summaryrefslogtreecommitdiffstats
path: root/Lib/glob.py
blob: 0dd2f8be6610945c27abc4bab25c06fcf58dac60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Filename globbing utility."""

import os
import re
import fnmatch
import sys

__all__ = ["glob", "iglob", "escape"]

def glob(pathname, *, recursive=False):
    """Return a list of paths matching a pathname pattern.

    The pattern may contain simple shell-style wildcards a la
    fnmatch. However, unlike fnmatch, filenames starting with a
    dot are special cases that are not matched by '*' and '?'
    patterns.

    If recursive is true, the pattern '**' will match any files and
    zero or more directories and subdirectories.
    """
    return list(iglob(pathname, recursive=recursive))

def iglob(pathname, *, recursive=False):
    """Return an iterator which yields the paths matching a pathname pattern.

    The pattern may contain simple shell-style wildcards a la
    fnmatch. However, unlike fnmatch, filenames starting with a
    dot are special cases that are not matched by '*' and '?'
    patterns.

    If recursive is true, the pattern '**' will match any files and
    zero or more directories and subdirectories.
    """
    sys.audit("glob.glob", pathname, recursive)
    it = _iglob(pathname, recursive, False)
    if recursive and _isrecursive(pathname):
        s = next(it)  # skip empty string
        assert not s
    return it

def _iglob(pathname, recursive, dironly):
    dirname, basename = os.path.split(pathname)
    if not has_magic(pathname):
        assert not dironly
        if basename:
            if os.path.lexists(pathname):
                yield pathname
        else:
            # Patterns ending with a slash should match only directories
            if os.path.isdir(dirname):
                yield pathname
        return
    if not dirname:
        if recursive and _isrecursive(basename):
            yield from _glob2(dirname, basename, dironly)
        else:
            yield from _glob1(dirname, basename, dironly)
        return
    # `os.path.split()` returns the argument itself as a dirname if it is a
    # drive or UNC path.  Prevent an infinite recursion if a drive or UNC path
    # contains magic characters (i.e. r'\\?\C:').
    if dirname != pathname and has_magic(dirname):
        dirs = _iglob(dirname, recursive, True)
    else:
        dirs = [dirname]
    if has_magic(basename):
        if recursive and _isrecursive(basename):
            glob_in_dir = _glob2
        else:
            glob_in_dir = _glob1
    else:
        glob_in_dir = _glob0
    for dirname in dirs:
        for name in glob_in_dir(dirname, basename, dironly):
            yield os.path.join(dirname, name)

# These 2 helper functions non-recursively glob inside a literal directory.
# They return a list of basenames.  _glob1 accepts a pattern while _glob0
# takes a literal basename (so it only has to check for its existence).

def _glob1(dirname, pattern, dironly):
    names = list(_iterdir(dirname, dironly))
    if not _ishidden(pattern):
        names = (x for x in names if not _ishidden(x))
    return fnmatch.filter(names, pattern)

def _glob0(dirname, basename, dironly):
    if not basename:
        # `os.path.split()` returns an empty basename for paths ending with a
        # directory separator.  'q*x/' should match only directories.
        if os.path.isdir(dirname):
            return [basename]
    else:
        if os.path.lexists(os.path.join(dirname, basename)):
            return [basename]
    return []

# Following functions are not public but can be used by third-party code.

def glob0(dirname, pattern):
    return _glob0(dirname, pattern, False)

def glob1(dirname, pattern):
    return _glob1(dirname, pattern, False)

# This helper function recursively yields relative pathnames inside a literal
# directory.

def _glob2(dirname, pattern, dironly):
    assert _isrecursive(pattern)
    yield pattern[:0]
    yield from _rlistdir(dirname, dironly)

# If dironly is false, yields all file names inside a directory.
# If dironly is true, yields only directory names.
def _iterdir(dirname, dironly):
    if not dirname:
        if isinstance(dirname, bytes):
            dirname = bytes(os.curdir, 'ASCII')
        else:
            dirname = os.curdir
    try:
        with os.scandir(dirname) as it:
            for entry in it:
                try:
                    if not dironly or entry.is_dir():
                        yield entry.name
                except OSError:
                    pass
    except OSError:
        return

# Recursively yields relative pathnames inside a literal directory.
def _rlistdir(dirname, dironly):
    names = list(_iterdir(dirname, dironly))
    for x in names:
        if not _ishidden(x):
            yield x
            path = os.path.join(dirname, x) if dirname else x
            for y in _rlistdir(path, dironly):
                yield os.path.join(x, y)


magic_check = re.compile('([*?[])')
magic_check_bytes = re.compile(b'([*?[])')

def has_magic(s):
    if isinstance(s, bytes):
        match = magic_check_bytes.search(s)
    else:
        match = magic_check.search(s)
    return match is not None

def _ishidden(path):
    return path[0] in ('.', b'.'[0])

def _isrecursive(pattern):
    if isinstance(pattern, bytes):
        return pattern == b'**'
    else:
        return pattern == '**'

def escape(pathname):
    """Escape all special characters.
    """
    # Escaping is done by wrapping any of "*?[" between square brackets.
    # Metacharacters do not work in the drive part and shouldn't be escaped.
    drive, pathname = os.path.splitdrive(pathname)
    if isinstance(pathname, bytes):
        pathname = magic_check_bytes.sub(br'[\1]', pathname)
    else:
        pathname = magic_check.sub(r'[\1]', pathname)
    return drive + pathname
a id='n235' href='#n235'>235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/*
 * tkCanvArc.c --
 *
 *	This file implements arc items for canvas widgets.
 *
 * Copyright (c) 1992-1994 The Regents of the University of California.
 * Copyright (c) 1994-1997 Sun Microsystems, Inc.
 *
 * See the file "license.terms" for information on usage and redistribution of
 * this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#include <stdio.h>
#include "tkInt.h"
#include "tkCanvas.h"

/*
 * The structure below defines the record for each arc item.
 */

typedef enum {
    PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE
} Style;

typedef struct ArcItem {
    Tk_Item header;		/* Generic stuff that's the same for all
				 * types. MUST BE FIRST IN STRUCTURE. */
    Tk_Outline outline;		/* Outline structure */
    double bbox[4];		/* Coordinates (x1, y1, x2, y2) of bounding
				 * box for oval of which arc is a piece. */
    double start;		/* Angle at which arc begins, in degrees
				 * between 0 and 360. */
    double extent;		/* Extent of arc (angular distance from start
				 * to end of arc) in degrees between -360 and
				 * 360. */
    double *outlinePtr;		/* Points to (x,y) coordinates for points that
				 * define one or two closed polygons
				 * representing the portion of the outline
				 * that isn't part of the arc (the V-shape for
				 * a pie slice or a line-like segment for a
				 * chord). Malloc'ed. */
    int numOutlinePoints;	/* Number of points at outlinePtr. Zero means
				 * no space allocated. */
    Tk_TSOffset tsoffset;
    XColor *fillColor;		/* Color for filling arc (used for drawing
				 * outline too when style is "arc"). NULL
				 * means don't fill arc. */
    XColor *activeFillColor;	/* Color for filling arc (used for drawing
				 * outline too when style is "arc" and state
				 * is "active"). NULL means use fillColor. */
    XColor *disabledFillColor;	/* Color for filling arc (used for drawing
				 * outline too when style is "arc" and state
				 * is "disabled". NULL means use fillColor */
    Pixmap fillStipple;		/* Stipple bitmap for filling item. */
    Pixmap activeFillStipple;	/* Stipple bitmap for filling item if state is
				 * active. */
    Pixmap disabledFillStipple;	/* Stipple bitmap for filling item if state is
				 * disabled. */
    Style style;		/* How to draw arc: arc, chord, or
				 * pieslice. */
    GC fillGC;			/* Graphics context for filling item. */
    double center1[2];		/* Coordinates of center of arc outline at
				 * start (see ComputeArcOutline). */
    double center2[2];		/* Coordinates of center of arc outline at
				 * start+extent (see ComputeArcOutline). */
} ArcItem;

/*
 * The definitions below define the sizes of the polygons used to display
 * outline information for various styles of arcs:
 */

#define CHORD_OUTLINE_PTS	7
#define PIE_OUTLINE1_PTS	6
#define PIE_OUTLINE2_PTS	7

