return Infsign[result_sign]

        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
        if self._isinfinity():
            if other._sign == 0:
                return Infsign[result_sign]
            else:
                return _dec_from_triple(result_sign, '0', 0)

        # 1**other = 1, but the choice of exponent and the flags
        # depend on the exponent of self, and on whether other is a
        # positive integer, a negative integer, or neither
        if self == Dec_p1:
            if other._isinteger():
                # exp = max(self._exp*max(int(other), 0),
                # 1-context.prec) but evaluating int(other) directly
                # is dangerous until we know other is small (other
                # could be 1e999999999)
                if other._sign == 1:
                    multiplier = 0
                elif other > context.prec:
                    multiplier = context.prec
                else:
                    multiplier = int(other)

                exp = self._exp * multiplier
                if exp < 1-context.prec:
                    exp = 1-context.prec
                    context._raise_error(Rounded)
            else:
                context._raise_error(Inexact)
                context._raise_error(Rounded)
                exp = 1-context.prec

            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)

        # compute adjusted exponent of self
        self_adj = self.adjusted()

        # self ** infinity is infinity if self > 1, 0 if self < 1
        # self ** -infinity is infinity if self < 1, 0 if self > 1
        if other._isinfinity():
            if (other._sign == 0) == (self_adj < 0):
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return Infsign[result_sign]

        # from here on, the result always goes through the call
        # to _fix at the end of this function.
        ans = None

        # crude test to catch cases of extreme overflow/underflow.  If
        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
        # self**other >= 10**(Emax+1), so overflow occurs.  The test
        # for underflow is similar.
        bound = self._log10_exp_bound() + other.adjusted()
        if (self_adj >= 0) == (other._sign == 0):
            # self > 1 and other +ve, or self < 1 and other -ve
            # possibility of overflow
            if bound >= len(str(context.Emax)):
                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
        else:
            # self > 1 and other -ve, or self < 1 and other +ve
            # possibility of underflow to 0
            Etiny = context.Etiny()
            if bound >= len(str(-Etiny)):
                ans = _dec_from_triple(result_sign, '1', Etiny-1)

        # try for an exact result with precision +1
        if ans is None:
            ans = self._power_exact(other, context.prec + 1)
            if ans is not None and result_sign == 1:
                ans = _dec_from_triple(1, ans._int, ans._exp)

        # usual case: inexact result, x**y computed directly as exp(y*log(x))
        if ans is None:
            p = context.prec
            x = _WorkRep(self)
            xc, xe = x.int, x.exp
            y = _WorkRep(other)
            yc, ye = y.int, y.exp
            if y.sign == 1:
                yc = -yc

            # compute correctly rounded result:  start with precision +3,
            # then increase precision until result is unambiguously roundable
            extra = 3
            while True:
                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(result_sign, str(coeff), exp)

        # the specification says that for non-integer other we need to
        # raise Inexact, even when the result is actually exact.  In
        # the same way, we need to raise Underflow here if the result
        # is subnormal.  (The call to _fix will take care of raising
        # Rounded and Subnormal, as usual.)
        if not other._isinteger():
            context._raise_error(Inexact)
            # pad with zeros up to length context.prec+1 if necessary
            if len(ans._int) <= context.prec:
                expdiff = context.prec+1 - len(ans._int)
                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
                                       ans._exp-expdiff)
            if ans.adjusted() < context.Emin:
                context._raise_error(Underflow)

        # unlike exp, ln and log10, the power function respects the
        # rounding mode; no need to use ROUND_HALF_EVEN here
        ans = ans._fix(context)
        return ans

    def __rpow__(self, other, context=None):
        """Swaps self/other and returns __pow__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__pow__(self, context=context)

    def normalize(self, context=None):
        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""

        if context is None:
            context = getcontext()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        dup = self._fix(context)
        if dup._isinfinity():
            return dup

        if not dup:
            return _dec_from_triple(dup._sign, '0', 0)
        exp_max = [context.Emax, context.Etop()][context._clamp]
        end = len(dup._int)
        exp = dup._exp
        while dup._int[end-1] == '0' and exp < exp_max:
            exp += 1
            end -= 1
        return _dec_from_triple(dup._sign, dup._int[:end], exp)

    def quantize(self, exp, rounding=None, context=None, watchexp=True):
        """Quantize self so its exponent is the same as that of exp.

        Similar to self._rescale(exp._exp) but with error checking.
        """
        exp = _convert_other(exp, raiseit=True)

        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding

        if self._is_special or exp._is_special:
            ans = self._check_nans(exp, context)
            if ans:
                return ans

            if exp._isinfinity() or self._isinfinity():
                if exp._isinfinity() and self._isinfinity():
                    return Decimal(self)  # if both are inf, it is OK
                return context._raise_error(InvalidOperation,
                                        'quantize with one INF')

        # if we're not watching exponents, do a simple rescale
        if not watchexp:
            ans = self._rescale(exp._exp, rounding)
            # raise Inexact and Rounded where appropriate
            if ans._exp > self._exp:
                context._raise_error(Rounded)
                if ans != self:
                    context._raise_error(Inexact)
            return ans

        # exp._exp should be between Etiny and Emax
        if not (context.Etiny() <= exp._exp <= context.Emax):
            return context._raise_error(InvalidOperation,
                   'target exponent out of bounds in quantize')

        if not self:
            ans = _dec_from_triple(self._sign, '0', exp._exp)
            return ans._fix(context)

        self_adjusted = self.adjusted()
        if self_adjusted > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if self_adjusted - exp._exp + 1 > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        ans = self._rescale(exp._exp, rounding)
        if ans.adjusted() > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if len(ans._int) > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        # raise appropriate flags
        if ans._exp > self._exp:
            context._raise_error(Rounded)
            if ans != self:
                context._raise_error(Inexact)
        if ans and ans.adjusted() < context.Emin:
            context._raise_error(Subnormal)

        # call to fix takes care of any necessary folddown
        ans = ans._fix(context)
        return ans

    def same_quantum(self, other):
        """Return True if self and other have the same exponent; otherwise
        return False.

        If either operand is a special value, the following rules are used:
           * return True if both operands are infinities
           * return True if both operands are NaNs
           * otherwise, return False.
        """
        other = _convert_other(other, raiseit=True)
        if self._is_special or other._is_special:
            return (self.is_nan() and other.is_nan() or
                    self.is_infinite() and other.is_infinite())
        return self._exp == other._exp

    def _rescale(self, exp, rounding):
        """Rescale self so that the exponent is exp, either by padding with zeros
        or by truncating digits, using the given rounding mode.

        Specials are returned without change.  This operation is
        quiet: it raises no flags, and uses no information from the
        context.

        exp = exp to scale to (an integer)
        rounding = rounding mode
        """
        if self._is_special:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', exp)

        if self._exp >= exp:
            # pad answer with zeros if necessary
            return _dec_from_triple(self._sign,
                                        self._int + '0'*(self._exp - exp), exp)

        # too many digits; round and lose data.  If self.adjusted() <
        # exp-1, replace self by 10**(exp-1) before rounding
        digits = len(self._int) + self._exp - exp
        if digits < 0:
            self = _dec_from_triple(self._sign, '1', exp-1)
            digits = 0
        this_function = getattr(self, self._pick_rounding_function[rounding])
        changed = this_function(digits)
        coeff = self._int[:digits] or '0'
        if changed == 1:
            coeff = str(int(coeff)+1)
        return _dec_from_triple(self._sign, coeff, exp)

    def to_integral_exact(self, rounding=None, context=None):
        """Rounds to a nearby integer.

        If no rounding mode is specified, take the rounding mode from
        the context.  This method raises the Rounded and Inexact flags
        when appropriate.

        See also: to_integral_value, which does exactly the same as
        this method except that it doesn't raise Inexact or Rounded.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', 0)
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        context._raise_error(Rounded)
        ans = self._rescale(0, rounding)
        if ans != self:
            context._raise_error(Inexact)
        return ans

    def to_integral_value(self, rounding=None, context=None):
        """Rounds to the nearest integer, without raising inexact, rounded."""
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        else:
            return self._rescale(0, rounding)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

    def sqrt(self, context=None):
        """Return the square root of self."""
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

            if self._isinfinity() and self._sign == 0:
                return Decimal(self)

        if not self:
            # exponent = self._exp // 2.  sqrt(-0) = -0
            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
            return ans._fix(context)

        if context is None:
            context = getcontext()

        if self._sign == 1:
            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')

        # At this point self represents a positive number.  Let p be
        # the desired precision and express self in the form c*100**e
        # with c a positive real number and e an integer, c and e
        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
        # <= sqrt(c) < 10**p, so the closest representable Decimal at
        # precision p is n*10**e where n = round_half_even(sqrt(c)),
        # the closest integer to sqrt(c) with the even integer chosen
        # in the case of a tie.
        #
        # To ensure correct rounding in all cases, we use the
        # following trick: we compute the square root to an extra
        # place (precision p+1 instead of precision p), rounding down.
        # Then, if the result is inexact and its last digit is 0 or 5,
        # we increase the last digit to 1 or 6 respectively; if it's
        # exact we leave the last digit alone.  Now the final round to
        # p places (or fewer in the case of underflow) will round
        # correctly and raise the appropriate flags.

