1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Fraction, infinite-precision, rational numbers."""
from decimal import Decimal
import functools
import math
import numbers
import operator
import re
import sys
__all__ = ['Fraction']
# Constants related to the hash implementation; hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf
@functools.lru_cache(maxsize = 1 << 14)
def _hash_algorithm(numerator, denominator):
# To make sure that the hash of a Fraction agrees with the hash
# of a numerically equal integer, float or Decimal instance, we
# follow the rules for numeric hashes outlined in the
# documentation. (See library docs, 'Built-in Types').
try:
dinv = pow(denominator, -1, _PyHASH_MODULUS)
except ValueError:
# ValueError means there is no modular inverse.
hash_ = _PyHASH_INF
else:
# The general algorithm now specifies that the absolute value of
# the hash is
# (|N| * dinv) % P
# where N is self._numerator and P is _PyHASH_MODULUS. That's
# optimized here in two ways: first, for a non-negative int i,
# hash(i) == i % P, but the int hash implementation doesn't need
# to divide, and is faster than doing % P explicitly. So we do
# hash(|N| * dinv)
# instead. Second, N is unbounded, so its product with dinv may
# be arbitrarily expensive to compute. The final answer is the
# same if we use the bounded |N| % P instead, which can again
# be done with an int hash() call. If 0 <= i < P, hash(i) == i,
# so this nested hash() call wastes a bit of time making a
# redundant copy when |N| < P, but can save an arbitrarily large
# amount of computation for large |N|.
hash_ = hash(hash(abs(numerator)) * dinv)
result = hash_ if numerator >= 0 else -hash_
return -2 if result == -1 else result
_RATIONAL_FORMAT = re.compile(r"""
\A\s* # optional whitespace at the start,
(?P<sign>[-+]?) # an optional sign, then
(?=\d|\.\d) # lookahead for digit or .digit
(?P<num>\d*|\d+(_\d+)*) # numerator (possibly empty)
(?: # followed by
(?:\s*/\s*(?P<denom>\d+(_\d+)*))? # an optional denominator
| # or
(?:\.(?P<decimal>\d*|\d+(_\d+)*))? # an optional fractional part
(?:E(?P<exp>[-+]?\d+(_\d+)*))? # and optional exponent
)
\s*\Z # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)
# Helpers for formatting
def _round_to_exponent(n, d, exponent, no_neg_zero=False):
"""Round a rational number to the nearest multiple of a given power of 10.
Rounds the rational number n/d to the nearest integer multiple of
10**exponent, rounding to the nearest even integer multiple in the case of
a tie. Returns a pair (sign: bool, significand: int) representing the
rounded value (-1)**sign * significand * 10**exponent.
If no_neg_zero is true, then the returned sign will always be False when
the significand is zero. Otherwise, the sign reflects the sign of the
input.
d must be positive, but n and d need not be relatively prime.
"""
if exponent >= 0:
d *= 10**exponent
else:
n *= 10**-exponent
# The divmod quotient is correct for round-ties-towards-positive-infinity;
# In the case of a tie, we zero out the least significant bit of q.
q, r = divmod(n + (d >> 1), d)
if r == 0 and d & 1 == 0:
q &= -2
sign = q < 0 if no_neg_zero else n < 0
return sign, abs(q)
def _round_to_figures(n, d, figures):
"""Round a rational number to a given number of significant figures.
Rounds the rational number n/d to the given number of significant figures
using the round-ties-to-even rule, and returns a triple
(sign: bool, significand: int, exponent: int) representing the rounded
value (-1)**sign * significand * 10**exponent.
In the special case where n = 0, returns a significand of zero and
an exponent of 1 - figures, for compatibility with formatting.
Otherwise, the returned significand satisfies
10**(figures - 1) <= significand < 10**figures.
d must be positive, but n and d need not be relatively prime.
figures must be positive.