/*
 * Information used for parsing configuration specs:
 */

static int	StyleParseProc(ClientData clientData, Tcl_Interp *interp,
		    Tk_Window tkwin, CONST char *value,
		    char *widgRec, int offset);
static char *	StylePrintProc(ClientData clientData, Tk_Window tkwin,
		    char *widgRec, int offset, Tcl_FreeProc **freeProcPtr);

static Tk_CustomOption stateOption = {
    (Tk_OptionParseProc *) TkStateParseProc,
    TkStatePrintProc, (ClientData) 2
};
static Tk_CustomOption styleOption = {
    (Tk_OptionParseProc *) StyleParseProc,
    StylePrintProc, (ClientData) NULL
};
static Tk_CustomOption tagsOption = {
    (Tk_OptionParseProc *) Tk_CanvasTagsParseProc,
    Tk_CanvasTagsPrintProc, (ClientData) NULL
};
static Tk_CustomOption dashOption = {
    (Tk_OptionParseProc *) TkCanvasDashParseProc,
    TkCanvasDashPrintProc, (ClientData) NULL
};
static Tk_CustomOption offsetOption = {
    (Tk_OptionParseProc *) TkOffsetParseProc,
    TkOffsetPrintProc, (ClientData) (TK_OFFSET_RELATIVE)
};
static Tk_CustomOption pixelOption = {
    (Tk_OptionParseProc *) TkPixelParseProc,
    TkPixelPrintProc, (ClientData) NULL
};

static Tk_ConfigSpec configSpecs[] = {
    {TK_CONFIG_CUSTOM, "-activedash", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.activeDash),
	TK_CONFIG_NULL_OK, &dashOption},
    {TK_CONFIG_COLOR, "-activefill", NULL, NULL,
	NULL, Tk_Offset(ArcItem, activeFillColor), TK_CONFIG_NULL_OK},
    {TK_CONFIG_COLOR, "-activeoutline", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.activeColor), TK_CONFIG_NULL_OK},
    {TK_CONFIG_BITMAP, "-activeoutlinestipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.activeStipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_BITMAP, "-activestipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, activeFillStipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_CUSTOM, "-activewidth", NULL, NULL,
	"0.0", Tk_Offset(ArcItem, outline.activeWidth),
	TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
    {TK_CONFIG_CUSTOM, "-dash", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.dash),
	TK_CONFIG_NULL_OK, &dashOption},
    {TK_CONFIG_PIXELS, "-dashoffset", NULL, NULL,
	"0", Tk_Offset(ArcItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT},
    {TK_CONFIG_CUSTOM, "-disableddash", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.disabledDash),
	TK_CONFIG_NULL_OK, &dashOption},
    {TK_CONFIG_COLOR, "-disabledfill", NULL, NULL,
	NULL, Tk_Offset(ArcItem, disabledFillColor), TK_CONFIG_NULL_OK},
    {TK_CONFIG_COLOR, "-disabledoutline", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.disabledColor), TK_CONFIG_NULL_OK},
    {TK_CONFIG_BITMAP, "-disabledoutlinestipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.disabledStipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_BITMAP, "-disabledstipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, disabledFillStipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_CUSTOM, "-disabledwidth", NULL, NULL,
	"0.0", Tk_Offset(ArcItem, outline.disabledWidth),
	TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
    {TK_CONFIG_DOUBLE, "-extent", NULL, NULL,
	"90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT},
    {TK_CONFIG_COLOR, "-fill", NULL, NULL,
	NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK},
    {TK_CONFIG_CUSTOM, "-offset", NULL, NULL,
	"0,0", Tk_Offset(ArcItem, tsoffset),
	TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
    {TK_CONFIG_COLOR, "-outline", NULL, NULL,
	"black", Tk_Offset(ArcItem, outline.color), TK_CONFIG_NULL_OK},
    {TK_CONFIG_CUSTOM, "-outlineoffset", NULL, NULL,
	"0,0", Tk_Offset(ArcItem, outline.tsoffset),
	TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
    {TK_CONFIG_BITMAP, "-outlinestipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, outline.stipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_DOUBLE, "-start", NULL, NULL,
	"0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT},
    {TK_CONFIG_CUSTOM, "-state", NULL, NULL,
	NULL, Tk_Offset(Tk_Item, state), TK_CONFIG_NULL_OK, &stateOption},
    {TK_CONFIG_BITMAP, "-stipple", NULL, NULL,
	NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK},
    {TK_CONFIG_CUSTOM, "-style", NULL, NULL,
	NULL, Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT,
	&styleOption},
    {TK_CONFIG_CUSTOM, "-tags", NULL, NULL,
	NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
    {TK_CONFIG_CUSTOM, "-width", NULL, NULL,
	"1.0", Tk_Offset(ArcItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT,
	&pixelOption},
    {TK_CONFIG_END, NULL, NULL, NULL, NULL, 0, 0}
};

/*
 * Prototypes for functions defined in this file:
 */

static void		ComputeArcBbox(Tk_Canvas canvas, ArcItem *arcPtr);
static int		ConfigureArc(Tcl_Interp *interp,
			    Tk_Canvas canvas, Tk_Item *itemPtr, int objc,
			    Tcl_Obj *CONST objv[], int flags);
static int		CreateArc(Tcl_Interp *interp,
			    Tk_Canvas canvas, struct Tk_Item *itemPtr,
			    int objc, Tcl_Obj *CONST objv[]);
static void		DeleteArc(Tk_Canvas canvas,
			    Tk_Item *itemPtr, Display *display);
static void		DisplayArc(Tk_Canvas canvas,
			    Tk_Item *itemPtr, Display *display, Drawable dst,
			    int x, int y, int width, int height);
static int		ArcCoords(Tcl_Interp *interp, Tk_Canvas canvas,
			    Tk_Item *itemPtr, int objc, Tcl_Obj *CONST objv[]);
static int		ArcToArea(Tk_Canvas canvas,
			    Tk_Item *itemPtr, double *rectPtr);
static double		ArcToPoint(Tk_Canvas canvas,
			    Tk_Item *itemPtr, double *coordPtr);
static int		ArcToPostscript(Tcl_Interp *interp,
			    Tk_Canvas canvas, Tk_Item *itemPtr, int prepass);
static void		ScaleArc(Tk_Canvas canvas,
			    Tk_Item *itemPtr, double originX, double originY,
			    double scaleX, double scaleY);
static void		TranslateArc(Tk_Canvas canvas,
			    Tk_Item *itemPtr, double deltaX, double deltaY);
static int		AngleInRange(double x, double y,
			    double start, double extent);
static void		ComputeArcOutline(Tk_Canvas canvas, ArcItem *arcPtr);
static int		HorizLineToArc(double x1, double x2,
			    double y, double rx, double ry,
			    double start, double extent);
static int		VertLineToArc(double x, double y1,
			    double y2, double rx, double ry,
			    double start, double extent);

/*
 * The structures below defines the arc item types by means of functions that
 * can be invoked by generic item code.
 */

Tk_ItemType tkArcType = {
    "arc",			/* name */
    sizeof(ArcItem),		/* itemSize */
    CreateArc,			/* createProc */
    configSpecs,		/* configSpecs */
    ConfigureArc,		/* configureProc */
    ArcCoords,			/* coordProc */
    DeleteArc,			/* deleteProc */
    DisplayArc,			/* displayProc */
    TK_CONFIG_OBJS,		/* flags */
    ArcToPoint,			/* pointProc */
    ArcToArea,			/* areaProc */
    ArcToPostscript,		/* postscriptProc */
    ScaleArc,			/* scaleProc */
    TranslateArc,		/* translateProc */
    NULL,			/* indexProc */
    NULL,			/* icursorProc */
    NULL,			/* selectionProc */
    NULL,			/* insertProc */
    NULL,			/* dTextProc */
    NULL,			/* nextPtr */
};

#ifndef PI
#define PI	3.14159265358979323846
#endif

/*
 *--------------------------------------------------------------
 *
 * CreateArc --
 *
 *	This function is invoked to create a new arc item in a canvas.
 *
 * Results:
 *	A standard Tcl return value. If an error occurred in creating the
 *	item, then an error message is left in the interp's result; in this
 *	case itemPtr is left uninitialized, so it can be safely freed by the
 *	caller.
 *
 * Side effects:
 *	A new arc item is created.
 *
 *--------------------------------------------------------------
 */

static int
CreateArc(
    Tcl_Interp *interp,		/* Interpreter for error reporting. */
    Tk_Canvas canvas,		/* Canvas to hold new item. */
    Tk_Item *itemPtr,		/* Record to hold new item; header has been
				 * initialized by caller. */
    int objc,			/* Number of arguments in objv. */
    Tcl_Obj *CONST objv[])	/* Arguments describing arc. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    int i;

    if (objc == 0) {
	Tcl_Panic("canvas did not pass any coords\n");
    }

    /*
     * Carry out initialization that is needed in order to clean up after
     * errors during the the remainder of this function.
     */