        # use an extra digit of precision
        prec = context.prec+1

        # write argument in the form c*100**e where e = self._exp//2
        # is the 'ideal' exponent, to be used if the square root is
        # exactly representable.  l is the number of 'digits' of c in
        # base 100, so that 100**(l-1) <= c < 100**l.
        op = _WorkRep(self)
        e = op.exp >> 1
        if op.exp & 1:
            c = op.int * 10
            l = (len(self._int) >> 1) + 1
        else:
            c = op.int
            l = len(self._int)+1 >> 1

        # rescale so that c has exactly prec base 100 'digits'
        shift = prec-l
        if shift >= 0:
            c *= 100**shift
            exact = True
        else:
            c, remainder = divmod(c, 100**-shift)
            exact = not remainder
        e -= shift

        # find n = floor(sqrt(c)) using Newton's method
        n = 10**prec
        while True:
            q = c//n
            if n <= q:
                break
            else:
                n = n + q >> 1
        exact = exact and n*n == c

        if exact:
            # result is exact; rescale to use ideal exponent e
            if shift >= 0:
                # assert n % 10**shift == 0
                n //= 10**shift
            else:
                n *= 10**-shift
            e += shift
        else:
            # result is not exact; fix last digit as described above
            if n % 5 == 0:
                n += 1

        ans = _dec_from_triple(0, str(n), e)

        # round, and fit to current context
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def max(self, other, context=None):
        """Returns the larger value.

        Like max(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn != 2:
                    return self._fix_nan(context)
                if sn == 1 and on != 2:
                    return other._fix_nan(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            # If both operands are finite and equal in numerical value
            # then an ordering is applied:
            #
            # If the signs differ then max returns the operand with the
            # positive sign and min returns the operand with the negative sign
            #
            # If the signs are the same then the exponent is used to select
            # the result.  This is exactly the ordering used in compare_total.
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min(self, other, context=None):
        """Returns the smaller value.

        Like min(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn != 2:
                    return self._fix_nan(context)
                if sn == 1 and on != 2:
                    return other._fix_nan(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def _isinteger(self):
        """Returns whether self is an integer"""
        if self._is_special:
            return False
        if self._exp >= 0:
            return True
        rest = self._int[self._exp:]
        return rest == '0'*len(rest)

    def _iseven(self):
        """Returns True if self is even.  Assumes self is an integer."""
        if not self or self._exp > 0:
            return True
        return self._int[-1+self._exp] in '02468'

    def adjusted(self):
        """Return the adjusted exponent of self"""
        try:
            return self._exp + len(self._int) - 1
        # If NaN or Infinity, self._exp is string
        except TypeError:
            return 0

    def canonical(self, context=None):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.
        """
        return self

    def compare_signal(self, other, context=None):
        """Compares self to the other operand numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.
        """
        other = _convert_other(other, raiseit = True)
        ans = self._compare_check_nans(other, context)
        if ans:
            return ans
        return self.compare(other, context=context)

    def compare_total(self, other):
        """Compares self to other using the abstract representations.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.
        """
        # if one is negative and the other is positive, it's easy
        if self._sign and not other._sign:
            return Dec_n1
        if not self._sign and other._sign:
            return Dec_p1
        sign = self._sign

        # let's handle both NaN types
        self_nan = self._isnan()
        other_nan = other._isnan()
        if self_nan or other_nan:
            if self_nan == other_nan:
                if self._int < other._int:
                    if sign:
                        return Dec_p1
                    else:
                        return Dec_n1
                if self._int > other._int:
                    if sign:
                        return Dec_n1
                    else:
                        return Dec_p1
                return Dec_0

            if sign:
                if self_nan == 1:
                    return Dec_n1
                if other_nan == 1:
                    return Dec_p1
                if self_nan == 2:
                    return Dec_n1
                if other_nan == 2:
                    return Dec_p1
            else:
                if self_nan == 1:
                    return Dec_p1
                if other_nan == 1:
                    return Dec_n1
                if self_nan == 2:
                    return Dec_p1
                if other_nan == 2:
                    return Dec_n1

        if self < other:
            return Dec_n1
        if self > other:
            return Dec_p1

        if self._exp < other._exp:
            if sign:
                return Dec_p1
            else:
                return Dec_n1
        if self._exp > other._exp:
            if sign:
                return Dec_n1
            else:
                return Dec_p1
        return Dec_0


    def compare_total_mag(self, other):
        """Compares self to other using abstract repr., ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        s = self.copy_abs()
        o = other.copy_abs()
        return s.compare_total(o)

    def copy_abs(self):
        """Returns a copy with the sign set to 0. """
        return _dec_from_triple(0, self._int, self._exp, self._is_special)

    def copy_negate(self):
        """Returns a copy with the sign inverted."""
        if self._sign:
            return _dec_from_triple(0, self._int, self._exp, self._is_special)
        else:
            return _dec_from_triple(1, self._int, self._exp, self._is_special)

    def copy_sign(self, other):
        """Returns self with the sign of other."""
        return _dec_from_triple(other._sign, self._int,
                                self._exp, self._is_special)

    def exp(self, context=None):
        """Returns e ** self."""

        if context is None:
            context = getcontext()

        # exp(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # exp(-Infinity) = 0
        if self._isinfinity() == -1:
            return Dec_0

        # exp(0) = 1
        if not self:
            return Dec_p1

        # exp(Infinity) = Infinity
        if self._isinfinity() == 1:
            return Decimal(self)

        # the result is now guaranteed to be inexact (the true
        # mathematical result is transcendental). There's no need to
        # raise Rounded and Inexact here---they'll always be raised as
        # a result of the call to _fix.
        p = context.prec
        adj = self.adjusted()

        # we only need to do any computation for quite a small range
        # of adjusted exponents---for example, -29 <= adj <= 10 for
        # the default context.  For smaller exponent the result is
        # indistinguishable from 1 at the given precision, while for
        # larger exponent the result either overflows or underflows.
        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
            # overflow
            ans = _dec_from_triple(0, '1', context.Emax+1)
        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
            # underflow to 0
            ans = _dec_from_triple(0, '1', context.Etiny()-1)
        elif self._sign == 0 and adj < -p:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
        elif self._sign == 1 and adj < -p-1:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
        # general case
        else:
            op = _WorkRep(self)
            c, e = op.int, op.exp
            if op.sign == 1:
                c = -c

            # compute correctly rounded result: increase precision by
            # 3 digits at a time until we get an unambiguously
            # roundable result
            extra = 3
            while True:
                coeff, exp = _dexp(c, e, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(0, str(coeff), exp)

        # at this stage, ans should round correctly with *any*
        # rounding mode, not just with ROUND_HALF_EVEN
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def is_canonical(self):
        """Return True if self is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.
        """
        return True

    def is_finite(self):
        """Return True if self is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.
        """
        return not self._is_special

    def is_infinite(self):
        """Return True if self is infinite; otherwise return False."""
        return self._exp == 'F'

    def is_nan(self):
        """Return True if self is a qNaN or sNaN; otherwise return False."""
        return self._exp in ('n', 'N')

    def is_normal(self, context=None):
        """Return True if self is a normal number; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return context.Emin <= self.adjusted() <= context.Emax

    def is_qnan(self):
        """Return True if self is a quiet NaN; otherwise return False."""
        return self._exp == 'n'

    def is_signed(self):
        """Return True if self is negative; otherwise return False."""
        return self._sign == 1

    def is_snan(self):
        """Return True if self is a signaling NaN; otherwise return False."""
        return self._exp == 'N'

    def is_subnormal(self, context=None):
        """Return True if self is subnormal; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return self.adjusted() < context.Emin

    def is_zero(self):
        """Return True if self is a zero; otherwise return False."""
        return not self._is_special and self._int == '0'

    def _ln_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.ln().
        In other words, compute r such that self.ln() >= 10**r.  Assumes
        that self is finite and positive and that self != 1.
        """