"""
# Special case for n == 0.
if n == 0:
return False, 0, 1 - figures
# Find integer m satisfying 10**(m - 1) <= abs(n)/d <= 10**m. (If abs(n)/d
# is a power of 10, either of the two possible values for m is fine.)
str_n, str_d = str(abs(n)), str(d)
m = len(str_n) - len(str_d) + (str_d <= str_n)
# Round to a multiple of 10**(m - figures). The significand we get
# satisfies 10**(figures - 1) <= significand <= 10**figures.
exponent = m - figures
sign, significand = _round_to_exponent(n, d, exponent)
# Adjust in the case where significand == 10**figures, to ensure that
# 10**(figures - 1) <= significand < 10**figures.
if len(str(significand)) == figures + 1:
significand //= 10
exponent += 1
return sign, significand, exponent
# Pattern for matching non-float-style format specifications.
_GENERAL_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
(?:
(?P<fill>.)?
(?P<align>[<>=^])
)?
(?P<sign>[-+ ]?)
# Alt flag forces a slash and denominator in the output, even for
# integer-valued Fraction objects.
(?P<alt>\#)?
# We don't implement the zeropad flag since there's no single obvious way
# to interpret it.
(?P<minimumwidth>0|[1-9][0-9]*)?
(?P<thousands_sep>[,_])?
""", re.DOTALL | re.VERBOSE).fullmatch
# Pattern for matching float-style format specifications;
# supports 'e', 'E', 'f', 'F', 'g', 'G' and '%' presentation types.
_FLOAT_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
(?:
(?P<fill>.)?
(?P<align>[<>=^])
)?
(?P<sign>[-+ ]?)
(?P<no_neg_zero>z)?
(?P<alt>\#)?
# A '0' that's *not* followed by another digit is parsed as a minimum width
# rather than a zeropad flag.
(?P<zeropad>0(?=[0-9]))?
(?P<minimumwidth>0|[1-9][0-9]*)?
(?P<thousands_sep>[,_])?
(?:\.(?P<precision>0|[1-9][0-9]*))?
(?P<presentation_type>[eEfFgG%])
""", re.DOTALL | re.VERBOSE).fullmatch
class Fraction(numbers.Rational):
"""This class implements rational numbers.
In the two-argument form of the constructor, Fraction(8, 6) will
produce a rational number equivalent to 4/3. Both arguments must
be Rational. The numerator defaults to 0 and the denominator
defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
Fractions can also be constructed from:
- numeric strings similar to those accepted by the
float constructor (for example, '-2.3' or '1e10')
- strings of the form '123/456'
- float and Decimal instances
- other Rational instances (including integers)
"""
__slots__ = ('_numerator', '_denominator')
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=None):
"""Constructs a Rational.
Takes a string like '3/2' or '1.5', another Rational instance, a
numerator/denominator pair, or a float.
Examples
--------
>>> Fraction(10, -8)
Fraction(-5, 4)
>>> Fraction(Fraction(1, 7), 5)
Fraction(1, 35)
>>> Fraction(Fraction(1, 7), Fraction(2, 3))
Fraction(3, 14)
>>> Fraction('314')
Fraction(314, 1)
>>> Fraction('-35/4')
Fraction(-35, 4)
>>> Fraction('3.1415') # conversion from numeric string
Fraction(6283, 2000)
>>> Fraction('-47e-2') # string may include a decimal exponent
Fraction(-47, 100)
>>> Fraction(1.47) # direct construction from float (exact conversion)
Fraction(6620291452234629, 4503599627370496)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(Decimal('1.47'))
Fraction(147, 100)
"""
self = super(Fraction, cls).__new__(cls)
if denominator is None:
if type(numerator) is int:
self._numerator = numerator
self._denominator = 1
return self
elif isinstance(numerator, numbers.Rational):
self._numerator = numerator.numerator
self._denominator = numerator.denominator
return self
elif isinstance(numerator, (float, Decimal)):
# Exact conversion
self._numerator, self._denominator = numerator.as_integer_ratio()
return self
elif isinstance(numerator, str):