    Tk_CreateOutline(&(arcPtr->outline));
    arcPtr->start = 0;
    arcPtr->extent = 90;
    arcPtr->outlinePtr = NULL;
    arcPtr->numOutlinePoints = 0;
    arcPtr->tsoffset.flags = 0;
    arcPtr->tsoffset.xoffset = 0;
    arcPtr->tsoffset.yoffset = 0;
    arcPtr->fillColor = NULL;
    arcPtr->activeFillColor = NULL;
    arcPtr->disabledFillColor = NULL;
    arcPtr->fillStipple = None;
    arcPtr->activeFillStipple = None;
    arcPtr->disabledFillStipple = None;
    arcPtr->style = PIESLICE_STYLE;
    arcPtr->fillGC = None;

    /*
     * Process the arguments to fill in the item record.
     */

    for (i = 1; i < objc; i++) {
	char *arg = Tcl_GetString(objv[i]);

	if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) {
	    break;
	}
    }
    if (ArcCoords(interp, canvas, itemPtr, i, objv) != TCL_OK) {
	goto error;
    }
    if (ConfigureArc(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) {
	return TCL_OK;
    }

  error:
    DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
    return TCL_ERROR;
}

/*
 *--------------------------------------------------------------
 *
 * ArcCoords --
 *
 *	This function is invoked to process the "coords" widget command on
 *	arcs. See the user documentation for details on what it does.
 *
 * Results:
 *	Returns TCL_OK or TCL_ERROR, and sets the interp's result.
 *
 * Side effects:
 *	The coordinates for the given item may be changed.
 *
 *--------------------------------------------------------------
 */

static int
ArcCoords(
    Tcl_Interp *interp,		/* Used for error reporting. */
    Tk_Canvas canvas,		/* Canvas containing item. */
    Tk_Item *itemPtr,		/* Item whose coordinates are to be read or
				 * modified. */
    int objc,			/* Number of coordinates supplied in objv. */
    Tcl_Obj *CONST objv[])	/* Array of coordinates: x1, y1, x2, y2, ... */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;

    if (objc == 0) {
	Tcl_Obj *obj = Tcl_NewObj();
	Tcl_Obj *subobj = Tcl_NewDoubleObj(arcPtr->bbox[0]);

	Tcl_ListObjAppendElement(interp, obj, subobj);
	subobj = Tcl_NewDoubleObj(arcPtr->bbox[1]);
	Tcl_ListObjAppendElement(interp, obj, subobj);
	subobj = Tcl_NewDoubleObj(arcPtr->bbox[2]);
	Tcl_ListObjAppendElement(interp, obj, subobj);
	subobj = Tcl_NewDoubleObj(arcPtr->bbox[3]);
	Tcl_ListObjAppendElement(interp, obj, subobj);
	Tcl_SetObjResult(interp, obj);
    } else if ((objc == 1)||(objc == 4)) {
	if (objc==1) {
	    if (Tcl_ListObjGetElements(interp, objv[0], &objc,
		    (Tcl_Obj ***) &objv) != TCL_OK) {
		return TCL_ERROR;
	    } else if (objc != 4) {
		char buf[64 + TCL_INTEGER_SPACE];

		sprintf(buf, "wrong # coordinates: expected 4, got %d", objc);
		Tcl_SetResult(interp, buf, TCL_VOLATILE);
		return TCL_ERROR;
	    }
	}
	if ((Tk_CanvasGetCoordFromObj(interp, canvas, objv[0],
 		    &arcPtr->bbox[0]) != TCL_OK)
		|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[1],
		    &arcPtr->bbox[1]) != TCL_OK)
		|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[2],
			&arcPtr->bbox[2]) != TCL_OK)
		|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[3],
			&arcPtr->bbox[3]) != TCL_OK)) {
	    return TCL_ERROR;
	}
	ComputeArcBbox(canvas, arcPtr);
    } else {
	char buf[64 + TCL_INTEGER_SPACE];

	sprintf(buf, "wrong # coordinates: expected 0 or 4, got %d", objc);
	Tcl_SetResult(interp, buf, TCL_VOLATILE);
	return TCL_ERROR;
    }
    return TCL_OK;
}

/*
 *--------------------------------------------------------------
 *
 * ConfigureArc --
 *
 *	This function is invoked to configure various aspects of a arc item,
 *	such as its outline and fill colors.
 *
 * Results:
 *	A standard Tcl result code. If an error occurs, then an error message
 *	is left in the interp's result.
 *
 * Side effects:
 *	Configuration information, such as colors and stipple patterns, may be
 *	set for itemPtr.
 *
 *--------------------------------------------------------------
 */

static int
ConfigureArc(
    Tcl_Interp *interp,		/* Used for error reporting. */
    Tk_Canvas canvas,		/* Canvas containing itemPtr. */
    Tk_Item *itemPtr,		/* Arc item to reconfigure. */
    int objc,			/* Number of elements in objv. */
    Tcl_Obj *CONST objv[],	/* Arguments describing things to configure. */
    int flags)			/* Flags to pass to Tk_ConfigureWidget. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    XGCValues gcValues;
    GC newGC;
    unsigned long mask;
    int i;
    Tk_Window tkwin;
    Tk_TSOffset *tsoffset;
    XColor *color;
    Pixmap stipple;
    Tk_State state;

    tkwin = Tk_CanvasTkwin(canvas);
    if (TCL_OK != Tk_ConfigureWidget(interp, tkwin, configSpecs, objc,
	    (CONST char **) objv, (char *) arcPtr, flags|TK_CONFIG_OBJS)) {
	return TCL_ERROR;
    }

    state = itemPtr->state;

    /*
     * A few of the options require additional processing, such as style and
     * graphics contexts.
     */

    if (arcPtr->outline.activeWidth > arcPtr->outline.width ||
	    arcPtr->outline.activeDash.number != 0 ||
	    arcPtr->outline.activeColor != NULL ||
	    arcPtr->outline.activeStipple != None ||
	    arcPtr->activeFillColor != NULL ||
	    arcPtr->activeFillStipple != None) {
	itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT;
    } else {
	itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT;
    }

    tsoffset = &arcPtr->outline.tsoffset;
    flags = tsoffset->flags;
    if (flags & TK_OFFSET_LEFT) {
	tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
    } else if (flags & TK_OFFSET_CENTER) {
	tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
    } else if (flags & TK_OFFSET_RIGHT) {
	tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
    }
    if (flags & TK_OFFSET_TOP) {
	tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
    } else if (flags & TK_OFFSET_MIDDLE) {
	tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
    } else if (flags & TK_OFFSET_BOTTOM) {
	tsoffset->yoffset = (int) (arcPtr->bbox[2] + 0.5);
    }

    i = (int) (arcPtr->start/360.0);
    arcPtr->start -= i*360.0;
    if (arcPtr->start < 0) {
	arcPtr->start += 360.0;
    }
    i = (int) (arcPtr->extent/360.0);
    arcPtr->extent -= i*360.0;

    mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &(arcPtr->outline));
    if (mask) {
	gcValues.cap_style = CapButt;
	mask |= GCCapStyle;
	newGC = Tk_GetGC(tkwin, mask, &gcValues);
    } else {
	newGC = None;
    }
    if (arcPtr->outline.gc != None) {
	Tk_FreeGC(Tk_Display(tkwin), arcPtr->outline.gc);
    }
    arcPtr->outline.gc = newGC;

    if(state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }
    if (state==TK_STATE_HIDDEN) {
	ComputeArcBbox(canvas, arcPtr);
	return TCL_OK;
    }

    color = arcPtr->fillColor;
    stipple = arcPtr->fillStipple;
    if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
	if (arcPtr->activeFillColor!=NULL) {
	    color = arcPtr->activeFillColor;
	}
	if (arcPtr->activeFillStipple!=None) {
	    stipple = arcPtr->activeFillStipple;
	}
    } else if (state==TK_STATE_DISABLED) {
	if (arcPtr->disabledFillColor!=NULL) {
	    color = arcPtr->disabledFillColor;
	}
	if (arcPtr->disabledFillStipple!=None) {
	    stipple = arcPtr->disabledFillStipple;
	}
      }

    if (arcPtr->style == ARC_STYLE) {
	newGC = None;
    } else if (color == NULL) {
	newGC = None;
    } else {
	gcValues.foreground = color->pixel;
	if (arcPtr->style == CHORD_STYLE) {
	    gcValues.arc_mode = ArcChord;
	} else {
	    gcValues.arc_mode = ArcPieSlice;
	}
	mask = GCForeground|GCArcMode;
	if (stipple != None) {
	    gcValues.stipple = stipple;
	    gcValues.fill_style = FillStippled;
	    mask |= GCStipple|GCFillStyle;
	}
	newGC = Tk_GetGC(tkwin, mask, &gcValues);
    }
    if (arcPtr->fillGC != None) {
	Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC);
    }
    arcPtr->fillGC = newGC;

    tsoffset = &arcPtr->tsoffset;
    flags = tsoffset->flags;
    if (flags & TK_OFFSET_LEFT) {
	tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
    } else if (flags & TK_OFFSET_CENTER) {
	tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
    } else if (flags & TK_OFFSET_RIGHT) {
	tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
    }
    if (flags & TK_OFFSET_TOP) {
	tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
    } else if (flags & TK_OFFSET_MIDDLE) {
	tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
    } else if (flags & TK_OFFSET_BOTTOM) {
	tsoffset->yoffset = (int) (arcPtr->bbox[3] + 0.5);
    }