        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
            return len(str(adj*23//10)) - 1
        if adj <= -2:
            # argument <= 0.1
            return len(str((-1-adj)*23//10)) - 1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(c)
            return len(num) - len(den) - (num < den)
        # adj == -1, 0.1 <= self < 1
        return e + len(str(10**-e - c)) - 1


    def ln(self, context=None):
        """Returns the natural (base e) logarithm of self."""

        if context is None:
            context = getcontext()

        # ln(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # ln(0.0) == -Infinity
        if not self:
            return negInf

        # ln(Infinity) = Infinity
        if self._isinfinity() == 1:
            return Inf

        # ln(1.0) == 0.0
        if self == Dec_p1:
            return Dec_0

        # ln(negative) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'ln of a negative value')

        # result is irrational, so necessarily inexact
        op = _WorkRep(self)
        c, e = op.int, op.exp
        p = context.prec

        # correctly rounded result: repeatedly increase precision by 3
        # until we get an unambiguously roundable result
        places = p - self._ln_exp_bound() + 2 # at least p+3 places
        while True:
            coeff = _dlog(c, e, places)
            # assert len(str(abs(coeff)))-p >= 1
            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                break
            places += 3
        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def _log10_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.log10().
        In other words, find r such that self.log10() >= 10**r.
        Assumes that self is finite and positive and that self != 1.
        """

        # For x >= 10 or x < 0.1 we only need a bound on the integer
        # part of log10(self), and this comes directly from the
        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0

        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # self >= 10
            return len(str(adj))-1
        if adj <= -2:
            # self < 0.1
            return len(str(-1-adj))-1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(231*c)
            return len(num) - len(den) - (num < den) + 2
        # adj == -1, 0.1 <= self < 1
        num = str(10**-e-c)
        return len(num) + e - (num < "231") - 1

    def log10(self, context=None):
        """Returns the base 10 logarithm of self."""

        if context is None:
            context = getcontext()

        # log10(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # log10(0.0) == -Infinity
        if not self:
            return negInf

        # log10(Infinity) = Infinity
        if self._isinfinity() == 1:
            return Inf

        # log10(negative or -Infinity) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'log10 of a negative value')

        # log10(10**n) = n
        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
            # answer may need rounding
            ans = Decimal(self._exp + len(self._int) - 1)
        else:
            # result is irrational, so necessarily inexact
            op = _WorkRep(self)
            c, e = op.int, op.exp
            p = context.prec

            # correctly rounded result: repeatedly increase precision
            # until result is unambiguously roundable
            places = p-self._log10_exp_bound()+2
            while True:
                coeff = _dlog10(c, e, places)
                # assert len(str(abs(coeff)))-p >= 1
                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                    break
                places += 3
            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def logb(self, context=None):
        """ Returns the exponent of the magnitude of self's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of self (as though it were truncated
        to a single digit while maintaining the value of that digit and
        without limiting the resulting exponent).
        """
        # logb(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        if context is None:
            context = getcontext()

        # logb(+/-Inf) = +Inf
        if self._isinfinity():
            return Inf

        # logb(0) = -Inf, DivisionByZero
        if not self:
            return context._raise_error(DivisionByZero, 'logb(0)', 1)

        # otherwise, simply return the adjusted exponent of self, as a
        # Decimal.  Note that no attempt is made to fit the result
        # into the current context.
        return Decimal(self.adjusted())

    def _islogical(self):
        """Return True if self is a logical operand.

        For being logical, it must be a finite number with a sign of 0,
        an exponent of 0, and a coefficient whose digits must all be
        either 0 or 1.
        """
        if self._sign != 0 or self._exp != 0:
            return False
        for dig in self._int:
            if dig not in '01':
                return False
        return True

    def _fill_logical(self, context, opa, opb):
        dif = context.prec - len(opa)
        if dif > 0:
            opa = '0'*dif + opa
        elif dif < 0:
            opa = opa[-context.prec:]
        dif = context.prec - len(opb)
        if dif > 0:
            opb = '0'*dif + opb
        elif dif < 0:
            opb = opb[-context.prec:]
        return opa, opb

    def logical_and(self, other, context=None):
        """Applies an 'and' operation between self and other's digits."""
        if context is None:
            context = getcontext()
        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_invert(self, context=None):
        """Invert all its digits."""
        if context is None:
            context = getcontext()
        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
                                context)

    def logical_or(self, other, context=None):
        """Applies an 'or' operation between self and other's digits."""
        if context is None:
            context = getcontext()
        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join(str(int(a)|int(b)) for a,b in zip(opa,opb))
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_xor(self, other, context=None):
        """Applies an 'xor' operation between self and other's digits."""
        if context is None:
            context = getcontext()
        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join(str(int(a)^int(b)) for a,b in zip(opa,opb))
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def max_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn != 2:
                    return self._fix_nan(context)
                if sn == 1 and on != 2:
                    return other._fix_nan(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn != 2:
                    return self._fix_nan(context)
                if sn == 1 and on != 2:
                    return other._fix_nan(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def next_minus(self, context=None):
        """Returns the largest representable number smaller than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == -1:
            return negInf
        if self._isinfinity() == 1:
            return _dec_from_triple(0, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_FLOOR)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_plus(self, context=None):
        """Returns the smallest representable number larger than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == 1:
            return Inf
        if self._isinfinity() == -1:
            return _dec_from_triple(1, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_CEILING)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_toward(self, other, context=None):
        """Returns the number closest to self, in the direction towards other.

        The result is the closest representable number to self
        (excluding self) that is in the direction towards other,
        unless both have the same value.  If the two operands are
        numerically equal, then the result is a copy of self with the
        sign set to be the same as the sign of other.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        comparison = self._cmp(other)
        if comparison == 0:
            return self.copy_sign(other)

        if comparison == -1:
            ans = self.next_plus(context)
        else: # comparison == 1
            ans = self.next_minus(context)

        # decide which flags to raise using value of ans
        if ans._isinfinity():
            context._raise_error(Overflow,
                                 'Infinite result from next_toward',
                                 ans._sign)
            context._raise_error(Rounded)
            context._raise_error(Inexact)
        elif ans.adjusted() < context.Emin:
            context._raise_error(Underflow)
            context._raise_error(Subnormal)
            context._raise_error(Rounded)
            context._raise_error(Inexact)
            # if precision == 1 then we don't raise Clamped for a
            # result 0E-Etiny.
            if not ans:
                context._raise_error(Clamped)

        return ans

    def number_class(self, context=None):
        """Returns an indication of the class of self.

        The class is one of the following strings:
          sNaN
          NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity
        """
        if self.is_snan():
            return "sNaN"
        if self.is_qnan():
            return "NaN"
        inf = self._isinfinity()
        if inf == 1:
            return "+Infinity"
        if inf == -1:
            return "-Infinity"
        if self.is_zero():
            if self._sign:
                return "-Zero"
            else:
                return "+Zero"
        if context is None:
            context = getcontext()
        if self.is_subnormal(context=context):
            if self._sign:
                return "-Subnormal"
            else:
                return "+Subnormal"
        # just a normal, regular, boring number, :)
        if self._sign:
            return "-Normal"
        else:
            return "+Normal"

    def radix(self):
        """Just returns 10, as this is Decimal, :)"""
        return Decimal(10)

    def rotate(self, other, context=None):
        """Returns a rotated copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad:
            rotdig = '0'*topad + rotdig

        # let's rotate!
        rotated = rotdig[torot:] + rotdig[:torot]
        return _dec_from_triple(self._sign,
                                rotated.lstrip('0') or '0', self._exp)

    def scaleb (self, other, context=None):
        """Returns self operand after adding the second value to its exp."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        liminf = -2 * (context.Emax + context.prec)
        limsup =  2 * (context.Emax + context.prec)
        if not (liminf <= int(other) <= limsup):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
        d = d._fix(context)
        return d

    def shift(self, other, context=None):
        """Returns a shifted copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        if not torot:
            return Decimal(self)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad:
            rotdig = '0'*topad + rotdig

        # let's shift!
        if torot < 0:
            rotated = rotdig[:torot]
        else:
            rotated = rotdig + '0'*torot
            rotated = rotated[-context.prec:]

        return _dec_from_triple(self._sign,
                                    rotated.lstrip('0') or '0', self._exp)

    # Support for pickling, copy, and deepcopy
    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Decimal:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(str(self))

    def __deepcopy__(self, memo):
        if type(self) == Decimal:
            return self     # My components are also immutable
        return self.__class__(str(self))

def _dec_from_triple(sign, coefficient, exponent, special=False):
    """Create a decimal instance directly, without any validation,
    normalization (e.g. removal of leading zeros) or argument
    conversion.