# Handle construction from strings.
m = _RATIONAL_FORMAT.match(numerator)
if m is None:
raise ValueError('Invalid literal for Fraction: %r' %
numerator)
numerator = int(m.group('num') or '0')
denom = m.group('denom')
if denom:
denominator = int(denom)
else:
denominator = 1
decimal = m.group('decimal')
if decimal:
decimal = decimal.replace('_', '')
scale = 10**len(decimal)
numerator = numerator * scale + int(decimal)
denominator *= scale
exp = m.group('exp')
if exp:
exp = int(exp)
if exp >= 0:
numerator *= 10**exp
else:
denominator *= 10**-exp
if m.group('sign') == '-':
numerator = -numerator
else:
raise TypeError("argument should be a string "
"or a Rational instance")
elif type(numerator) is int is type(denominator):
pass # *very* normal case
elif (isinstance(numerator, numbers.Rational) and
isinstance(denominator, numbers.Rational)):
numerator, denominator = (
numerator.numerator * denominator.denominator,
denominator.numerator * numerator.denominator
)
else:
raise TypeError("both arguments should be "
"Rational instances")
if denominator == 0:
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
g = math.gcd(numerator, denominator)
if denominator < 0:
g = -g
numerator //= g
denominator //= g
self._numerator = numerator
self._denominator = denominator
return self
@classmethod
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Fraction.from_float(0.3) != Fraction(3, 10).
"""
if isinstance(f, numbers.Integral):
return cls(f)
elif not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
return cls._from_coprime_ints(*f.as_integer_ratio())
@classmethod
def from_decimal(cls, dec):
"""Converts a finite Decimal instance to a rational number, exactly."""
from decimal import Decimal
if isinstance(dec, numbers.Integral):
dec = Decimal(int(dec))
elif not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
return cls._from_coprime_ints(*dec.as_integer_ratio())
@classmethod
def _from_coprime_ints(cls, numerator, denominator, /):
"""Convert a pair of ints to a rational number, for internal use.
The ratio of integers should be in lowest terms and the denominator
should be positive.
"""
obj = super(Fraction, cls).__new__(cls)
obj._numerator = numerator
obj._denominator = denominator
return obj
def is_integer(self):
"""Return True if the Fraction is an integer."""
return self._denominator == 1
def as_integer_ratio(self):
"""Return a pair of integers, whose ratio is equal to the original Fraction.
The ratio is in lowest terms and has a positive denominator.
"""
return (self._numerator, self._denominator)
def limit_denominator(self, max_denominator=1000000):
"""Closest Fraction to self with denominator at most max_denominator.
>>> Fraction('3.141592653589793').limit_denominator(10)
Fraction(22, 7)
>>> Fraction('3.141592653589793').limit_denominator(100)
Fraction(311, 99)
>>> Fraction(4321, 8765).limit_denominator(10000)
Fraction(4321, 8765)
"""
# Algorithm notes: For any real number x, define a *best upper
# approximation* to x to be a rational number p/q such that:
#
# (1) p/q >= x, and
# (2) if p/q > r/s >= x then s > q, for any rational r/s.
#
# Define *best lower approximation* similarly. Then it can be
# proved that a rational number is a best upper or lower
# approximation to x if, and only if, it is a convergent or
# semiconvergent of the (unique shortest) continued fraction
# associated to x.
#
# To find a best rational approximation with denominator <= M,
# we find the best upper and lower approximations with
# denominator <= M and take whichever of these is closer to x.
# In the event of a tie, the bound with smaller denominator is
# chosen. If both denominators are equal (which can happen
# only when max_denominator == 1 and self is midway between
# two integers) the lower bound---i.e., the floor of self, is
# taken.
if max_denominator < 1:
raise ValueError("max_denominator should be at least 1")
if self._denominator <= max_denominator:
return Fraction(self)
p0, q0, p1, q1 = 0, 1, 1, 0
n, d = self._numerator, self._denominator
while True:
a = n//d
q2 = q0+a*q1
if q2 > max_denominator:
break
p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
n, d = d, n-a*d
k = (max_denominator-q0)//q1
# Determine which of the candidates (p0+k*p1)/(q0+k*q1) and p1/q1 is
# closer to self. The distance between them is 1/(q1*(q0+k*q1)), while
# the distance from p1/q1 to self is d/(q1*self._denominator). So we
# need to compare 2*(q0+k*q1) with self._denominator/d.
if 2*d*(q0+k*q1) <= self._denominator:
return Fraction._from_coprime_ints(p1, q1)
else:
return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1)
@property
def numerator(a):
return a._numerator
@property
def denominator(a):
return a._denominator
def __repr__(self):
"""repr(self)"""
return '%s(%s, %s)' % (self.__class__.__name__,
self._numerator, self._denominator)
def __str__(self):
"""str(self)"""
if self._denominator == 1:
return str(self._numerator)
else:
return '%s/%s' % (self._numerator, self._denominator)
def _format_general(self, match):
"""Helper method for __format__.
Handles fill, alignment, signs, and thousands separators in the
case of no presentation type.
"""
# Validate and parse the format specifier.
fill = match["fill"] or " "
align = match["align"] or ">"
pos_sign = "" if match["sign"] == "-" else match["sign"]
alternate_form = bool(match["alt"])
minimumwidth = int(match["minimumwidth"] or "0")
thousands_sep = match["thousands_sep"] or ''
# Determine the body and sign representation.
n, d = self._numerator, self._denominator
if d > 1 or alternate_form:
body = f"{abs(n):{thousands_sep}}/{d:{thousands_sep}}"
else:
body = f"{abs(n):{thousands_sep}}"
sign = '-' if n < 0 else pos_sign
# Pad with fill character if necessary and return.
padding = fill * (minimumwidth - len(sign) - len(body))
if align == ">":
return padding + sign + body
elif align == "<":
return sign + body + padding
elif align == "^":
half = len(padding) // 2
return padding[:half] + sign + body + padding[half:]
else: # align == "="
return sign + padding + body
def _format_float_style(self, match):
"""Helper method for __format__; handles float presentation types."""
fill = match["fill"] or " "
align = match["align"] or ">"
pos_sign = "" if match["sign"] == "-" else match["sign"]
no_neg_zero = bool(match["no_neg_zero"])
alternate_form = bool(match["alt"])
zeropad = bool(match["zeropad"])
minimumwidth = int(match["minimumwidth"] or "0")
thousands_sep = match["thousands_sep"]
precision = int(match["precision"] or "6")
presentation_type = match["presentation_type"]
trim_zeros = presentation_type in "gG" and not alternate_form
trim_point = not alternate_form
exponent_indicator = "E" if presentation_type in "EFG" else "e"
# Round to get the digits we need, figure out where to place the point,
# and decide whether to use scientific notation. 'point_pos' is the
# relative to the _end_ of the digit string: that is, it's the number
# of digits that should follow the point.
if presentation_type in "fF%":
exponent = -precision
if presentation_type == "%":
exponent -= 2
negative, significand = _round_to_exponent(
self._numerator, self._denominator, exponent, no_neg_zero)
scientific = False
point_pos = precision
else: # presentation_type in "eEgG"
figures = (
max(precision, 1)
if presentation_type in "gG"
else precision + 1
)
negative, significand, exponent = _round_to_figures(
self._numerator, self._denominator, figures)
scientific = (
presentation_type in "eE"
or exponent > 0
or exponent + figures <= -4
)
point_pos = figures - 1 if scientific else -exponent
# Get the suffix - the part following the digits, if any.
if presentation_type == "%":
suffix = "%"
elif scientific:
suffix = f"{exponent_indicator}{exponent + point_pos:+03d}"
else:
suffix = ""
# String of output digits, padded sufficiently with zeros on the left
# so that we'll have at least one digit before the decimal point.
digits = f"{significand:0{point_pos + 1}d}"
# Before padding, the output has the form f"{sign}{leading}{trailing}",
# where `leading` includes thousands separators if necessary and
# `trailing` includes the decimal separator where appropriate.
sign = "-" if negative else pos_sign
leading = digits[: len(digits) - point_pos]
frac_part = digits[len(digits) - point_pos :]
if trim_zeros:
frac_part = frac_part.rstrip("0")
separator = "" if trim_point and not frac_part else "."