    ComputeArcBbox(canvas, arcPtr);
    return TCL_OK;
}

/*
 *--------------------------------------------------------------
 *
 * DeleteArc --
 *
 *	This function is called to clean up the data structure associated with
 *	an arc item.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Resources associated with itemPtr are released.
 *
 *--------------------------------------------------------------
 */

static void
DeleteArc(
    Tk_Canvas canvas,		/* Info about overall canvas. */
    Tk_Item *itemPtr,		/* Item that is being deleted. */
    Display *display)		/* Display containing window for canvas. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;

    Tk_DeleteOutline(display, &(arcPtr->outline));
    if (arcPtr->numOutlinePoints != 0) {
	ckfree((char *) arcPtr->outlinePtr);
    }
    if (arcPtr->fillColor != NULL) {
	Tk_FreeColor(arcPtr->fillColor);
    }
    if (arcPtr->activeFillColor != NULL) {
	Tk_FreeColor(arcPtr->activeFillColor);
    }
    if (arcPtr->disabledFillColor != NULL) {
	Tk_FreeColor(arcPtr->disabledFillColor);
    }
    if (arcPtr->fillStipple != None) {
	Tk_FreeBitmap(display, arcPtr->fillStipple);
    }
    if (arcPtr->activeFillStipple != None) {
	Tk_FreeBitmap(display, arcPtr->activeFillStipple);
    }
    if (arcPtr->disabledFillStipple != None) {
	Tk_FreeBitmap(display, arcPtr->disabledFillStipple);
    }
    if (arcPtr->fillGC != None) {
	Tk_FreeGC(display, arcPtr->fillGC);
    }
}

/*
 *--------------------------------------------------------------
 *
 * ComputeArcBbox --
 *
 *	This function is invoked to compute the bounding box of all the pixels
 *	that may be drawn as part of an arc.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The fields x1, y1, x2, and y2 are updated in the header for itemPtr.
 *
 *--------------------------------------------------------------
 */

	/* ARGSUSED */
static void
ComputeArcBbox(
    Tk_Canvas canvas,		/* Canvas that contains item. */
    ArcItem *arcPtr)		/* Item whose bbox is to be recomputed. */
{
    double tmp, center[2], point[2];
    double width;
    Tk_State state = arcPtr->header.state;

    if (state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }

    width = arcPtr->outline.width;
    if (width < 1.0) {
	width = 1.0;
    }
    if (state==TK_STATE_HIDDEN) {
	arcPtr->header.x1 = arcPtr->header.x2 =
	arcPtr->header.y1 = arcPtr->header.y2 = -1;
	return;
    } else if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
	if (arcPtr->outline.activeWidth>width) {
	    width = arcPtr->outline.activeWidth;
	}
    } else if (state==TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledWidth>0) {
	    width = arcPtr->outline.disabledWidth;
	}
    }

    /*
     * Make sure that the first coordinates are the lowest ones.
     */

    if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
	double tmp = arcPtr->bbox[3];

	arcPtr->bbox[3] = arcPtr->bbox[1];
	arcPtr->bbox[1] = tmp;
    }
    if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
	double tmp = arcPtr->bbox[2];

	arcPtr->bbox[2] = arcPtr->bbox[0];
	arcPtr->bbox[0] = tmp;
    }

    ComputeArcOutline(canvas,arcPtr);

    /*
     * To compute the bounding box, start with the the bbox formed by the two
     * endpoints of the arc. Then add in the center of the arc's oval (if
     * relevant) and the 3-o'clock, 6-o'clock, 9-o'clock, and 12-o'clock
     * positions, if they are relevant.
     */

    arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
    arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1];
    TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2);
    center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2;
    center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2;
    if (arcPtr->style == PIESLICE_STYLE) {
	TkIncludePoint((Tk_Item *) arcPtr, center);
    }

    tmp = -arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	point[0] = arcPtr->bbox[2];
	point[1] = center[1];
	TkIncludePoint((Tk_Item *) arcPtr, point);
    }
    tmp = 90.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	point[0] = center[0];
	point[1] = arcPtr->bbox[1];
	TkIncludePoint((Tk_Item *) arcPtr, point);
    }
    tmp = 180.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	point[0] = arcPtr->bbox[0];
	point[1] = center[1];
	TkIncludePoint((Tk_Item *) arcPtr, point);
    }
    tmp = 270.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	point[0] = center[0];
	point[1] = arcPtr->bbox[3];
	TkIncludePoint((Tk_Item *) arcPtr, point);
    }

    /*
     * Lastly, expand by the width of the arc (if the arc's outline is being
     * drawn) and add one extra pixel just for safety.
     */

    if (arcPtr->outline.gc == None) {
	tmp = 1;
    } else {
	tmp = (int) ((width + 1.0)/2.0 + 1);
    }
    arcPtr->header.x1 -= (int) tmp;
    arcPtr->header.y1 -= (int) tmp;
    arcPtr->header.x2 += (int) tmp;
    arcPtr->header.y2 += (int) tmp;
}

/*
 *--------------------------------------------------------------
 *
 * DisplayArc --
 *
 *	This function is invoked to draw an arc item in a given drawable.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	ItemPtr is drawn in drawable using the transformation information in
 *	canvas.
 *
 *--------------------------------------------------------------
 */

static void
DisplayArc(
    Tk_Canvas canvas,		/* Canvas that contains item. */
    Tk_Item *itemPtr,		/* Item to be displayed. */
    Display *display,		/* Display on which to draw item. */
    Drawable drawable,		/* Pixmap or window in which to draw item. */
    int x, int y,		/* Describes region of canvas that must be */
    int width, int height)	/* redisplayed (not used). */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    short x1, y1, x2, y2;
    int start, extent, dashnumber;
    double lineWidth;
    Tk_State state = itemPtr->state;
    Pixmap stipple;

    if (state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }
    lineWidth = arcPtr->outline.width;
    if (lineWidth < 1.0) {
	lineWidth = 1.0;
    }
    dashnumber = arcPtr->outline.dash.number;
    stipple = arcPtr->fillStipple;
    if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
	if (arcPtr->outline.activeWidth>lineWidth) {
	    lineWidth = arcPtr->outline.activeWidth;
	}
	if (arcPtr->outline.activeDash.number != 0) {
	    dashnumber = arcPtr->outline.activeDash.number;
	}
	if (arcPtr->activeFillStipple != None) {
	    stipple = arcPtr->activeFillStipple;
	}
    } else if (state == TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledWidth > 0) {
	    lineWidth = arcPtr->outline.disabledWidth;
	}
	if (arcPtr->outline.disabledDash.number != 0) {
	    dashnumber = arcPtr->outline.disabledDash.number;
	}
	if (arcPtr->disabledFillStipple != None) {
	    stipple = arcPtr->disabledFillStipple;
	}
    }

    /*
     * Compute the screen coordinates of the bounding box for the item, plus
     * integer values for the angles.
     */

    Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
	    &x1, &y1);
    Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3],
	    &x2, &y2);
    if (x2 <= x1) {
	x2 = x1+1;
    }
    if (y2 <= y1) {
	y2 = y1+1;
    }
    start = (int) ((64*arcPtr->start) + 0.5);
    extent = (int) ((64*arcPtr->extent) + 0.5);