    This function is for *internal use only*.
    """

    self = object.__new__(Decimal)
    self._sign = sign
    self._int = coefficient
    self._exp = exponent
    self._is_special = special

    return self

##### Context class #######################################################


# get rounding method function:
rounding_functions = [name for name in Decimal.__dict__.keys()
                                    if name.startswith('_round_')]
for name in rounding_functions:
    # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
    globalname = name[1:].upper()
    val = globals()[globalname]
    Decimal._pick_rounding_function[val] = name

del name, val, globalname, rounding_functions

class _ContextManager(object):
    """Context manager class to support localcontext().

      Sets a copy of the supplied context in __enter__() and restores
      the previous decimal context in __exit__()
    """
    def __init__(self, new_context):
        self.new_context = new_context.copy()
    def __enter__(self):
        self.saved_context = getcontext()
        setcontext(self.new_context)
        return self.new_context
    def __exit__(self, t, v, tb):
        setcontext(self.saved_context)

class Context(object):
    """Contains the context for a Decimal instance.

    Contains:
    prec - precision (for use in rounding, division, square roots..)
    rounding - rounding type (how you round)
    traps - If traps[exception] = 1, then the exception is
                    raised when it is caused.  Otherwise, a value is
                    substituted in.
    flags  - When an exception is caused, flags[exception] is set.
             (Whether or not the trap_enabler is set)
             Should be reset by user of Decimal instance.
    Emin -   Minimum exponent
    Emax -   Maximum exponent
    capitals -      If 1, 1*10^1 is printed as 1E+1.
                    If 0, printed as 1e1
    _clamp - If 1, change exponents if too high (Default 0)
    """

    def __init__(self, prec=None, rounding=None,
                 traps=None, flags=None,
                 Emin=None, Emax=None,
                 capitals=None, _clamp=0,
                 _ignored_flags=None):
        if flags is None:
            flags = []
        if _ignored_flags is None:
            _ignored_flags = []
        if not isinstance(flags, dict):
            flags = dict([(s,s in flags) for s in _signals])
        if traps is not None and not isinstance(traps, dict):
            traps = dict([(s,s in traps) for s in _signals])
        for name, val in locals().items():
            if val is None:
                setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
            else:
                setattr(self, name, val)
        del self.self

    def __repr__(self):
        """Show the current context."""
        s = []
        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
                 % vars(self))
        names = [f.__name__ for f, v in self.flags.items() if v]
        s.append('flags=[' + ', '.join(names) + ']')
        names = [t.__name__ for t, v in self.traps.items() if v]
        s.append('traps=[' + ', '.join(names) + ']')
        return ', '.join(s) + ')'

    def clear_flags(self):
        """Reset all flags to zero"""
        for flag in self.flags:
            self.flags[flag] = 0

    def _shallow_copy(self):
        """Returns a shallow copy from self."""
        nc = Context(self.prec, self.rounding, self.traps,
                     self.flags, self.Emin, self.Emax,
                     self.capitals, self._clamp, self._ignored_flags)
        return nc

    def copy(self):
        """Returns a deep copy from self."""
        nc = Context(self.prec, self.rounding, self.traps.copy(),
                     self.flags.copy(), self.Emin, self.Emax,
                     self.capitals, self._clamp, self._ignored_flags)
        return nc
    __copy__ = copy

    def _raise_error(self, condition, explanation = None, *args):
        """Handles an error

        If the flag is in _ignored_flags, returns the default response.
        Otherwise, it sets the flag, then, if the corresponding
        trap_enabler is set, it reaises the exception.  Otherwise, it returns
        the default value after setting the flag.
        """
        error = _condition_map.get(condition, condition)
        if error in self._ignored_flags:
            # Don't touch the flag
            return error().handle(self, *args)

        self.flags[error] = 1
        if not self.traps[error]:
            # The errors define how to handle themselves.
            return condition().handle(self, *args)

        # Errors should only be risked on copies of the context
        # self._ignored_flags = []
        raise error(explanation)

    def _ignore_all_flags(self):
        """Ignore all flags, if they are raised"""
        return self._ignore_flags(*_signals)

    def _ignore_flags(self, *flags):
        """Ignore the flags, if they are raised"""
        # Do not mutate-- This way, copies of a context leave the original
        # alone.
        self._ignored_flags = (self._ignored_flags + list(flags))
        return list(flags)

    def _regard_flags(self, *flags):
        """Stop ignoring the flags, if they are raised"""
        if flags and isinstance(flags[0], (tuple,list)):
            flags = flags[0]
        for flag in flags:
            self._ignored_flags.remove(flag)

    def __hash__(self):
        """A Context cannot be hashed."""
        # We inherit object.__hash__, so we must deny this explicitly
        raise TypeError("Cannot hash a Context.")

    def Etiny(self):
        """Returns Etiny (= Emin - prec + 1)"""
        return int(self.Emin - self.prec + 1)

    def Etop(self):
        """Returns maximum exponent (= Emax - prec + 1)"""
        return int(self.Emax - self.prec + 1)

    def _set_rounding(self, type):
        """Sets the rounding type.

        Sets the rounding type, and returns the current (previous)
        rounding type.  Often used like:

        context = context.copy()
        # so you don't change the calling context
        # if an error occurs in the middle.
        rounding = context._set_rounding(ROUND_UP)
        val = self.__sub__(other, context=context)
        context._set_rounding(rounding)

        This will make it round up for that operation.
        """
        rounding = self.rounding
        self.rounding= type
        return rounding

    def create_decimal(self, num='0'):
        """Creates a new Decimal instance but using self as context.

        This method implements the to-number operation of the
        IBM Decimal specification."""

        if isinstance(num, str) and num != num.strip():
            return self._raise_error(ConversionSyntax,
                                     "no trailing or leading whitespace is "
                                     "permitted.")

        d = Decimal(num, context=self)
        if d._isnan() and len(d._int) > self.prec - self._clamp:
            return self._raise_error(ConversionSyntax,
                                     "diagnostic info too long in NaN")
        return d._fix(self)

    # Methods
    def abs(self, a):
        """Returns the absolute value of the operand.

        If the operand is negative, the result is the same as using the minus
        operation on the operand.  Otherwise, the result is the same as using
        the plus operation on the operand.

        >>> ExtendedContext.abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.abs(Decimal('101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(Decimal('-101.5'))
        Decimal('101.5')
        """
        return a.__abs__(context=self)

    def add(self, a, b):
        """Return the sum of the two operands.

        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
        Decimal('19.00')
        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
        Decimal('1.02E+4')
        """
        return a.__add__(b, context=self)

    def _apply(self, a):
        return str(a._fix(self))

    def canonical(self, a):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.

        >>> ExtendedContext.canonical(Decimal('2.50'))
        Decimal('2.50')
        """
        return a.canonical(context=self)

    def compare(self, a, b):
        """Compares values numerically.

        If the signs of the operands differ, a value representing each operand
        ('-1' if the operand is less than zero, '0' if the operand is zero or
        negative zero, or '1' if the operand is greater than zero) is used in
        place of that operand for the comparison instead of the actual
        operand.

        The comparison is then effected by subtracting the second operand from
        the first and then returning a value according to the result of the
        subtraction: '-1' if the result is less than zero, '0' if the result is
        zero or negative zero, or '1' if the result is greater than zero.

        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
        Decimal('-1')
        """
        return a.compare(b, context=self)

    def compare_signal(self, a, b):
        """Compares the values of the two operands numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.

        >>> c = ExtendedContext
        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> c.flags[InvalidOperation] = 0
        >>> print(c.flags[InvalidOperation])
        0
        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print(c.flags[InvalidOperation])
        1
        >>> c.flags[InvalidOperation] = 0
        >>> print(c.flags[InvalidOperation])
        0
        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print(c.flags[InvalidOperation])
        1
        """
        return a.compare_signal(b, context=self)

    def compare_total(self, a, b):
        """Compares two operands using their abstract representation.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.

        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
        Decimal('0')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
        Decimal('1')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
        Decimal('-1')
        """
        return a.compare_total(b)

    def compare_total_mag(self, a, b):
        """Compares two operands using their abstract representation ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        return a.compare_total_mag(b)

    def copy_abs(self, a):
        """Returns a copy of the operand with the sign set to 0.