trailing = separator + frac_part + suffix
# Do zero padding if required.
if zeropad:
min_leading = minimumwidth - len(sign) - len(trailing)
# When adding thousands separators, they'll be added to the
# zero-padded portion too, so we need to compensate.
leading = leading.zfill(
3 * min_leading // 4 + 1 if thousands_sep else min_leading
)
# Insert thousands separators if required.
if thousands_sep:
first_pos = 1 + (len(leading) - 1) % 3
leading = leading[:first_pos] + "".join(
thousands_sep + leading[pos : pos + 3]
for pos in range(first_pos, len(leading), 3)
)
# We now have a sign and a body. Pad with fill character if necessary
# and return.
body = leading + trailing
padding = fill * (minimumwidth - len(sign) - len(body))
if align == ">":
return padding + sign + body
elif align == "<":
return sign + body + padding
elif align == "^":
half = len(padding) // 2
return padding[:half] + sign + body + padding[half:]
else: # align == "="
return sign + padding + body
def __format__(self, format_spec, /):
"""Format this fraction according to the given format specification."""
if match := _GENERAL_FORMAT_SPECIFICATION_MATCHER(format_spec):
return self._format_general(match)
if match := _FLOAT_FORMAT_SPECIFICATION_MATCHER(format_spec):
# Refuse the temptation to guess if both alignment _and_
# zero padding are specified.
if match["align"] is None or match["zeropad"] is None:
return self._format_float_style(match)
raise ValueError(
f"Invalid format specifier {format_spec!r} "
f"for object of type {type(self).__name__!r}"
)
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
In general, we want to implement the arithmetic operations so
that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both
to the nearest built in type and do the operation there. In
Fraction, that means that we define __add__ and __radd__ as:
def __add__(self, other):
# Both types have numerators/denominator attributes,
# so do the operation directly
if isinstance(other, (int, Fraction)):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
# float and complex don't have those operations, but we
# know about those types, so special case them.
elif isinstance(other, float):
return float(self) + other
elif isinstance(other, complex):
return complex(self) + other
# Let the other type take over.
return NotImplemented
def __radd__(self, other):
# radd handles more types than add because there's
# nothing left to fall back to.
if isinstance(other, numbers.Rational):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
return NotImplemented
There are 5 different cases for a mixed-type addition on
Fraction. I'll refer to all of the above code that doesn't
refer to Fraction, float, or complex as "boilerplate". 'r'
will be an instance of Fraction, which is a subtype of
Rational (r : Fraction <: Rational), and b : B <:
Complex. The first three involve 'r + b':
1. If B <: Fraction, int, float, or complex, we handle
that specially, and all is well.
2. If Fraction falls back to the boilerplate code, and it
were to return a value from __add__, we'd miss the
possibility that B defines a more intelligent __radd__,
so the boilerplate should return NotImplemented from
__add__. In particular, we don't handle Rational
here, even though we could get an exact answer, in case
the other type wants to do something special.
3. If B <: Fraction, Python tries B.__radd__ before
Fraction.__add__. This is ok, because it was
implemented with knowledge of Fraction, so it can
handle those instances before delegating to Real or
Complex.
The next two situations describe 'b + r'. We assume that b
didn't know about Fraction in its implementation, and that it
uses similar boilerplate code:
4. If B <: Rational, then __radd_ converts both to the
builtin rational type (hey look, that's us) and
proceeds.
5. Otherwise, __radd__ tries to find the nearest common
base ABC, and fall back to its builtin type. Since this
class doesn't subclass a concrete type, there's no
implementation to fall back to, so we need to try as
hard as possible to return an actual value, or the user
will get a TypeError.