    /*
     * Display filled arc first (if wanted), then outline. If the extent is
     * zero then don't invoke XFillArc or XDrawArc, since this causes some
     * window servers to crash and should be a no-op anyway.
     */

    if ((arcPtr->fillGC != None) && (extent != 0)) {
	if (stipple != None) {
	    int w = 0;
	    int h = 0;
	    Tk_TSOffset *tsoffset = &arcPtr->tsoffset;
	    int flags = tsoffset->flags;

	    if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) {
		Tk_SizeOfBitmap(display, stipple, &w, &h);
		if (flags & TK_OFFSET_CENTER) {
		    w /= 2;
		} else {
		    w = 0;
		}
		if (flags & TK_OFFSET_MIDDLE) {
		    h /= 2;
		} else {
		    h = 0;
		}
	    }
	    tsoffset->xoffset -= w;
	    tsoffset->yoffset -= h;
	    Tk_CanvasSetOffset(canvas, arcPtr->fillGC, tsoffset);
	    if (tsoffset) {
		tsoffset->xoffset += w;
		tsoffset->yoffset += h;
	    }
	}
	XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1),
		(unsigned) (y2-y1), start, extent);
	if (stipple != None) {
	    XSetTSOrigin(display, arcPtr->fillGC, 0, 0);
	}
    }
    if (arcPtr->outline.gc != None) {
	Tk_ChangeOutlineGC(canvas, itemPtr, &(arcPtr->outline));

	if (extent != 0) {
	    XDrawArc(display, drawable, arcPtr->outline.gc, x1, y1,
		    (unsigned) (x2-x1), (unsigned) (y2-y1), start, extent);
	}

	/*
	 * If the outline width is very thin, don't use polygons to draw the
	 * linear parts of the outline (this often results in nothing being
	 * displayed); just draw lines instead. The same is done if the
	 * outline is dashed, because then polygons don't work.
	 */

	if (lineWidth < 1.5 || dashnumber != 0) {
	    Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0],
		    arcPtr->center1[1], &x1, &y1);
	    Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0],
		    arcPtr->center2[1], &x2, &y2);

	    if (arcPtr->style == CHORD_STYLE) {
		XDrawLine(display, drawable, arcPtr->outline.gc,
			x1, y1, x2, y2);
	    } else if (arcPtr->style == PIESLICE_STYLE) {
		short cx, cy;

		Tk_CanvasDrawableCoords(canvas,
			(arcPtr->bbox[0] + arcPtr->bbox[2])/2.0,
			(arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy);
		XDrawLine(display, drawable, arcPtr->outline.gc,
			cx, cy, x1, y1);
		XDrawLine(display, drawable, arcPtr->outline.gc,
			cx, cy, x2, y2);
	    }
	} else {
	    if (arcPtr->style == CHORD_STYLE) {
		TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
			display, drawable, arcPtr->outline.gc, None);
	    } else if (arcPtr->style == PIESLICE_STYLE) {
		TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
			display, drawable, arcPtr->outline.gc, None);
		TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
			PIE_OUTLINE2_PTS, display, drawable,
			arcPtr->outline.gc, None);
	    }
	}

	Tk_ResetOutlineGC(canvas, itemPtr, &(arcPtr->outline));
    }
}

/*
 *--------------------------------------------------------------
 *
 * ArcToPoint --
 *
 *	Computes the distance from a given point to a given arc, in canvas
 *	units.
 *
 * Results:
 *	The return value is 0 if the point whose x and y coordinates are
 *	coordPtr[0] and coordPtr[1] is inside the arc. If the point isn't
 *	inside the arc then the return value is the distance from the point to
 *	the arc. If itemPtr is filled, then anywhere in the interior is
 *	considered "inside"; if itemPtr isn't filled, then "inside" means only
 *	the area occupied by the outline.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

	/* ARGSUSED */
static double
ArcToPoint(
    Tk_Canvas canvas,		/* Canvas containing item. */
    Tk_Item *itemPtr,		/* Item to check against point. */
    double *pointPtr)		/* Pointer to x and y coordinates. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    double vertex[2], pointAngle, diff, dist, newDist;
    double poly[8], polyDist, width, t1, t2;
    int filled, angleInRange;
    Tk_State state = itemPtr->state;

    if (state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }

    width = (double) arcPtr->outline.width;
    if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
	if (arcPtr->outline.activeWidth>width) {
	    width = (double) arcPtr->outline.activeWidth;
	}
    } else if (state == TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledWidth>0) {
	    width = (double) arcPtr->outline.disabledWidth;
	}
    }

    /*
     * See if the point is within the angular range of the arc. Remember, X
     * angles are backwards from the way we'd normally think of them. Also,
     * compensate for any eccentricity of the oval.
     */

    vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
    vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
    t1 = arcPtr->bbox[3] - arcPtr->bbox[1];
    if (t1 != 0.0) {
	t1 = (pointPtr[1] - vertex[1]) / t1;
    }
    t2 = arcPtr->bbox[2] - arcPtr->bbox[0];
    if (t2 != 0.0) {
	t2 = (pointPtr[0] - vertex[0]) / t2;
    }
    if ((t1 == 0.0) && (t2 == 0.0)) {
	pointAngle = 0;
    } else {
	pointAngle = -atan2(t1, t2)*180/PI;
    }
    diff = pointAngle - arcPtr->start;
    diff -= ((int) (diff/360.0) * 360.0);
    if (diff < 0) {
	diff += 360.0;
    }
    angleInRange = (diff <= arcPtr->extent) ||
	    ((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));

    /*
     * Now perform different tests depending on what kind of arc we're dealing
     * with.
     */

    if (arcPtr->style == ARC_STYLE) {
	if (angleInRange) {
	    return TkOvalToPoint(arcPtr->bbox, width, 0, pointPtr);
	}
	dist = hypot(pointPtr[0] - arcPtr->center1[0],
		pointPtr[1] - arcPtr->center1[1]);
	newDist = hypot(pointPtr[0] - arcPtr->center2[0],
		pointPtr[1] - arcPtr->center2[1]);
	if (newDist < dist) {
	    return newDist;
	}
	return dist;
    }

    if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) {
	filled = 1;
    } else {
	filled = 0;
    }
    if (arcPtr->outline.gc == None) {
	width = 0.0;
    }

    if (arcPtr->style == PIESLICE_STYLE) {
	if (width > 1.0) {
	    dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
		    pointPtr);
	    newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
		    PIE_OUTLINE2_PTS, pointPtr);
	} else {
	    dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
	    newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
	}
	if (newDist < dist) {
	    dist = newDist;
	}
	if (angleInRange) {
	    newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
	    if (newDist < dist) {
		dist = newDist;
	    }
	}
	return dist;
    }

    /*
     * This is a chord-style arc. We have to deal specially with the
     * triangular piece that represents the difference between a chord-style
     * arc and a pie-slice arc (for small angles this piece is excluded here
     * where it would be included for pie slices; for large angles the piece
     * is included here but would be excluded for pie slices).
     */

    if (width > 1.0) {
	dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
		pointPtr);
    } else {
	dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
    }
    poly[0] = poly[6] = vertex[0];
    poly[1] = poly[7] = vertex[1];
    poly[2] = arcPtr->center1[0];
    poly[3] = arcPtr->center1[1];
    poly[4] = arcPtr->center2[0];
    poly[5] = arcPtr->center2[1];
    polyDist = TkPolygonToPoint(poly, 4, pointPtr);
    if (angleInRange) {
	if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)
		|| (polyDist > 0.0)) {
	    newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
	    if (newDist < dist) {
		dist = newDist;
	    }
	}
    } else {
	if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) {
	    if (filled && (polyDist < dist)) {
		dist = polyDist;
	    }
	}
    }
    return dist;
}

/*
 *--------------------------------------------------------------
 *
 * ArcToArea --
 *
 *	This function is called to determine whether an item lies entirely
 *	inside, entirely outside, or overlapping a given area.
 *
 * Results:
 *	-1 is returned if the item is entirely outside the area given by
 *	rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given
 *	area.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

	/* ARGSUSED */
static int
ArcToArea(
    Tk_Canvas canvas,		/* Canvas containing item. */
    Tk_Item *itemPtr,		/* Item to check against arc. */
    double *rectPtr)		/* Pointer to array of four coordinates (x1,
				 * y1, x2, y2) describing rectangular area. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    double rx, ry;		/* Radii for transformed oval: these define an
				 * oval centered at the origin. */
    double tRect[4];		/* Transformed version of x1, y1, x2, y2, for
				 * coord. system where arc is centered on the
				 * origin. */
    double center[2], width, angle, tmp;
    double points[20], *pointPtr;
    int numPoints, filled;
    int inside;			/* Non-zero means every test so far suggests
				 * that arc is inside rectangle. 0 means every
				 * test so far shows arc to be outside of
				 * rectangle. */
    int newInside;
    Tk_State state = itemPtr->state;

    if(state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }
    width = (double) arcPtr->outline.width;
    if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
	if (arcPtr->outline.activeWidth>width) {
	    width = (double) arcPtr->outline.activeWidth;
	}
    } else if (state == TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledWidth>0) {
	    width = (double) arcPtr->outline.disabledWidth;
	}
    }

    if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) {
	filled = 1;
    } else {
	filled = 0;
    }
    if (arcPtr->outline.gc == None) {
	width = 0.0;
    }