        >>> ExtendedContext.copy_abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_abs(Decimal('-100'))
        Decimal('100')
        """
        return a.copy_abs()

    def copy_decimal(self, a):
        """Returns a copy of the decimal objet.

        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
        Decimal('-1.00')
        """
        return Decimal(a)

    def copy_negate(self, a):
        """Returns a copy of the operand with the sign inverted.

        >>> ExtendedContext.copy_negate(Decimal('101.5'))
        Decimal('-101.5')
        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
        Decimal('101.5')
        """
        return a.copy_negate()

    def copy_sign(self, a, b):
        """Copies the second operand's sign to the first one.

        In detail, it returns a copy of the first operand with the sign
        equal to the sign of the second operand.

        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        """
        return a.copy_sign(b)

    def divide(self, a, b):
        """Decimal division in a specified context.

        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
        Decimal('0.333333333')
        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
        Decimal('0.666666667')
        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
        Decimal('2.5')
        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
        Decimal('0.1')
        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
        Decimal('1')
        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
        Decimal('4.00')
        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
        Decimal('1.20')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
        Decimal('1000')
        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
        Decimal('1.20E+6')
        """
        return a.__truediv__(b, context=self)

    def divide_int(self, a, b):
        """Divides two numbers and returns the integer part of the result.

        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
        Decimal('0')
        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
        Decimal('3')
        """
        return a.__floordiv__(b, context=self)

    def divmod(self, a, b):
        return a.__divmod__(b, context=self)

    def exp(self, a):
        """Returns e ** a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.exp(Decimal('-Infinity'))
        Decimal('0')
        >>> c.exp(Decimal('-1'))
        Decimal('0.367879441')
        >>> c.exp(Decimal('0'))
        Decimal('1')
        >>> c.exp(Decimal('1'))
        Decimal('2.71828183')
        >>> c.exp(Decimal('0.693147181'))
        Decimal('2.00000000')
        >>> c.exp(Decimal('+Infinity'))
        Decimal('Infinity')
        """
        return a.exp(context=self)

    def fma(self, a, b, c):
        """Returns a multiplied by b, plus c.

        The first two operands are multiplied together, using multiply,
        the third operand is then added to the result of that
        multiplication, using add, all with only one final rounding.

        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
        Decimal('22')
        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
        Decimal('-8')
        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
        Decimal('1.38435736E+12')
        """
        return a.fma(b, c, context=self)

    def is_canonical(self, a):
        """Return True if the operand is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.

        >>> ExtendedContext.is_canonical(Decimal('2.50'))
        True
        """
        return a.is_canonical()

    def is_finite(self, a):
        """Return True if the operand is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.

        >>> ExtendedContext.is_finite(Decimal('2.50'))
        True
        >>> ExtendedContext.is_finite(Decimal('-0.3'))
        True
        >>> ExtendedContext.is_finite(Decimal('0'))
        True
        >>> ExtendedContext.is_finite(Decimal('Inf'))
        False
        >>> ExtendedContext.is_finite(Decimal('NaN'))
        False
        """
        return a.is_finite()

    def is_infinite(self, a):
        """Return True if the operand is infinite; otherwise return False.

        >>> ExtendedContext.is_infinite(Decimal('2.50'))
        False
        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
        True
        >>> ExtendedContext.is_infinite(Decimal('NaN'))
        False
        """
        return a.is_infinite()

    def is_nan(self, a):
        """Return True if the operand is a qNaN or sNaN;
        otherwise return False.

        >>> ExtendedContext.is_nan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_nan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
        True
        """
        return a.is_nan()

    def is_normal(self, a):
        """Return True if the operand is a normal number;
        otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_normal(Decimal('2.50'))
        True
        >>> c.is_normal(Decimal('0.1E-999'))
        False
        >>> c.is_normal(Decimal('0.00'))
        False
        >>> c.is_normal(Decimal('-Inf'))
        False
        >>> c.is_normal(Decimal('NaN'))
        False
        """
        return a.is_normal(context=self)

    def is_qnan(self, a):
        """Return True if the operand is a quiet NaN; otherwise return False.

        >>> ExtendedContext.is_qnan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_qnan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
        False
        """
        return a.is_qnan()

    def is_signed(self, a):
        """Return True if the operand is negative; otherwise return False.

        >>> ExtendedContext.is_signed(Decimal('2.50'))
        False
        >>> ExtendedContext.is_signed(Decimal('-12'))
        True
        >>> ExtendedContext.is_signed(Decimal('-0'))
        True
        """
        return a.is_signed()

    def is_snan(self, a):
        """Return True if the operand is a signaling NaN;
        otherwise return False.

        >>> ExtendedContext.is_snan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_snan(Decimal('NaN'))
        False
        >>> ExtendedContext.is_snan(Decimal('sNaN'))
        True
        """
        return a.is_snan()

    def is_subnormal(self, a):
        """Return True if the operand is subnormal; otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_subnormal(Decimal('2.50'))
        False
        >>> c.is_subnormal(Decimal('0.1E-999'))
        True
        >>> c.is_subnormal(Decimal('0.00'))
        False
        >>> c.is_subnormal(Decimal('-Inf'))
        False
        >>> c.is_subnormal(Decimal('NaN'))
        False
        """
        return a.is_subnormal(context=self)

    def is_zero(self, a):
        """Return True if the operand is a zero; otherwise return False.

        >>> ExtendedContext.is_zero(Decimal('0'))
        True
        >>> ExtendedContext.is_zero(Decimal('2.50'))
        False
        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
        True
        """
        return a.is_zero()

    def ln(self, a):
        """Returns the natural (base e) logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.ln(Decimal('0'))
        Decimal('-Infinity')
        >>> c.ln(Decimal('1.000'))
        Decimal('0')
        >>> c.ln(Decimal('2.71828183'))
        Decimal('1.00000000')
        >>> c.ln(Decimal('10'))
        Decimal('2.30258509')
        >>> c.ln(Decimal('+Infinity'))
        Decimal('Infinity')
        """
        return a.ln(context=self)

    def log10(self, a):
        """Returns the base 10 logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.log10(Decimal('0'))
        Decimal('-Infinity')
        >>> c.log10(Decimal('0.001'))
        Decimal('-3')
        >>> c.log10(Decimal('1.000'))
        Decimal('0')
        >>> c.log10(Decimal('2'))
        Decimal('0.301029996')
        >>> c.log10(Decimal('10'))
        Decimal('1')
        >>> c.log10(Decimal('70'))
        Decimal('1.84509804')
        >>> c.log10(Decimal('+Infinity'))
        Decimal('Infinity')
        """
        return a.log10(context=self)

    def logb(self, a):
        """ Returns the exponent of the magnitude of the operand's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of the operand (as though the
        operand were truncated to a single digit while maintaining the
        value of that digit and without limiting the resulting exponent).

        >>> ExtendedContext.logb(Decimal('250'))
        Decimal('2')
        >>> ExtendedContext.logb(Decimal('2.50'))
        Decimal('0')
        >>> ExtendedContext.logb(Decimal('0.03'))
        Decimal('-2')
        >>> ExtendedContext.logb(Decimal('0'))
        Decimal('-Infinity')
        """
        return a.logb(context=self)

    def logical_and(self, a, b):
        """Applies the logical operation 'and' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
        Decimal('1000')
        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
        Decimal('10')
        """
        return a.logical_and(b, context=self)

    def logical_invert(self, a):
        """Invert all the digits in the operand.

        The operand must be a logical number.

        >>> ExtendedContext.logical_invert(Decimal('0'))
        Decimal('111111111')
        >>> ExtendedContext.logical_invert(Decimal('1'))
        Decimal('111111110')
        >>> ExtendedContext.logical_invert(Decimal('111111111'))
        Decimal('0')
        >>> ExtendedContext.logical_invert(Decimal('101010101'))
        Decimal('10101010')
        """
        return a.logical_invert(context=self)

    def logical_or(self, a, b):
        """Applies the logical operation 'or' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
        Decimal('1110')
        """
        return a.logical_or(b, context=self)

    def logical_xor(self, a, b):
        """Applies the logical operation 'xor' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
        Decimal('110')
        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
        Decimal('1101')
        """
        return a.logical_xor(b, context=self)

    def max(self, a,b):
        """max compares two values numerically and returns the maximum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the maximum (closer to positive
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        """
        return a.max(b, context=self)

    def max_mag(self, a, b):
        """Compares the values numerically with their sign ignored."""
        return a.max_mag(b, context=self)

    def min(self, a,b):
        """min compares two values numerically and returns the minimum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the minimum (closer to negative
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
        Decimal('2')
        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
        Decimal('-10')
        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
        Decimal('1.0')
        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        """
        return a.min(b, context=self)

    def min_mag(self, a, b):
        """Compares the values numerically with their sign ignored."""
        return a.min_mag(b, context=self)

    def minus(self, a):
        """Minus corresponds to unary prefix minus in Python.