"""
def forward(a, b):
if isinstance(b, Fraction):
return monomorphic_operator(a, b)
elif isinstance(b, int):
return monomorphic_operator(a, Fraction(b))
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, numbers.Rational):
# Includes ints.
return monomorphic_operator(Fraction(a), b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
# Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
#
# Assume input fractions a and b are normalized.
#
# 1) Consider addition/subtraction.
#
# Let g = gcd(da, db). Then
#
# na nb na*db ± nb*da
# a ± b == -- ± -- == ------------- ==
# da db da*db
#
# na*(db//g) ± nb*(da//g) t
# == ----------------------- == -
# (da*db)//g d
#
# Now, if g > 1, we're working with smaller integers.
#
# Note, that t, (da//g) and (db//g) are pairwise coprime.
#
# Indeed, (da//g) and (db//g) share no common factors (they were
# removed) and da is coprime with na (since input fractions are
# normalized), hence (da//g) and na are coprime. By symmetry,
# (db//g) and nb are coprime too. Then,
#
# gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
# gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
#
# Above allows us optimize reduction of the result to lowest
# terms. Indeed,
#
# g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
#
# t//g2 t//g2
# a ± b == ----------------------- == ----------------
# (da//g)*(db//g)*(g//g2) (da//g)*(db//g2)
#
# is a normalized fraction. This is useful because the unnormalized
# denominator d could be much larger than g.
#
# We should special-case g == 1 (and g2 == 1), since 60.8% of
# randomly-chosen integers are coprime:
# https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
# Note, that g2 == 1 always for fractions, obtained from floats: here
# g is a power of 2 and the unnormalized numerator t is an odd integer.
#
# 2) Consider multiplication
#
# Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
#
# na*nb na*nb (na//g1)*(nb//g2)
# a*b == ----- == ----- == -----------------
# da*db db*da (db//g1)*(da//g2)
#
# Note, that after divisions we're multiplying smaller integers.
#
# Also, the resulting fraction is normalized, because each of
# two factors in the numerator is coprime to each of the two factors
# in the denominator.
#
# Indeed, pick (na//g1). It's coprime with (da//g2), because input
# fractions are normalized. It's also coprime with (db//g1), because
# common factors are removed by g1 == gcd(na, db).
#
# As for addition/subtraction, we should special-case g1 == 1
# and g2 == 1 for same reason. That happens also for multiplying
# rationals, obtained from floats.
def _add(a, b):
"""a + b"""
na, da = a._numerator, a._denominator
nb, db = b._numerator, b._denominator
g = math.gcd(da, db)
if g == 1:
return Fraction._from_coprime_ints(na * db + da * nb, da * db)
s = da // g
t = na * (db // g) + nb * s
g2 = math.gcd(t, g)
if g2 == 1:
return Fraction._from_coprime_ints(t, s * db)
return Fraction._from_coprime_ints(t // g2, s * (db // g2))
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
na, da = a._numerator, a._denominator
nb, db = b._numerator, b._denominator
g = math.gcd(da, db)
if g == 1:
return Fraction._from_coprime_ints(na * db - da * nb, da * db)
s = da // g
t = na * (db // g) - nb * s
g2 = math.gcd(t, g)
if g2 == 1:
return Fraction._from_coprime_ints(t, s * db)
return Fraction._from_coprime_ints(t // g2, s * (db // g2))
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
na, da = a._numerator, a._denominator
nb, db = b._numerator, b._denominator
g1 = math.gcd(na, db)
if g1 > 1:
na //= g1
db //= g1
g2 = math.gcd(nb, da)
if g2 > 1:
nb //= g2
da //= g2
return Fraction._from_coprime_ints(na * nb, db * da)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