    /*
     * Transform both the arc and the rectangle so that the arc's oval is
     * centered on the origin.
     */

    center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
    center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
    tRect[0] = rectPtr[0] - center[0];
    tRect[1] = rectPtr[1] - center[1];
    tRect[2] = rectPtr[2] - center[0];
    tRect[3] = rectPtr[3] - center[1];
    rx = arcPtr->bbox[2] - center[0] + width/2.0;
    ry = arcPtr->bbox[3] - center[1] + width/2.0;

    /*
     * Find the extreme points of the arc and see whether these are all inside
     * the rectangle (in which case we're done), partly in and partly out (in
     * which case we're done), or all outside (in which case we have more work
     * to do). The extreme points include the following, which are checked in
     * order:
     *
     * 1. The outside points of the arc, corresponding to start and extent.
     * 2. The center of the arc (but only in pie-slice mode).
     * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc includes
     *	  those angles).
     */

    pointPtr = points;
    angle = -arcPtr->start*(PI/180.0);
    pointPtr[0] = rx*cos(angle);
    pointPtr[1] = ry*sin(angle);
    angle += -arcPtr->extent*(PI/180.0);
    pointPtr[2] = rx*cos(angle);
    pointPtr[3] = ry*sin(angle);
    numPoints = 2;
    pointPtr += 4;

    if ((arcPtr->style == PIESLICE_STYLE) && (arcPtr->extent < 180.0)) {
	pointPtr[0] = 0.0;
	pointPtr[1] = 0.0;
	numPoints++;
	pointPtr += 2;
    }

    tmp = -arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	pointPtr[0] = rx;
	pointPtr[1] = 0.0;
	numPoints++;
	pointPtr += 2;
    }
    tmp = 90.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	pointPtr[0] = 0.0;
	pointPtr[1] = -ry;
	numPoints++;
	pointPtr += 2;
    }
    tmp = 180.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	pointPtr[0] = -rx;
	pointPtr[1] = 0.0;
	numPoints++;
	pointPtr += 2;
    }
    tmp = 270.0 - arcPtr->start;
    if (tmp < 0) {
	tmp += 360.0;
    }
    if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
	pointPtr[0] = 0.0;
	pointPtr[1] = ry;
	numPoints++;
    }

    /*
     * Now that we've located the extreme points, loop through them all to see
     * which are inside the rectangle.
     */

    inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
	    && (points[1] > tRect[1]) && (points[1] < tRect[3]);
    for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) {
	newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2])
		&& (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]);
	if (newInside != inside) {
	    return 0;
	}
    }

    if (inside) {
	return 1;
    }

    /*
     * So far, oval appears to be outside rectangle, but can't yet tell for
     * sure. Next, test each of the four sides of the rectangle against the
     * bounding region for the arc. If any intersections are found, then
     * return "overlapping". First, test against the polygon(s) forming the
     * sides of a chord or pie-slice.
     */

    if (arcPtr->style == PIESLICE_STYLE) {
	if (width >= 1.0) {
	    if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
		    rectPtr) != -1) {
		return 0;
	    }
	    if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
		    PIE_OUTLINE2_PTS, rectPtr) != -1) {
		return 0;
	    }
	} else {
	    if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) ||
		    (TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) {
		return 0;
	    }
	}
    } else if (arcPtr->style == CHORD_STYLE) {
	if (width >= 1.0) {
	    if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
		    rectPtr) != -1) {
		return 0;
	    }
	} else {
	    if (TkLineToArea(arcPtr->center1, arcPtr->center2,
		    rectPtr) != -1) {
		return 0;
	    }
	}
    }

    /*
     * Next check for overlap between each of the four sides and the outer
     * perimiter of the arc. If the arc isn't filled, then also check the
     * inner perimeter of the arc.
     */

    if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
		arcPtr->extent)
	    || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
		arcPtr->start, arcPtr->extent)
	    || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
		arcPtr->start, arcPtr->extent)
	    || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
		arcPtr->start, arcPtr->extent)) {
	return 0;
    }
    if ((width > 1.0) && !filled) {
	rx -= width;
	ry -= width;
	if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
		    arcPtr->extent)
		|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
		    arcPtr->start, arcPtr->extent)
		|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
		    arcPtr->start, arcPtr->extent)
		|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
		    arcPtr->start, arcPtr->extent)) {
	    return 0;
	}
    }

    /*
     * The arc still appears to be totally disjoint from the rectangle, but
     * it's also possible that the rectangle is totally inside the arc. Do one
     * last check, which is to check one point of the rectangle to see if it's
     * inside the arc. If it is, we've got overlap. If it isn't, the arc's
     * really outside the rectangle.
     */

    if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
	return 0;
    }
    return -1;
}

/*
 *--------------------------------------------------------------
 *
 * ScaleArc --
 *
 *	This function is invoked to rescale an arc item.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The arc referred to by itemPtr is rescaled so that the following
 *	transformation is applied to all point coordinates:
 *		x' = originX + scaleX*(x-originX)
 *		y' = originY + scaleY*(y-originY)
 *
 *--------------------------------------------------------------
 */

static void
ScaleArc(
    Tk_Canvas canvas,		/* Canvas containing arc. */
    Tk_Item *itemPtr,		/* Arc to be scaled. */
    double originX,		/* Origin about which to scale rect. */
    double originY,
    double scaleX,		/* Amount to scale in X direction. */
    double scaleY)		/* Amount to scale in Y direction. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;

    arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX);
    arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY);
    arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX);
    arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY);
    ComputeArcBbox(canvas, arcPtr);
}

/*
 *--------------------------------------------------------------
 *
 * TranslateArc --
 *
 *	This function is called to move an arc by a given amount.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The position of the arc is offset by (xDelta, yDelta), and the
 *	bounding box is updated in the generic part of the item structure.
 *
 *--------------------------------------------------------------
 */

static void
TranslateArc(
    Tk_Canvas canvas,		/* Canvas containing item. */
    Tk_Item *itemPtr,		/* Item that is being moved. */
    double deltaX,		/* Amount by which item is to be moved. */
    double deltaY)
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;

    arcPtr->bbox[0] += deltaX;
    arcPtr->bbox[1] += deltaY;
    arcPtr->bbox[2] += deltaX;
    arcPtr->bbox[3] += deltaY;
    ComputeArcBbox(canvas, arcPtr);
}

/*
 *--------------------------------------------------------------
 *
 * ComputeArcOutline --
 *
 *	This function creates a polygon describing everything in the outline
 *	for an arc except what's in the curved part. For a "pie slice" arc
 *	this is a V-shaped chunk, and for a "chord" arc this is a linear chunk
 *	(with cutaway corners). For "arc" arcs, this stuff isn't relevant.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The information at arcPtr->outlinePtr gets modified, and storage for
 *	arcPtr->outlinePtr may be allocated or freed.
 *
 *--------------------------------------------------------------
 */

static void
ComputeArcOutline(
    Tk_Canvas canvas,		/* Information about overall canvas. */
    ArcItem *arcPtr)		/* Information about arc. */
{
    double sin1, cos1, sin2, cos2, angle, width, halfWidth;
    double boxWidth, boxHeight;
    double vertex[2], corner1[2], corner2[2];
    double *outlinePtr;
    Tk_State state = arcPtr->header.state;

    /*
     * Make sure that the outlinePtr array is large enough to hold either a
     * chord or pie-slice outline.
     */

    if (arcPtr->numOutlinePoints == 0) {
	arcPtr->outlinePtr = (double *) ckalloc((unsigned)
		(26 * sizeof(double)));
	arcPtr->numOutlinePoints = 22;
    }
    outlinePtr = arcPtr->outlinePtr;

    if (state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }

    /*
     * First compute the two points that lie at the centers of the ends of the
     * curved arc segment, which are marked with X's in the figure below:
     *
     *
     *				  * * *
     *			      *          *
     *			   *      * *      *
     *			 *    *         *    *
     *			*   *             *   *
     *			 X *               * X
     *
     * The code is tricky because the arc can be ovular in shape. It computes
     * the position for a unit circle, and then scales to fit the shape of the
     * arc's bounding box.
     *
     * Also, watch out because angles go counter-clockwise like you might
     * expect, but the y-coordinate system is inverted. To handle this, just
     * negate the angles in all the computations.
     */

    boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
    boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1];
    angle = -arcPtr->start*PI/180.0;
    sin1 = sin(angle);
    cos1 = cos(angle);
    angle -= arcPtr->extent*PI/180.0;
    sin2 = sin(angle);
    cos2 = cos(angle);
    vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
    vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
    arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0;
    arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0;
    arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0;
    arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;