        The operation is evaluated using the same rules as subtract; the
        operation minus(a) is calculated as subtract('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.minus(Decimal('1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.minus(Decimal('-1.3'))
        Decimal('1.3')
        """
        return a.__neg__(context=self)

    def multiply(self, a, b):
        """multiply multiplies two operands.

        If either operand is a special value then the general rules apply.
        Otherwise, the operands are multiplied together ('long multiplication'),
        resulting in a number which may be as long as the sum of the lengths
        of the two operands.

        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
        Decimal('3.60')
        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
        Decimal('21')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
        Decimal('0.72')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
        Decimal('-0.0')
        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
        Decimal('4.28135971E+11')
        """
        return a.__mul__(b, context=self)

    def next_minus(self, a):
        """Returns the largest representable number smaller than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_minus(Decimal('1'))
        Decimal('0.999999999')
        >>> c.next_minus(Decimal('1E-1007'))
        Decimal('0E-1007')
        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
        Decimal('-1.00000004')
        >>> c.next_minus(Decimal('Infinity'))
        Decimal('9.99999999E+999')
        """
        return a.next_minus(context=self)

    def next_plus(self, a):
        """Returns the smallest representable number larger than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_plus(Decimal('1'))
        Decimal('1.00000001')
        >>> c.next_plus(Decimal('-1E-1007'))
        Decimal('-0E-1007')
        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
        Decimal('-1.00000002')
        >>> c.next_plus(Decimal('-Infinity'))
        Decimal('-9.99999999E+999')
        """
        return a.next_plus(context=self)

    def next_toward(self, a, b):
        """Returns the number closest to a, in direction towards b.

        The result is the closest representable number from the first
        operand (but not the first operand) that is in the direction
        towards the second operand, unless the operands have the same
        value.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.next_toward(Decimal('1'), Decimal('2'))
        Decimal('1.00000001')
        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
        Decimal('-0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
        Decimal('-1.00000002')
        >>> c.next_toward(Decimal('1'), Decimal('0'))
        Decimal('0.999999999')
        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
        Decimal('0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
        Decimal('-1.00000004')
        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
        Decimal('-0.00')
        """
        return a.next_toward(b, context=self)

    def normalize(self, a):
        """normalize reduces an operand to its simplest form.

        Essentially a plus operation with all trailing zeros removed from the
        result.

        >>> ExtendedContext.normalize(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.normalize(Decimal('-2.0'))
        Decimal('-2')
        >>> ExtendedContext.normalize(Decimal('1.200'))
        Decimal('1.2')
        >>> ExtendedContext.normalize(Decimal('-120'))
        Decimal('-1.2E+2')
        >>> ExtendedContext.normalize(Decimal('120.00'))
        Decimal('1.2E+2')
        >>> ExtendedContext.normalize(Decimal('0.00'))
        Decimal('0')
        """
        return a.normalize(context=self)

    def number_class(self, a):
        """Returns an indication of the class of the operand.

        The class is one of the following strings:
          -sNaN
          -NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity

        >>> c = Context(ExtendedContext)
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.number_class(Decimal('Infinity'))
        '+Infinity'
        >>> c.number_class(Decimal('1E-10'))
        '+Normal'
        >>> c.number_class(Decimal('2.50'))
        '+Normal'
        >>> c.number_class(Decimal('0.1E-999'))
        '+Subnormal'
        >>> c.number_class(Decimal('0'))
        '+Zero'
        >>> c.number_class(Decimal('-0'))
        '-Zero'
        >>> c.number_class(Decimal('-0.1E-999'))
        '-Subnormal'
        >>> c.number_class(Decimal('-1E-10'))
        '-Normal'
        >>> c.number_class(Decimal('-2.50'))
        '-Normal'
        >>> c.number_class(Decimal('-Infinity'))
        '-Infinity'
        >>> c.number_class(Decimal('NaN'))
        'NaN'
        >>> c.number_class(Decimal('-NaN'))
        'NaN'
        >>> c.number_class(Decimal('sNaN'))
        'sNaN'
        """
        return a.number_class(context=self)

    def plus(self, a):
        """Plus corresponds to unary prefix plus in Python.

        The operation is evaluated using the same rules as add; the
        operation plus(a) is calculated as add('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.plus(Decimal('1.3'))
        Decimal('1.3')
        >>> ExtendedContext.plus(Decimal('-1.3'))
        Decimal('-1.3')
        """
        return a.__pos__(context=self)

    def power(self, a, b, modulo=None):
        """Raises a to the power of b, to modulo if given.

        With two arguments, compute a**b.  If a is negative then b
        must be integral.  The result will be inexact unless b is
        integral and the result is finite and can be expressed exactly
        in 'precision' digits.

        With three arguments, compute (a**b) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - b must be nonnegative
         - at least one of a or b must be nonzero
         - modulo must be nonzero and have at most 'precision' digits

        The result of pow(a, b, modulo) is identical to the result
        that would be obtained by computing (a**b) % modulo with
        unbounded precision, but is computed more efficiently.  It is
        always exact.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.power(Decimal('2'), Decimal('3'))
        Decimal('8')
        >>> c.power(Decimal('-2'), Decimal('3'))
        Decimal('-8')
        >>> c.power(Decimal('2'), Decimal('-3'))
        Decimal('0.125')
        >>> c.power(Decimal('1.7'), Decimal('8'))
        Decimal('69.7575744')
        >>> c.power(Decimal('10'), Decimal('0.301029996'))
        Decimal('2.00000000')
        >>> c.power(Decimal('Infinity'), Decimal('-1'))
        Decimal('0')
        >>> c.power(Decimal('Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('Infinity'), Decimal('1'))
        Decimal('Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
        Decimal('-0')
        >>> c.power(Decimal('-Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('-Infinity'), Decimal('1'))
        Decimal('-Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('2'))
        Decimal('Infinity')
        >>> c.power(Decimal('0'), Decimal('0'))
        Decimal('NaN')

        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
        Decimal('11')
        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
        Decimal('-11')
        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
        Decimal('1')
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
        Decimal('11')
        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
        Decimal('11729830')
        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
        Decimal('-0')
        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
        Decimal('1')
        """
        return a.__pow__(b, modulo, context=self)

    def quantize(self, a, b):
        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.

        The coefficient of the result is derived from that of the left-hand
        operand.  It may be rounded using the current rounding setting (if the
        exponent is being increased), multiplied by a positive power of ten (if
        the exponent is being decreased), or is unchanged (if the exponent is
        already equal to that of the right-hand operand).

        Unlike other operations, if the length of the coefficient after the
        quantize operation would be greater than precision then an Invalid
        operation condition is raised.  This guarantees that, unless there is
        an error condition, the exponent of the result of a quantize is always
        equal to that of the right-hand operand.

        Also unlike other operations, quantize will never raise Underflow, even
        if the result is subnormal and inexact.

        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
        Decimal('2.170')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
        Decimal('2.17')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
        Decimal('2.2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
        Decimal('2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
        Decimal('0E+1')
        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
        Decimal('-Infinity')
        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
        Decimal('-0')
        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
        Decimal('-0E+5')
        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
        Decimal('217.0')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
        Decimal('217')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
        Decimal('2.2E+2')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
        Decimal('2E+2')
        """
        return a.quantize(b, context=self)

    def radix(self):
        """Just returns 10, as this is Decimal, :)

        >>> ExtendedContext.radix()
        Decimal('10')
        """
        return Decimal(10)

    def remainder(self, a, b):
        """Returns the remainder from integer division.

        The result is the residue of the dividend after the operation of
        calculating integer division as described for divide-integer, rounded
        to precision digits if necessary.  The sign of the result, if
        non-zero, is the same as that of the original dividend.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
        Decimal('2.1')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
        Decimal('1.0')
        """
        return a.__mod__(b, context=self)

    def remainder_near(self, a, b):
        """Returns to be "a - b * n", where n is the integer nearest the exact
        value of "x / b" (if two integers are equally near then the even one
        is chosen).  If the result is equal to 0 then its sign will be the
        sign of a.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
        Decimal('-0.9')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
        Decimal('-2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
        Decimal('-0.3')
        """
        return a.remainder_near(b, context=self)

    def rotate(self, a, b):
        """Returns a rotated copy of a, b times.