# Same as _mul(), with inversed b.
nb, db = b._numerator, b._denominator
if nb == 0:
raise ZeroDivisionError('Fraction(%s, 0)' % db)
na, da = a._numerator, a._denominator
g1 = math.gcd(na, nb)
if g1 > 1:
na //= g1
nb //= g1
g2 = math.gcd(db, da)
if g2 > 1:
da //= g2
db //= g2
n, d = na * db, nb * da
if d < 0:
n, d = -n, -d
return Fraction._from_coprime_ints(n, d)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
def _floordiv(a, b):
"""a // b"""
return (a.numerator * b.denominator) // (a.denominator * b.numerator)
__floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)
def _divmod(a, b):
"""(a // b, a % b)"""
da, db = a.denominator, b.denominator
div, n_mod = divmod(a.numerator * db, da * b.numerator)
return div, Fraction(n_mod, da * db)
__divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)
def _mod(a, b):
"""a % b"""
da, db = a.denominator, b.denominator
return Fraction((a.numerator * db) % (b.numerator * da), da * db)
__mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, numbers.Rational):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Fraction._from_coprime_ints(a._numerator ** power,
a._denominator ** power)
elif a._numerator > 0:
return Fraction._from_coprime_ints(a._denominator ** -power,
a._numerator ** -power)
elif a._numerator == 0:
raise ZeroDivisionError('Fraction(%s, 0)' %
a._denominator ** -power)
else:
return Fraction._from_coprime_ints((-a._denominator) ** -power,
(-a._numerator) ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b._denominator == 1 and b._numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b._numerator
if isinstance(a, numbers.Rational):
return Fraction(a.numerator, a.denominator) ** b
if b._denominator == 1:
return a ** b._numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Fraction"""
return Fraction._from_coprime_ints(a._numerator, a._denominator)
def __neg__(a):
"""-a"""
return Fraction._from_coprime_ints(-a._numerator, a._denominator)
def __abs__(a):
"""abs(a)"""
return Fraction._from_coprime_ints(abs(a._numerator), a._denominator)
def __int__(a, _index=operator.index):
"""int(a)"""
if a._numerator < 0:
return _index(-(-a._numerator // a._denominator))
else:
return _index(a._numerator // a._denominator)
def __trunc__(a):
"""math.trunc(a)"""
if a._numerator < 0:
return -(-a._numerator // a._denominator)
else:
return a._numerator // a._denominator
def __floor__(a):
"""math.floor(a)"""
return a._numerator // a._denominator
def __ceil__(a):
"""math.ceil(a)"""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a._numerator // a._denominator)
def __round__(self, ndigits=None):
"""round(self, ndigits)
Rounds half toward even.
"""
if ndigits is None:
d = self._denominator
floor, remainder = divmod(self._numerator, d)
if remainder * 2 < d:
return floor
elif remainder * 2 > d:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Fraction and therefore have
# round().
if ndigits > 0:
return Fraction(round(self * shift), shift)
else:
return Fraction(round(self / shift) * shift)
def __hash__(self):
"""hash(self)"""
return _hash_algorithm(self._numerator, self._denominator)
def __eq__(a, b):
"""a == b"""
if type(b) is int:
return a._numerator == b and a._denominator == 1
if isinstance(b, numbers.Rational):
return (a._numerator == b.numerator and
a._denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
if math.isnan(b) or math.isinf(b):
# comparisons with an infinity or nan should behave in
# the same way for any finite a, so treat a as zero.
return 0.0 == b
else:
return a == a.from_float(b)
else:
# Since a doesn't know how to compare with b, let's give b
# a chance to compare itself with a.
return NotImplemented
def _richcmp(self, other, op):
"""Helper for comparison operators, for internal use only.
Implement comparison between a Rational instance `self`, and
either another Rational instance or a float `other`. If
`other` is not a Rational instance or a float, return
NotImplemented. `op` should be one of the six standard
comparison operators.
"""
# convert other to a Rational instance where reasonable.
if isinstance(other, numbers.Rational):
return op(self._numerator * other.denominator,
self._denominator * other.numerator)
if isinstance(other, float):
if math.isnan(other) or math.isinf(other):
return op(0.0, other)
else:
return op(self, self.from_float(other))
else:
return NotImplemented
def __lt__(a, b):
"""a < b"""
return a._richcmp(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._richcmp(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._richcmp(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._richcmp(b, operator.ge)
def __bool__(a):
"""a != 0"""
# bpo-39274: Use bool() because (a._numerator != 0) can return an
# object which is not a bool.
return bool(a._numerator)
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (self._numerator, self._denominator))
def __copy__(self):
if type(self) == Fraction:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self._numerator, self._denominator)
def __deepcopy__(self, memo):
if type(self) == Fraction:
return self # My components are also immutable
return self.__class__(self._numerator, self._denominator)
|