    /*
     * Next compute the "outermost corners" of the arc, which are marked with
     * X's in the figure below:
     *
     *				  * * *
     *			      *          *
     *			   *      * *      *
     *			 *    *         *    *
     *			X   *             *   X
     *			   *               *
     *
     * The code below is tricky because it has to handle eccentricity in the
     * shape of the oval. The key in the code below is to realize that the
     * slope of the line from arcPtr->center1 to corner1 is (boxWidth*sin1)
     * divided by (boxHeight*cos1), and similarly for arcPtr->center2 and
     * corner2. These formulas can be computed from the formula for the oval.
     */

    width = arcPtr->outline.width;
    if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
	if (arcPtr->outline.activeWidth>arcPtr->outline.width) {
	    width = arcPtr->outline.activeWidth;
	}
    } else if (state == TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledWidth>arcPtr->outline.width) {
	    width = arcPtr->outline.disabledWidth;
	}
    }
    halfWidth = width/2.0;

    if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) {
	angle = 0.0;
    } else {
	angle = atan2(boxWidth*sin1, boxHeight*cos1);
    }
    corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth;
    corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth;
    if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) {
	angle = 0.0;
    } else {
	angle = atan2(boxWidth*sin2, boxHeight*cos2);
    }
    corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth;
    corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;

    /*
     * For a chord outline, generate a six-sided polygon with three points for
     * each end of the chord. The first and third points for each end are butt
     * points generated on either side of the center point. The second point
     * is the corner point.
     */

    if (arcPtr->style == CHORD_STYLE) {
	outlinePtr[0] = outlinePtr[12] = corner1[0];
	outlinePtr[1] = outlinePtr[13] = corner1[1];
	TkGetButtPoints(arcPtr->center2, arcPtr->center1,
		width, 0, outlinePtr+10, outlinePtr+2);
	outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2]
		- arcPtr->center1[0];
	outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3]
		- arcPtr->center1[1];
	outlinePtr[6] = corner2[0];
	outlinePtr[7] = corner2[1];
	outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10]
		- arcPtr->center1[0];
	outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11]
		- arcPtr->center1[1];
    } else if (arcPtr->style == PIESLICE_STYLE) {
	/*
	 * For pie slices, generate two polygons, one for each side of the pie
	 * slice. The first arm has a shape like this, where the center of the
	 * oval is X, arcPtr->center1 is at Y, and corner1 is at Z:
	 *
	 *	 _____________________
	 *	|		      \
	 *	|		       \
	 *	X		     Y  Z
	 *	|		       /
	 *	|_____________________/
	 */

	TkGetButtPoints(arcPtr->center1, vertex, width, 0,
		outlinePtr, outlinePtr+2);
	outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0];
	outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1];
	outlinePtr[6] = corner1[0];
	outlinePtr[7] = corner1[1];
	outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0];
	outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1];
	outlinePtr[10] = outlinePtr[0];
	outlinePtr[11] = outlinePtr[1];

	/*
	 * The second arm has a shape like this:
	 *
	 *	   ______________________
	 *	  /			  \
	 *	 /			   \
	 *	Z  Y			X  /
	 *	 \			  /
	 *	  \______________________/
	 *
	 * Similar to above X is the center of the oval/circle, Y is
	 * arcPtr->center2, and Z is corner2. The extra jog out to the left of
	 * X is needed in or to produce a butted joint with the first arm; the
	 * corner to the right of X is one of the first two points of the
	 * first arm, depending on extent.
	 */

	TkGetButtPoints(arcPtr->center2, vertex, width, 0,
		outlinePtr+12, outlinePtr+16);
	if ((arcPtr->extent > 180) ||
		((arcPtr->extent < 0) && (arcPtr->extent > -180))) {
	    outlinePtr[14] = outlinePtr[0];
	    outlinePtr[15] = outlinePtr[1];
	} else {
	    outlinePtr[14] = outlinePtr[2];
	    outlinePtr[15] = outlinePtr[3];
	}
	outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0];
	outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1];
	outlinePtr[20] = corner2[0];
	outlinePtr[21] = corner2[1];
	outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0];
	outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1];
	outlinePtr[24] = outlinePtr[12];
	outlinePtr[25] = outlinePtr[13];
    }
}

/*
 *--------------------------------------------------------------
 *
 * HorizLineToArc --
 *
 *	Determines whether a horizontal line segment intersects a given arc.
 *
 * Results:
 *	The return value is 1 if the given line intersects the infinitely-thin
 *	arc section defined by rx, ry, start, and extent, and 0 otherwise.
 *	Only the perimeter of the arc is checked: interior areas (e.g. chord
 *	or pie-slice) are not checked.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

static int
HorizLineToArc(
    double x1, double x2,	/* X-coords of endpoints of line segment. X1
				 * must be <= x2. */
    double y,			/* Y-coordinate of line segment. */
    double rx, double ry,	/* These x- and y-radii define an oval
				 * centered at the origin. */
    double start, double extent)/* Angles that define extent of arc, in the
				 * standard fashion for this module. */
{
    double tmp, x;
    double tx, ty;		/* Coordinates of intersection point in
				 * transformed coordinate system. */

    /*
     * Compute the x-coordinate of one possible intersection point between the
     * arc and the line. Use a transformed coordinate system where the oval is
     * a unit circle centered at the origin. Then scale back to get actual
     * x-coordinate.
     */

    ty = y/ry;
    tmp = 1 - ty*ty;
    if (tmp < 0) {
	return 0;
    }
    tx = sqrt(tmp);
    x = tx*rx;

    /*
     * Test both intersection points.
     */

    if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) {
	return 1;
    }
    if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) {
	return 1;
    }
    return 0;
}

/*
 *--------------------------------------------------------------
 *
 * VertLineToArc --
 *
 *	Determines whether a vertical line segment intersects a given arc.
 *
 * Results:
 *	The return value is 1 if the given line intersects the infinitely-thin
 *	arc section defined by rx, ry, start, and extent, and 0 otherwise.
 *	Only the perimeter of the arc is checked: interior areas (e.g. chord
 *	or pie-slice) are not checked.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

static int
VertLineToArc(
    double x,			/* X-coordinate of line segment. */
    double y1, double y2,	/* Y-coords of endpoints of line segment. Y1
				 * must be <= y2. */
    double rx, double ry,	/* These x- and y-radii define an oval
				 * centered at the origin. */
    double start, double extent)/* Angles that define extent of arc, in the
				 * standard fashion for this module. */
{
    double tmp, y;
    double tx, ty;		/* Coordinates of intersection point in
				 * transformed coordinate system. */

    /*
     * Compute the y-coordinate of one possible intersection point between the
     * arc and the line. Use a transformed coordinate system where the oval is
     * a unit circle centered at the origin. Then scale back to get actual
     * y-coordinate.
     */

    tx = x/rx;
    tmp = 1 - tx*tx;
    if (tmp < 0) {
	return 0;
    }
    ty = sqrt(tmp);
    y = ty*ry;

    /*
     * Test both intersection points.
     */

    if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) {
	return 1;
    }
    if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) {
	return 1;
    }
    return 0;
}

/*
 *--------------------------------------------------------------
 *
 * AngleInRange --
 *
 *	Determine whether the angle from the origin to a given point is within
 *	a given range.
 *
 * Results:
 *	The return value is 1 if the angle from (0,0) to (x,y) is in the range
 *	given by start and extent, where angles are interpreted in the
 *	standard way for ovals (meaning backwards from normal interpretation).
 *	Otherwise the return value is 0.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

static int
AngleInRange(
    double x, double y,		/* Coordinate of point; angle measured from
				 * origin to here, relative to x-axis. */
    double start,		/* First angle, degrees, >=0, <=360. */
    double extent)		/* Size of arc in degrees >=-360, <=360. */
{
    double diff;

    if ((x == 0.0) && (y == 0.0)) {
	return 1;
    }
    diff = -atan2(y, x);
    diff = diff*(180.0/PI) - start;
    while (diff > 360.0) {
	diff -= 360.0;
    }
    while (diff < 0.0) {
	diff += 360.0;
    }
    if (extent >= 0) {
	return diff <= extent;
    }
    return (diff-360.0) >= extent;
}