        The coefficient of the result is a rotated copy of the digits in
        the coefficient of the first operand.  The number of places of
        rotation is taken from the absolute value of the second operand,
        with the rotation being to the left if the second operand is
        positive or to the right otherwise.

        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
        Decimal('400000003')
        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
        Decimal('12')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
        Decimal('891234567')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
        Decimal('345678912')
        """
        return a.rotate(b, context=self)

    def same_quantum(self, a, b):
        """Returns True if the two operands have the same exponent.

        The result is never affected by either the sign or the coefficient of
        either operand.

        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
        False
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
        True
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
        False
        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
        True
        """
        return a.same_quantum(b)

    def scaleb (self, a, b):
        """Returns the first operand after adding the second value its exp.

        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
        Decimal('0.0750')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
        Decimal('7.50')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
        Decimal('7.50E+3')
        """
        return a.scaleb (b, context=self)

    def shift(self, a, b):
        """Returns a shifted copy of a, b times.

        The coefficient of the result is a shifted copy of the digits
        in the coefficient of the first operand.  The number of places
        to shift is taken from the absolute value of the second operand,
        with the shift being to the left if the second operand is
        positive or to the right otherwise.  Digits shifted into the
        coefficient are zeros.

        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
        Decimal('400000000')
        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
        Decimal('0')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
        Decimal('1234567')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
        Decimal('345678900')
        """
        return a.shift(b, context=self)

    def sqrt(self, a):
        """Square root of a non-negative number to context precision.

        If the result must be inexact, it is rounded using the round-half-even
        algorithm.

        >>> ExtendedContext.sqrt(Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.sqrt(Decimal('-0'))
        Decimal('-0')
        >>> ExtendedContext.sqrt(Decimal('0.39'))
        Decimal('0.624499800')
        >>> ExtendedContext.sqrt(Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.sqrt(Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.sqrt(Decimal('1.0'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('1.00'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('7'))
        Decimal('2.64575131')
        >>> ExtendedContext.sqrt(Decimal('10'))
        Decimal('3.16227766')
        >>> ExtendedContext.prec
        9
        """
        return a.sqrt(context=self)

    def subtract(self, a, b):
        """Return the difference between the two operands.

        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
        Decimal('0.23')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
        Decimal('0.00')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
        Decimal('-0.77')
        """
        return a.__sub__(b, context=self)

    def to_eng_string(self, a):
        """Converts a number to a string, using scientific notation.

        The operation is not affected by the context.
        """
        return a.to_eng_string(context=self)

    def to_sci_string(self, a):
        """Converts a number to a string, using scientific notation.

        The operation is not affected by the context.
        """
        return a.__str__(context=self)

    def to_integral_exact(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting; Inexact and Rounded flags
        are allowed in this operation.  The rounding mode is taken from the
        context.

        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_exact(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        return a.to_integral_exact(context=self)

    def to_integral_value(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting, except that no flags will
        be set.  The rounding mode is taken from the context.

        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_value(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        return a.to_integral_value(context=self)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

class _WorkRep(object):
    __slots__ = ('sign','int','exp')
    # sign: 0 or 1
    # int:  int
    # exp:  None, int, or string

    def __init__(self, value=None):
        if value is None:
            self.sign = None
            self.int = 0
            self.exp = None
        elif isinstance(value, Decimal):
            self.sign = value._sign
            self.int = int(value._int)
            self.exp = value._exp
        else:
            # assert isinstance(value, tuple)
            self.sign = value[0]
            self.int = value[1]
            self.exp = value[2]

    def __repr__(self):
        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)

    __str__ = __repr__



def _normalize(op1, op2, prec = 0):
    """Normalizes op1, op2 to have the same exp and length of coefficient.

    Done during addition.
    """
    if op1.exp < op2.exp:
        tmp = op2
        other = op1
    else:
        tmp = op1
        other = op2

    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
    # Then adding 10**exp to tmp has the same effect (after rounding)
    # as adding any positive quantity smaller than 10**exp; similarly
    # for subtraction.  So if other is smaller than 10**exp we replace
    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
    tmp_len = len(str(tmp.int))
    other_len = len(str(other.int))
    exp = tmp.exp + min(-1, tmp_len - prec - 2)
    if other_len + other.exp - 1 < exp:
        other.int = 1
        other.exp = exp

    tmp.int *= 10 ** (tmp.exp - other.exp)
    tmp.exp = other.exp
    return op1, op2

##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####

# This function from Tim Peters was taken from here:
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
# The correction being in the function definition is for speed, and
# the whole function is not resolved with math.log because of avoiding
# the use of floats.
def _nbits(n, correction = {
        '0': 4, '1': 3, '2': 2, '3': 2,
        '4': 1, '5': 1, '6': 1, '7': 1,
        '8': 0, '9': 0, 'a': 0, 'b': 0,
        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
    """Number of bits in binary representation of the positive integer n,
    or 0 if n == 0.
    """
    if n < 0:
        raise ValueError("The argument to _nbits should be nonnegative.")
    hex_n = "%x" % n
    return 4*len(hex_n) - correction[hex_n[0]]

def _sqrt_nearest(n, a):
    """Closest integer to the square root of the positive integer n.  a is
    an initial approximation to the square root.  Any positive integer
    will do for a, but the closer a is to the square root of n the
    faster convergence will be.

    """
    if n <= 0 or a <= 0:
        raise ValueError("Both arguments to _sqrt_nearest should be positive.")

    b=0
    while a != b:
        b, a = a, a--n//a>>1
    return a

def _rshift_nearest(x, shift):
    """Given an integer x and a nonnegative integer shift, return closest
    integer to x / 2**shift; use round-to-even in case of a tie.

    """
    b, q = 1 << shift, x >> shift
    return q + (2*(x & (b-1)) + (q&1) > b)

def _div_nearest(a, b):
    """Closest integer to a/b, a and b positive integers; rounds to even
    in the case of a tie.

    """
    q, r = divmod(a, b)
    return q + (2*r + (q&1) > b)

def _ilog(x, M, L = 8):
    """Integer approximation to M*log(x/M), with absolute error boundable
    in terms only of x/M.

    Given positive integers x and M, return an integer approximation to
    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
    between the approximation and the exact result is at most 22.  For
    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
    both cases these are upper bounds on the error; it will usually be
    much smaller."""

    # The basic algorithm is the following: let log1p be the function
    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
    # the reduction
    #
    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
    #
    # repeatedly until the argument to log1p is small (< 2**-L in
    # absolute value).  For small y we can use the Taylor series
    # expansion
    #
    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
    #
    # truncating at T such that y**T is small enough.  The whole
    # computation is carried out in a form of fixed-point arithmetic,
    # with a real number z being represented by an integer
    # approximation to z*M.  To avoid loss of precision, the y below
    # is actually an integer approximation to 2**R*y*M, where R is the
    # number of reductions performed so far.

    y = x-M
    # argument reduction; R = number of reductions performed
    R = 0
    while (R <= L and abs(y) << L-R >= M or
           R > L and abs(y) >> R-L >= M):
        y = _div_nearest((M*y) << 1,
                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
        R += 1

    # Taylor series with T terms
    T = -int(-10*len(str(M))//(3*L))
    yshift = _rshift_nearest(y, R)
    w = _div_nearest(M, T)
    for k in range(T-1, 0, -1):
        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)

    return _div_nearest(w*y, M)

def _dlog10(c, e, p):
    """Given integers c, e and p with c > 0, p >= 0, compute an integer
    approximation to 10**p * log10(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # increase precision by 2; compensate for this by dividing
    # final result by 100
    p += 2

    # write c*10**e as d*10**f with either:
    #   f >= 0 and 1 <= d <= 10, or
    #   f <= 0 and 0.1 <= d <= 1.
    # Thus for c*10**e close to 1, f = 0
    l = len(str(c))
    f = e+l - (e+l >= 1)

    if p > 0:
        M = 10**p
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)

        log_d = _ilog(c, M) # error < 5 + 22 = 27
        log_10 = _log10_digits(p) # error < 1
        log_d = _div_nearest(log_d*M, log_10)
        log_tenpower = f*M # exact
    else:
        log_d = 0  # error < 2.31
        log_tenpower = div_nearest(f, 10**-p) # error < 0.5

    return _div_nearest(log_tenpower+log_d, 100)

def _dlog(c, e, p):
    """Given integers c, e and p with c > 0, compute an integer
    approximation to 10**p * log(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # Increase precision by 2. The precision increase is compensated
    # for at the end with a division by 100.
    p += 2

    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
    # as 10**p * log(d) + 10**p*f * log(10).
    l = len(str(c))
    f = e+l - (e+l >= 1)

    # compute approximation to 10**p*log(d), with error < 27
    if p > 0:
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c

        # _ilog magnifies existing error in c by a factor of at most 10
        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
    else:
        # p <= 0: just approximate the whole thing by 0; error < 2.31
        log_d = 0

    # compute approximation to f*10**p*log(10), with error < 11.
    if f:
        extra = len(str(abs(f)))-1
        if p + extra >= 0:
            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
        else:
            f_log_ten = 0
    else:
        f_log_ten = 0

    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
    return _div_nearest(f_log_ten + log_d, 100)

class _Log10Memoize(object):
    """Class to compute, store, and allow retrieval of, digits of the
    constant log(10) = 2.302585....  This constant is needed by
    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
    def __init__(self):
        self.digits = "23025850929940456840179914546843642076011014886"

    def getdigits(self, p):
        """Given an integer p >= 0, return floor(10**p)*log(10).

        For example, self.getdigits(3) returns 2302.
        """
        # digits are stored as a string, for quick conversion to
        # integer in the case that we've already computed enough
        # digits; the stored digits should always be correct
        # (truncated, not rounded to nearest).
        if p < 0:
            raise ValueError("p should be nonnegative")

        if p >= len(self.digits):
            # compute p+3, p+6, p+9, ... digits; continue until at
            # least one of the extra digits is nonzero
            extra = 3
            while True:
                # compute p+extra digits, correct to within 1ulp
                M = 10**(p+extra+2)
                digits = str(_div_nearest(_ilog(10*M, M), 100))
                if digits[-extra:] != '0'*extra:
                    break
                extra += 3
            # keep all reliable digits so far; remove trailing zeros
            # and next nonzero digit
            self.digits = digits.rstrip('0')[:-1]
        return int(self.digits[:p+1])

_log10_digits = _Log10Memoize().getdigits

def _iexp(x, M, L=8):
    """Given integers x and M, M > 0, such that x/M is small in absolute
    value, compute an integer approximation to M*exp(x/M).  For 0 <=
    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
    is usually much smaller)."""

    # Algorithm: to compute exp(z) for a real number z, first divide z
    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
    # series
    #
    #     expm1(x) = x + x**2/2! + x**3/3! + ...
    #
    # Now use the identity
    #
    #     expm1(2x) = expm1(x)*(expm1(x)+2)
    #
    # R times to compute the sequence expm1(z/2**R),
    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).

    # Find R such that x/2**R/M <= 2**-L
    R = _nbits((x<<L)//M)

    # Taylor series.  (2**L)**T > M
    T = -int(-10*len(str(M))//(3*L))
    y = _div_nearest(x, T)
    Mshift = M<<R
    for i in range(T-1, 0, -1):
        y = _div_nearest(x*(Mshift + y), Mshift * i)

    # Expansion
    for k in range(R-1, -1, -1):
        Mshift = M<<(k+2)
        y = _div_nearest(y*(y+Mshift), Mshift)

    return M+y

def _dexp(c, e, p):
    """Compute an approximation to exp(c*10**e), with p decimal places of
    precision.

    Returns integers d, f such that:

      10**(p-1) <= d <= 10**p, and
      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f

    In other words, d*10**f is an approximation to exp(c*10**e) with p
    digits of precision, and with an error in d of at most 1.  This is
    almost, but not quite, the same as the error being < 1ulp: when d
    = 10**(p-1) the error could be up to 10 ulp."""

    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
    p += 2

    # compute log(10) with extra precision = adjusted exponent of c*10**e
    extra = max(0, e + len(str(c)) - 1)
    q = p + extra

    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
    # rounding down
    shift = e+q
    if shift >= 0:
        cshift = c*10**shift
    else:
        cshift = c//10**-shift
    quot, rem = divmod(cshift, _log10_digits(q))

    # reduce remainder back to original precision
    rem = _div_nearest(rem, 10**extra)

    # error in result of _iexp < 120;  error after division < 0.62
    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3

def _dpower(xc, xe, yc, ye, p):
    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:

      10**(p-1) <= c <= 10**p, and
      (c-1)*10**e < x**y < (c+1)*10**e

    in other words, c*10**e is an approximation to x**y with p digits
    of precision, and with an error in c of at most 1.  (This is
    almost, but not quite, the same as the error being < 1ulp: when c
    == 10**(p-1) we can only guarantee error < 10ulp.)

    We assume that: x is positive and not equal to 1, and y is nonzero.
    """

    # Find b such that 10**(b-1) <= |y| <= 10**b
    b = len(str(abs(yc))) + ye

    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
    lxc = _dlog(xc, xe, p+b+1)

    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
    shift = ye-b
    if shift >= 0:
        pc = lxc*yc*10**shift
    else:
        pc = _div_nearest(lxc*yc, 10**-shift)

    if pc == 0:
        # we prefer a result that isn't exactly 1; this makes it
        # easier to compute a correctly rounded result in __pow__
        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
            coeff, exp = 10**(p-1)+1, 1-p
        else:
            coeff, exp = 10**p-1, -p
    else:
        coeff, exp = _dexp(pc, -(p+1), p+1)
        coeff = _div_nearest(coeff, 10)
        exp += 1

    return coeff, exp

def _log10_lb(c, correction = {
        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
        '6': 23, '7': 16, '8': 10, '9': 5}):
    """Compute a lower bound for 100*log10(c) for a positive integer c."""
    if c <= 0:
        raise ValueError("The argument to _log10_lb should be nonnegative.")
    str_c = str(c)
    return 100*len(str_c) - correction[str_c[0]]

##### Helper Functions ####################################################

def _convert_other(other, raiseit=False):
    """Convert other to Decimal.

    Verifies that it's ok to use in an implicit construction.
    """
    if isinstance(other, Decimal):
        return other
    if isinstance(other, int):
        return Decimal(other)
    if raiseit:
        raise TypeError("Unable to convert %s to Decimal" % other)
    return NotImplemented

##### Setup Specific Contexts ############################################

# The default context prototype used by Context()
# Is mutable, so that new contexts can have different default values

DefaultContext = Context(
        prec=28, rounding=ROUND_HALF_EVEN,
        traps=[DivisionByZero, Overflow, InvalidOperation],
        flags=[],
        Emax=999999999,
        Emin=-999999999,
        capitals=1
)

# Pre-made alternate contexts offered by the specification
# Don't change these; the user should be able to select these
# contexts and be able to reproduce results from other implementations
# of the spec.

BasicContext = Context(
        prec=9, rounding=ROUND_HALF_UP,
        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
        flags=[],
)

ExtendedContext = Context(
        prec=9, rounding=ROUND_HALF_EVEN,
        traps=[],
        flags=[],
)


##### crud for parsing strings #############################################
#
# Regular expression used for parsing numeric strings.  Additional
# comments:
#
# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
# whitespace.  But note that the specification disallows whitespace in
# a numeric string.
#
# 2. For finite numbers (not infinities and NaNs) the body of the
# number between the optional sign and the optional exponent must have
# at least one decimal digit, possibly after the decimal point.  The
# lookahead expression '(?=\d|\.\d)' checks this.
#
# As the flag UNICODE is not enabled here, we're explicitly avoiding any
# other meaning for \d than the numbers [0-9].

import re
_parser = re.compile(r"""     # A numeric string consists of:
#    \s*
    (?P<sign>[-+])?           # an optional sign, followed by either...
    (
        (?=\d|\.\d)           # ...a number (with at least one digit)
        (?P<int>\d*)          # consisting of a (possibly empty) integer part
        (\.(?P<frac>\d*))?    # followed by an optional fractional part
        (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
    |
        Inf(inity)?           # ...an infinity, or...
    |
        (?P<signal>s)?        # ...an (optionally signaling)
        NaN                   # NaN
        (?P<diag>\d*)         # with (possibly empty) diagnostic information.
    )
#    \s*
    \Z
""", re.VERBOSE | re.IGNORECASE).match

_all_zeros = re.compile('0*$').match
_exact_half = re.compile('50*$').match
del re


##### Useful Constants (internal use only) ################################

# Reusable defaults
Inf = Decimal('Inf')
negInf = Decimal('-Inf')
NaN = Decimal('NaN')
Dec_0 = Decimal(0)
Dec_p1 = Decimal(1)
Dec_n1 = Decimal(-1)

# Infsign[sign] is infinity w/ that sign
Infsign = (Inf, negInf)



if __name__ == '__main__':
    import doctest, sys
    doctest.testmod(sys.modules[__name__])