/*
 *--------------------------------------------------------------
 *
 * ArcToPostscript --
 *
 *	This function is called to generate Postscript for arc items.
 *
 * Results:
 *	The return value is a standard Tcl result. If an error occurs in
 *	generating Postscript then an error message is left in the interp's
 *	result, replacing whatever used to be there. If no error occurs, then
 *	Postscript for the item is appended to the result.
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

static int
ArcToPostscript(
    Tcl_Interp *interp,		/* Leave Postscript or error message here. */
    Tk_Canvas canvas,		/* Information about overall canvas. */
    Tk_Item *itemPtr,		/* Item for which Postscript is wanted. */
    int prepass)		/* 1 means this is a prepass to collect font
				 * information; 0 means final Postscript is
				 * being created. */
{
    ArcItem *arcPtr = (ArcItem *) itemPtr;
    char buffer[400];
    double y1, y2, ang1, ang2;
    XColor *color;
    Pixmap stipple;
    XColor *fillColor;
    Pixmap fillStipple;
    Tk_State state = itemPtr->state;

    y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]);
    y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]);
    ang1 = arcPtr->start;
    ang2 = ang1 + arcPtr->extent;
    if (ang2 < ang1) {
	ang1 = ang2;
	ang2 = arcPtr->start;
    }

    if (state == TK_STATE_NULL) {
	state = ((TkCanvas *)canvas)->canvas_state;
    }
    color = arcPtr->outline.color;
    stipple = arcPtr->outline.stipple;
    fillColor = arcPtr->fillColor;
    fillStipple = arcPtr->fillStipple;
    if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
	if (arcPtr->outline.activeColor!=NULL) {
	    color = arcPtr->outline.activeColor;
	}
	if (arcPtr->outline.activeStipple!=None) {
	    stipple = arcPtr->outline.activeStipple;
	}
	if (arcPtr->activeFillColor!=NULL) {
	    fillColor = arcPtr->activeFillColor;
	}
	if (arcPtr->activeFillStipple!=None) {
	    fillStipple = arcPtr->activeFillStipple;
	}
    } else if (state == TK_STATE_DISABLED) {
	if (arcPtr->outline.disabledColor!=NULL) {
	    color = arcPtr->outline.disabledColor;
	}
	if (arcPtr->outline.disabledStipple!=None) {
	    stipple = arcPtr->outline.disabledStipple;
	}
	if (arcPtr->disabledFillColor!=NULL) {
	    fillColor = arcPtr->disabledFillColor;
	}
	if (arcPtr->disabledFillStipple!=None) {
	    fillStipple = arcPtr->disabledFillStipple;
	}
    }

    /*
     * If the arc is filled, output Postscript for the interior region of the
     * arc.
     */

    if (arcPtr->fillGC != None) {
	sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
		(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
		(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
	Tcl_AppendResult(interp, buffer, NULL);
	if (arcPtr->style == CHORD_STYLE) {
	    sprintf(buffer, "0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
		    ang1, ang2);
	} else {
	    sprintf(buffer,
		    "0 0 moveto 0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
		    ang1, ang2);
	}
	Tcl_AppendResult(interp, buffer, NULL);
	if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) {
	    return TCL_ERROR;
	}
	if (fillStipple != None) {
	    Tcl_AppendResult(interp, "clip ", NULL);
	    if (Tk_CanvasPsStipple(interp, canvas, fillStipple) != TCL_OK) {
		return TCL_ERROR;
	    }
	    if (arcPtr->outline.gc != None) {
		Tcl_AppendResult(interp, "grestore gsave\n", NULL);
	    }
	} else {
	    Tcl_AppendResult(interp, "fill\n", NULL);
	}
    }

    /*
     * If there's an outline for the arc, draw it.
     */

    if (arcPtr->outline.gc != None) {
	sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
		(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
		(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
	Tcl_AppendResult(interp, buffer, NULL);
	sprintf(buffer, "0 0 1 %.15g %.15g", ang1, ang2);
	Tcl_AppendResult(interp, buffer,
		" arc\nsetmatrix\n0 setlinecap\n", NULL);
	if (Tk_CanvasPsOutline(canvas, itemPtr, &(arcPtr->outline)) != TCL_OK){
	    return TCL_ERROR;
	}
	if (arcPtr->style != ARC_STYLE) {
	    Tcl_AppendResult(interp, "grestore gsave\n", NULL);
	    if (arcPtr->style == CHORD_STYLE) {
		Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
			CHORD_OUTLINE_PTS);
	    } else {
		Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
			PIE_OUTLINE1_PTS);
		if (Tk_CanvasPsColor(interp, canvas, color)
			!= TCL_OK) {
		    return TCL_ERROR;
		}
		if (stipple != None) {
		    Tcl_AppendResult(interp, "clip ", NULL);
		    if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK){
			return TCL_ERROR;
		    }
		} else {
		    Tcl_AppendResult(interp, "fill\n", NULL);
		}
		Tcl_AppendResult(interp, "grestore gsave\n", NULL);
		Tk_CanvasPsPath(interp, canvas,
			arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
			PIE_OUTLINE2_PTS);
	    }
	    if (Tk_CanvasPsColor(interp, canvas, color)
		    != TCL_OK) {
		return TCL_ERROR;
	    }
	    if (stipple != None) {
		Tcl_AppendResult(interp, "clip ", NULL);
		if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK) {
		    return TCL_ERROR;
		}
	    } else {
		Tcl_AppendResult(interp, "fill\n", NULL);
	    }
	}
    }

    return TCL_OK;
}

/*
 *--------------------------------------------------------------
 *
 * StyleParseProc --
 *
 *	This function is invoked during option processing to handle the
 *	"-style" option.
 *
 * Results:
 *	A standard Tcl return value.
 *
 * Side effects:
 *	The state for a given item gets replaced by the state indicated in the
 *	value argument.
 *
 *--------------------------------------------------------------
 */

static int
StyleParseProc(
    ClientData clientData,	/* some flags.*/
    Tcl_Interp *interp,		/* Used for reporting errors. */
    Tk_Window tkwin,		/* Window containing canvas widget. */
    CONST char *value,		/* Value of option. */
    char *widgRec,		/* Pointer to record for item. */
    int offset)			/* Offset into item. */
{
    int c;
    size_t length;

    register Style *stylePtr = (Style *) (widgRec + offset);

    if (value == NULL || *value == 0) {
	*stylePtr = PIESLICE_STYLE;
	return TCL_OK;
    }

    c = value[0];
    length = strlen(value);

    if ((c == 'a') && (strncmp(value, "arc", length) == 0)) {
	*stylePtr = ARC_STYLE;
	return TCL_OK;
    }
    if ((c == 'c') && (strncmp(value, "chord", length) == 0)) {
	*stylePtr = CHORD_STYLE;
	return TCL_OK;
    }
    if ((c == 'p') && (strncmp(value, "pieslice", length) == 0)) {
	*stylePtr = PIESLICE_STYLE;
	return TCL_OK;
    }

    Tcl_AppendResult(interp, "bad -style option \"", value,
	    "\": must be arc, chord, or pieslice", NULL);
    *stylePtr = PIESLICE_STYLE;
    return TCL_ERROR;
}

/*
 *--------------------------------------------------------------
 *
 * StylePrintProc --
 *
 *	This function is invoked by the Tk configuration code to produce a
 *	printable string for the "-style" configuration option.
 *
 * Results:
 *	The return value is a string describing the state for the item
 *	referred to by "widgRec". In addition, *freeProcPtr is filled in with
 *	the address of a function to call to free the result string when it's
 *	no longer needed (or NULL to indicate that the string doesn't need to
 *	be freed).
 *
 * Side effects:
 *	None.
 *
 *--------------------------------------------------------------
 */

static char *
StylePrintProc(
    ClientData clientData,	/* Ignored. */
    Tk_Window tkwin,		/* Ignored. */
    char *widgRec,		/* Pointer to record for item. */
    int offset,			/* Offset into item. */
    Tcl_FreeProc **freeProcPtr)	/* Pointer to variable to fill in with
				 * information about how to reclaim storage
				 * for return string. */
{
    register Style *stylePtr = (Style *) (widgRec + offset);

    if (*stylePtr == ARC_STYLE) {
	return "arc";
    } else if (*stylePtr == CHORD_STYLE) {
	return "chord";
    } else {
	return "pieslice";
    }
}

/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */