1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
|
'''"Executable documentation" for the pickle module.
Extensive comments about the pickle protocols and pickle-machine opcodes
can be found here. Some functions meant for external use:
genops(pickle)
Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
dis(pickle, out=None, memo=None, indentlevel=4)
Print a symbolic disassembly of a pickle.
'''
__all__ = ['dis',
'genops',
]
# Other ideas:
#
# - A pickle verifier: read a pickle and check it exhaustively for
# well-formedness. dis() does a lot of this already.
#
# - A protocol identifier: examine a pickle and return its protocol number
# (== the highest .proto attr value among all the opcodes in the pickle).
# dis() already prints this info at the end.
#
# - A pickle optimizer: for example, tuple-building code is sometimes more
# elaborate than necessary, catering for the possibility that the tuple
# is recursive. Or lots of times a PUT is generated that's never accessed
# by a later GET.
"""
"A pickle" is a program for a virtual pickle machine (PM, but more accurately
called an unpickling machine). It's a sequence of opcodes, interpreted by the
PM, building an arbitrarily complex Python object.
For the most part, the PM is very simple: there are no looping, testing, or
conditional instructions, no arithmetic and no function calls. Opcodes are
executed once each, from first to last, until a STOP opcode is reached.
The PM has two data areas, "the stack" and "the memo".
Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
integer object on the stack, whose value is gotten from a decimal string
literal immediately following the INT opcode in the pickle bytestream. Other
opcodes take Python objects off the stack. The result of unpickling is
whatever object is left on the stack when the final STOP opcode is executed.
The memo is simply an array of objects, or it can be implemented as a dict
mapping little integers to objects. The memo serves as the PM's "long term
memory", and the little integers indexing the memo are akin to variable
names. Some opcodes pop a stack object into the memo at a given index,
and others push a memo object at a given index onto the stack again.
At heart, that's all the PM has. Subtleties arise for these reasons:
+ Object identity. Objects can be arbitrarily complex, and subobjects
may be shared (for example, the list [a, a] refers to the same object a
twice). It can be vital that unpickling recreate an isomorphic object
graph, faithfully reproducing sharing.
+ Recursive objects. For example, after "L = []; L.append(L)", L is a
list, and L[0] is the same list. This is related to the object identity
point, and some sequences of pickle opcodes are subtle in order to
get the right result in all cases.
+ Things pickle doesn't know everything about. Examples of things pickle
does know everything about are Python's builtin scalar and container
types, like ints and tuples. They generally have opcodes dedicated to
them. For things like module references and instances of user-defined
classes, pickle's knowledge is limited. Historically, many enhancements
have been made to the pickle protocol in order to do a better (faster,
and/or more compact) job on those.
+ Backward compatibility and micro-optimization. As explained below,
pickle opcodes never go away, not even when better ways to do a thing
get invented. The repertoire of the PM just keeps growing over time.
For example, protocol 0 had two opcodes for building Python integers (INT
and LONG), protocol 1 added three more for more-efficient pickling of short
integers, and protocol 2 added two more for more-efficient pickling of
long integers (before protocol 2, the only ways to pickle a Python long
took time quadratic in the number of digits, for both pickling and
unpickling). "Opcode bloat" isn't so much a subtlety as a source of
wearying complication.
Pickle protocols:
For compatibility, the meaning of a pickle opcode never changes. Instead new
pickle opcodes get added, and each version's unpickler can handle all the
pickle opcodes in all protocol versions to date. So old pickles continue to
be readable forever. The pickler can generally be told to restrict itself to
the subset of opcodes available under previous protocol versions too, so that
users can create pickles under the current version readable by older
versions. However, a pickle does not contain its version number embedded
within it. If an older unpickler tries to read a pickle using a later
protocol, the result is most likely an exception due to seeing an unknown (in
the older unpickler) opcode.
The original pickle used what's now called "protocol 0", and what was called
"text mode" before Python 2.3. The entire pickle bytestream is made up of
printable 7-bit ASCII characters, plus the newline character, in protocol 0.
That's why it was called text mode. Protocol 0 is small and elegant, but
sometimes painfully inefficient.
The second major set of additions is now called "protocol 1", and was called
"binary mode" before Python 2.3. This added many opcodes with arguments
consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
bytes. Binary mode pickles can be substantially smaller than equivalent
text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
int as 4 bytes following the opcode, which is cheaper to unpickle than the
(perhaps) 11-character decimal string attached to INT. Protocol 1 also added
a number of opcodes that operate on many stack elements at once (like APPENDS
and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
The third major set of additions came in Python 2.3, and is called "protocol
2". This added:
- A better way to pickle instances of new-style classes (NEWOBJ).
- A way for a pickle to identify its protocol (PROTO).
- Time- and space- efficient pickling of long ints (LONG{1,4}).
- Shortcuts for small tuples (TUPLE{1,2,3}}.
- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
- The "extension registry", a vector of popular objects that can be pushed
efficiently by index (EXT{1,2,4}). This is akin to the memo and GET, but
the registry contents are predefined (there's nothing akin to the memo's
PUT).
Another independent change with Python 2.3 is the abandonment of any
pretense that it might be safe to load pickles received from untrusted
parties -- no sufficient security analysis has been done to guarantee
this and there isn't a use case that warrants the expense of such an
analysis.
To this end, all tests for __safe_for_unpickling__ or for
copy_reg.safe_constructors are removed from the unpickling code.
References to these variables in the descriptions below are to be seen
as describing unpickling in Python 2.2 and before.
"""
# Meta-rule: Descriptions are stored in instances of descriptor objects,
# with plain constructors. No meta-language is defined from which
# descriptors could be constructed. If you want, e.g., XML, write a little
# program to generate XML from the objects.
##############################################################################
# Some pickle opcodes have an argument, following the opcode in the
# bytestream. An argument is of a specific type, described by an instance
# of ArgumentDescriptor. These are not to be confused with arguments taken
# off the stack -- ArgumentDescriptor applies only to arguments embedded in
# the opcode stream, immediately following an opcode.
# Represents the number of bytes consumed by an argument delimited by the
# next newline character.
UP_TO_NEWLINE = -1
# Represents the number of bytes consumed by a two-argument opcode where
# the first argument gives the number of bytes in the second argument.
TAKEN_FROM_ARGUMENT1 = -2 # num bytes is 1-byte unsigned int
TAKEN_FROM_ARGUMENT4 = -3 # num bytes is 4-byte signed little-endian int
class ArgumentDescriptor(object):
__slots__ = (
# name of descriptor record, also a module global name; a string
'name',
# length of argument, in bytes; an int; UP_TO_NEWLINE and
# TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
# cases
'n',
# a function taking a file-like object, reading this kind of argument
# from the object at the current position, advancing the current
# position by n bytes, and returning the value of the argument
'reader',
# human-readable docs for this arg descriptor; a string
'doc',
)
def __init__(self, name, n, reader, doc):
assert isinstance(name, str)
self.name = name
assert isinstance(n, int) and (n >= 0 or
n in (UP_TO_NEWLINE,
TAKEN_FROM_ARGUMENT1,
TAKEN_FROM_ARGUMENT4))
self.n = n
self.reader = reader
assert isinstance(doc, str)
self.doc = doc
from struct import unpack as _unpack
def read_uint1(f):
r"""
>>> import StringIO
>>> read_uint1(StringIO.StringIO('\xff'))
255
"""
data = f.read(1)
if data:
return ord(data)
raise ValueError("not enough data in stream to read uint1")
uint1 = ArgumentDescriptor(
name='uint1',
n=1,
reader=read_uint1,
doc="One-byte unsigned integer.")
def read_uint2(f):
r"""
>>> import StringIO
>>> read_uint2(StringIO.StringIO('\xff\x00'))
255
>>> read_uint2(StringIO.StringIO('\xff\xff'))
65535
"""
data = f.read(2)
if len(data) == 2:
return _unpack("<H", data)[0]
raise ValueError("not enough data in stream to read uint2")
uint2 = ArgumentDescriptor(
name='uint2',
n=2,
reader=read_uint2,
doc="Two-byte unsigned integer, little-endian.")
def read_int4(f):
r"""
>>> import StringIO
>>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
255
>>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
True
"""
data = f.read(4)
if len(data) == 4:
return _unpack("<i", data)[0]
raise ValueError("not enough data in stream to read int4")
int4 = ArgumentDescriptor(
name='int4',
n=4,
reader=read_int4,
doc="Four-byte signed integer, little-endian, 2's complement.")
def read_stringnl(f, decode=True, stripquotes=True):
r"""
>>> import StringIO
>>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
'abcd'
>>> read_stringnl(StringIO.StringIO("\n"))
Traceback (most recent call last):
...
ValueError: no string quotes around ''
>>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
''
>>> read_stringnl(StringIO.StringIO("''\n"))
''
>>> read_stringnl(StringIO.StringIO('"abcd"'))
Traceback (most recent call last):
...
ValueError: no newline found when trying to read stringnl
Embedded escapes are undone in the result.
>>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
'a\n\\b\x00c\td'
"""
data = f.readline()
if not data.endswith('\n'):
raise ValueError("no newline found when trying to read stringnl")
data = data[:-1] # lose the newline
if stripquotes:
for q in "'\"":
if data.startswith(q):
if not data.endswith(q):
raise ValueError("strinq quote %r not found at both "
"ends of %r" % (q, data))
data = data[1:-1]
break
else:
raise ValueError("no string quotes around %r" % data)
# I'm not sure when 'string_escape' was added to the std codecs; it's
# crazy not to use it if it's there.
if decode:
data = data.decode('string_escape')
return data
stringnl = ArgumentDescriptor(
name='stringnl',
n=UP_TO_NEWLINE,
reader=read_stringnl,
doc="""A newline-terminated string.
This is a repr-style string, with embedded escapes, and
bracketing quotes.
""")
def read_stringnl_noescape(f):
return read_stringnl(f, decode=False, stripquotes=False)
stringnl_noescape = ArgumentDescriptor(
name='stringnl_noescape',
n=UP_TO_NEWLINE,
reader=read_stringnl_noescape,
doc="""A newline-terminated string.
This is a str-style string, without embedded escapes,
or bracketing quotes. It should consist solely of
printable ASCII characters.
""")
def read_stringnl_noescape_pair(f):
r"""
>>> import StringIO
>>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
'Queue Empty'
"""
return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
stringnl_noescape_pair = ArgumentDescriptor(
name='stringnl_noescape_pair',
n=UP_TO_NEWLINE,
reader=read_stringnl_noescape_pair,
doc="""A pair of newline-terminated strings.
These are str-style strings, without embedded
escapes, or bracketing quotes. They should
consist solely of printable ASCII characters.
The pair is returned as a single string, with
a single blank separating the two strings.
""")
def read_string4(f):
r"""
>>> import StringIO
>>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
''
>>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
'abc'
>>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
Traceback (most recent call last):
...
ValueError: expected 50331648 bytes in a string4, but only 6 remain
"""
n = read_int4(f)
if n < 0:
raise ValueError("string4 byte count < 0: %d" % n)
data = f.read(n)
if len(data) == n:
return data
raise ValueError("expected %d bytes in a string4, but only %d remain" %
(n, len(data)))
string4 = ArgumentDescriptor(
name="string4",
n=TAKEN_FROM_ARGUMENT4,
reader=read_string4,
doc="""A counted string.
The first argument is a 4-byte little-endian signed int giving
the number of bytes in the string, and the second argument is
that many bytes.
""")
def read_string1(f):
r"""
>>> import StringIO
>>> read_string1(StringIO.StringIO("\x00"))
''
>>> read_string1(StringIO.StringIO("\x03abcdef"))
'abc'
"""
n = read_uint1(f)
assert n >= 0
data = f.read(n)
if len(data) == n:
return data
raise ValueError("expected %d bytes in a string1, but only %d remain" %
(n, len(data)))
string1 = ArgumentDescriptor(
name="string1",
n=TAKEN_FROM_ARGUMENT1,
reader=read_string1,
doc="""A counted string.
The first argument is a 1-byte unsigned int giving the number
of bytes in the string, and the second argument is that many
bytes.
""")
def read_unicodestringnl(f):
r"""
>>> import StringIO
>>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
u'abc\uabcd'
"""
data = f.readline()
if not data.endswith('\n'):
raise ValueError("no newline found when trying to read "
"unicodestringnl")
data = data[:-1] # lose the newline
return unicode(data, 'raw-unicode-escape')
unicodestringnl = ArgumentDescriptor(
name='unicodestringnl',
n=UP_TO_NEWLINE,
reader=read_unicodestringnl,
doc="""A newline-terminated Unicode string.
This is raw-unicode-escape encoded, so consists of
printable ASCII characters, and may contain embedded
escape sequences.
""")
def read_unicodestring4(f):
r"""
>>> import StringIO
>>> s = u'abcd\uabcd'
>>> enc = s.encode('utf-8')
>>> enc
'abcd\xea\xaf\x8d'
>>> n = chr(len(enc)) + chr(0) * 3 # little-endian 4-byte length
>>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
>>> s == t
True
>>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
Traceback (most recent call last):
...
ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
"""
n = read_int4(f)
if n < 0:
raise ValueError("unicodestring4 byte count < 0: %d" % n)
data = f.read(n)
if len(data) == n:
return unicode(data, 'utf-8')
raise ValueError("expected %d bytes in a unicodestring4, but only %d "
"remain" % (n, len(data)))
unicodestring4 = ArgumentDescriptor(
name="unicodestring4",
n=TAKEN_FROM_ARGUMENT4,
reader=read_unicodestring4,
doc="""A counted Unicode string.
The first argument is a 4-byte little-endian signed int
giving the number of bytes in the string, and the second
argument-- the UTF-8 encoding of the Unicode string --
contains that many bytes.
""")
def read_decimalnl_short(f):
r"""
>>> import StringIO
>>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
1234
>>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
Traceback (most recent call last):
...
ValueError: trailing 'L' not allowed in '1234L'
"""
s = read_stringnl(f, decode=False, stripquotes=False)
if s.endswith("L"):
raise ValueError("trailing 'L' not allowed in %r" % s)
# It's not necessarily true that the result fits in a Python short int:
# the pickle may have been written on a 64-bit box. There's also a hack
# for True and False here.
if s == "00":
return False
elif s == "01":
return True
try:
return int(s)
except OverflowError:
return long(s)
def read_decimalnl_long(f):
r"""
>>> import StringIO
>>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
Traceback (most recent call last):
...
ValueError: trailing 'L' required in '1234'
Someday the trailing 'L' will probably go away from this output.
>>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
1234L
>>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
123456789012345678901234L
"""
s = read_stringnl(f, decode=False, stripquotes=False)
if not s.endswith("L"):
raise ValueError("trailing 'L' required in %r" % s)
return long(s)
decimalnl_short = ArgumentDescriptor(
name='decimalnl_short',
n=UP_TO_NEWLINE,
reader=read_decimalnl_short,
doc="""A newline-terminated decimal integer literal.
This never has a trailing 'L', and the integer fit
in a short Python int on the box where the pickle
was written -- but there's no guarantee it will fit
in a short Python int on the box where the pickle
is read.
""")
decimalnl_long = ArgumentDescriptor(
name='decimalnl_long',
n=UP_TO_NEWLINE,
reader=read_decimalnl_long,
doc="""A newline-terminated decimal integer literal.
This has a trailing 'L', and can represent integers
of any size.
""")
def read_floatnl(f):
r"""
>>> import StringIO
>>> read_floatnl(StringIO.StringIO("-1.25\n6"))
-1.25
"""
s = read_stringnl(f, decode=False, stripquotes=False)
return float(s)
floatnl = ArgumentDescriptor(
name='floatnl',
n=UP_TO_NEWLINE,
reader=read_floatnl,
doc="""A newline-terminated decimal floating literal.
In general this requires 17 significant digits for roundtrip
identity, and pickling then unpickling infinities, NaNs, and
minus zero doesn't work across boxes, or on some boxes even
on itself (e.g., Windows can't read the strings it produces
for infinities or NaNs).
""")
def read_float8(f):
r"""
>>> import StringIO, struct
>>> raw = struct.pack(">d", -1.25)
>>> raw
'\xbf\xf4\x00\x00\x00\x00\x00\x00'
>>> read_float8(StringIO.StringIO(raw + "\n"))
-1.25
"""
data = f.read(8)
if len(data) == 8:
return _unpack(">d", data)[0]
raise ValueError("not enough data in stream to read float8")
float8 = ArgumentDescriptor(
name='float8',
n=8,
reader=read_float8,
doc="""An 8-byte binary representation of a float, big-endian.
The format is unique to Python, and shared with the struct
module (format string '>d') "in theory" (the struct and cPickle
implementations don't share the code -- they should). It's
strongly related to the IEEE-754 double format, and, in normal
cases, is in fact identical to the big-endian 754 double format.
On other boxes the dynamic range is limited to that of a 754
double, and "add a half and chop" rounding is used to reduce
the precision to 53 bits. However, even on a 754 box,
infinities, NaNs, and minus zero may not be handled correctly
(may not survive roundtrip pickling intact).
""")
# Protocol 2 formats
from pickle import decode_long
def read_long1(f):
r"""
>>> import StringIO
>>> read_long1(StringIO.StringIO("\x00"))
0L
>>> read_long1(StringIO.StringIO("\x02\xff\x00"))
255L
>>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
32767L
>>> read_long1(StringIO.StringIO("\x02\x00\xff"))
-256L
>>> read_long1(StringIO.StringIO("\x02\x00\x80"))
-32768L
"""
n = read_uint1(f)
data = f.read(n)
if len(data) != n:
raise ValueError("not enough data in stream to read long1")
return decode_long(data)
long1 = ArgumentDescriptor(
name="long1",
n=TAKEN_FROM_ARGUMENT1,
reader=read_long1,
doc="""A binary long, little-endian, using 1-byte size.
This first reads one byte as an unsigned size, then reads that
many bytes and interprets them as a little-endian 2's-complement long.
If the size is 0, that's taken as a shortcut for the long 0L.
""")
def read_long4(f):
r"""
>>> import StringIO
>>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
255L
>>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
32767L
>>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
-256L
>>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
-32768L
>>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
0L
"""
n = read_int4(f)
if n < 0:
raise ValueError("long4 byte count < 0: %d" % n)
data = f.read(n)
if len(data) != n:
raise ValueError("not enough data in stream to read long4")
return decode_long(data)
long4 = ArgumentDescriptor(
name="long4",
n=TAKEN_FROM_ARGUMENT4,
reader=read_long4,
doc="""A binary representation of a long, little-endian.
This first reads four bytes as a signed size (but requires the
size to be >= 0), then reads that many bytes and interprets them
as a little-endian 2's-complement long. If the size is 0, that's taken
as a shortcut for the long 0L, although LONG1 should really be used
then instead (and in any case where # of bytes < 256).
""")
##############################################################################
# Object descriptors. The stack used by the pickle machine holds objects,
# and in the stack_before and stack_after attributes of OpcodeInfo
# descriptors we need names to describe the various types of objects that can
# appear on the stack.
class StackObject(object):
__slots__ = (
# name of descriptor record, for info only
'name',
# type of object, or tuple of type objects (meaning the object can
# be of any type in the tuple)
'obtype',
# human-readable docs for this kind of stack object; a string
'doc',
)
def __init__(self, name, obtype, doc):
assert isinstance(name, str)
self.name = name
assert isinstance(obtype, type) or isinstance(obtype, tuple)
if isinstance(obtype, tuple):
for contained in obtype:
assert isinstance(contained, type)
self.obtype = obtype
assert isinstance(doc, str)
self.doc = doc
def __repr__(self):
return self.name
pyint = StackObject(
name='int',
obtype=int,
doc="A short (as opposed to long) Python integer object.")
pylong = StackObject(
name='long',
obtype=long,
doc="A long (as opposed to short) Python integer object.")
pyinteger_or_bool = StackObject(
name='int_or_bool',
obtype=(int, long, bool),
doc="A Python integer object (short or long), or "
"a Python bool.")
pybool = StackObject(
name='bool',
obtype=(bool,),
doc="A Python bool object.")
pyfloat = StackObject(
name='float',
obtype=float,
doc="A Python float object.")
pystring = StackObject(
name='str',
obtype=str,
doc="A Python string object.")
pyunicode = StackObject(
name='unicode',
obtype=unicode,
doc="A Python Unicode string object.")
pynone = StackObject(
name="None",
obtype=type(None),
doc="The Python None object.")
pytuple = StackObject(
name="tuple",
obtype=tuple,
doc="A Python tuple object.")
pylist = StackObject(
name="list",
obtype=list,
doc="A Python list object.")
pydict = StackObject(
name="dict",
obtype=dict,
doc="A Python dict object.")
anyobject = StackObject(
name='any',
obtype=object,
doc="Any kind of object whatsoever.")
markobject = StackObject(
name="mark",
obtype=StackObject,
doc="""'The mark' is a unique object.
Opcodes that operate on a variable number of objects
generally don't embed the count of objects in the opcode,
or pull it off the stack. Instead the MARK opcode is used
to push a special marker object on the stack, and then
some other opcodes grab all the objects from the top of
the stack down to (but not including) the topmost marker
object.
""")
stackslice = StackObject(
name="stackslice",
obtype=StackObject,
doc="""An object representing a contiguous slice of the stack.
This is used in conjuction with markobject, to represent all
of the stack following the topmost markobject. For example,
the POP_MARK opcode changes the stack from
[..., markobject, stackslice]
to
[...]
No matter how many object are on the stack after the topmost
markobject, POP_MARK gets rid of all of them (including the
topmost markobject too).
""")
##############################################################################
# Descriptors for pickle opcodes.
class OpcodeInfo(object):
__slots__ = (
# symbolic name of opcode; a string
'name',
# the code used in a bytestream to represent the opcode; a
# one-character string
'code',
# If the opcode has an argument embedded in the byte string, an
# instance of ArgumentDescriptor specifying its type. Note that
# arg.reader(s) can be used to read and decode the argument from
# the bytestream s, and arg.doc documents the format of the raw
# argument bytes. If the opcode doesn't have an argument embedded
# in the bytestream, arg should be None.
'arg',
# what the stack looks like before this opcode runs; a list
'stack_before',
# what the stack looks like after this opcode runs; a list
'stack_after',
# the protocol number in which this opcode was introduced; an int
'proto',
# human-readable docs for this opcode; a string
'doc',
)
def __init__(self, name, code, arg,
stack_before, stack_after, proto, doc):
assert isinstance(name, str)
self.name = name
assert isinstance(code, str)
assert len(code) == 1
self.code = code
assert arg is None or isinstance(arg, ArgumentDescriptor)
self.arg = arg
assert isinstance(stack_before, list)
for x in stack_before:
assert isinstance(x, StackObject)
self.stack_before = stack_before
assert isinstance(stack_after, list)
for x in stack_after:
assert isinstance(x, StackObject)
self.stack_after = stack_after
assert isinstance(proto, int) and 0 <= proto <= 2
self.proto = proto
assert isinstance(doc, str)
self.doc = doc
I = OpcodeInfo
opcodes = [
# Ways to spell integers.
I(name='INT',
code='I',
arg=decimalnl_short,
stack_before=[],
stack_after=[pyinteger_or_bool],
proto=0,
doc="""Push an integer or bool.
The argument is a newline-terminated decimal literal string.
The intent may have been that this always fit in a short Python int,
but INT can be generated in pickles written on a 64-bit box that
require a Python long on a 32-bit box. The difference between this
and LONG then is that INT skips a trailing 'L', and produces a short
int whenever possible.
Another difference is due to that, when bool was introduced as a
distinct type in 2.3, builtin names True and False were also added to
2.2.2, mapping to ints 1 and 0. For compatibility in both directions,
True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
Leading zeroes are never produced for a genuine integer. The 2.3
(and later) unpicklers special-case these and return bool instead;
earlier unpicklers ignore the leading "0" and return the int.
"""),
I(name='BININT',
code='J',
arg=int4,
stack_before=[],
stack_after=[pyint],
proto=1,
doc="""Push a four-byte signed integer.
This handles the full range of Python (short) integers on a 32-bit
box, directly as binary bytes (1 for the opcode and 4 for the integer).
If the integer is non-negative and fits in 1 or 2 bytes, pickling via
BININT1 or BININT2 saves space.
"""),
I(name='BININT1',
code='K',
arg=uint1,
stack_before=[],
stack_after=[pyint],
proto=1,
doc="""Push a one-byte unsigned integer.
This is a space optimization for pickling very small non-negative ints,
in range(256).
"""),
I(name='BININT2',
code='M',
arg=uint2,
stack_before=[],
stack_after=[pyint],
proto=1,
doc="""Push a two-byte unsigned integer.
This is a space optimization for pickling small positive ints, in
range(256, 2**16). Integers in range(256) can also be pickled via
BININT2, but BININT1 instead saves a byte.
"""),
I(name='LONG',
code='L',
arg=decimalnl_long,
stack_before=[],
stack_after=[pylong],
proto=0,
doc="""Push a long integer.
The same as INT, except that the literal ends with 'L', and always
unpickles to a Python long. There doesn't seem a real purpose to the
trailing 'L'.
Note that LONG takes time quadratic in the number of digits when
unpickling (this is simply due to the nature of decimal->binary
conversion). Proto 2 added linear-time (in C; still quadratic-time
in Python) LONG1 and LONG4 opcodes.
"""),
I(name="LONG1",
code='\x8a',
arg=long1,
stack_before=[],
stack_after=[pylong],
proto=2,
doc="""Long integer using one-byte length.
A more efficient encoding of a Python long; the long1 encoding
says it all."""),
I(name="LONG4",
code='\x8b',
arg=long4,
stack_before=[],
stack_after=[pylong],
proto=2,
doc="""Long integer using found-byte length.
A more efficient encoding of a Python long; the long4 encoding
says it all."""),
# Ways to spell strings (8-bit, not Unicode).
I(name='STRING',
code='S',
arg=stringnl,
stack_before=[],
stack_after=[pystring],
proto=0,
doc="""Push a Python string object.
The argument is a repr-style string, with bracketing quote characters,
and perhaps embedded escapes. The argument extends until the next
newline character.
"""),
I(name='BINSTRING',
code='T',
arg=string4,
stack_before=[],
stack_after=[pystring],
proto=1,
doc="""Push a Python string object.
There are two arguments: the first is a 4-byte little-endian signed int
giving the number of bytes in the string, and the second is that many
bytes, which are taken literally as the string content.
"""),
I(name='SHORT_BINSTRING',
code='U',
arg=string1,
stack_before=[],
stack_after=[pystring],
proto=1,
doc="""Push a Python string object.
There are two arguments: the first is a 1-byte unsigned int giving
the number of bytes in the string, and the second is that many bytes,
which are taken literally as the string content.
"""),
# Ways to spell None.
I(name='NONE',
code='N',
arg=None,
stack_before=[],
stack_after=[pynone],
proto=0,
doc="Push None on the stack."),
# Ways to spell bools, starting with proto 2. See INT for how this was
# done before proto 2.
I(name='NEWTRUE',
code='\x88',
arg=None,
stack_before=[],
stack_after=[pybool],
proto=2,
doc="""True.
Push True onto the stack."""),
I(name='NEWFALSE',
code='\x89',
arg=None,
stack_before=[],
stack_after=[pybool],
proto=2,
doc="""True.
Push False onto the stack."""),
# Ways to spell Unicode strings.
I(name='UNICODE',
code='V',
arg=unicodestringnl,
stack_before=[],
stack_after=[pyunicode],
proto=0, # this may be pure-text, but it's a later addition
doc="""Push a Python Unicode string object.
The argument is a raw-unicode-escape encoding of a Unicode string,
and so may contain embedded escape sequences. The argument extends
until the next newline character.
"""),
I(name='BINUNICODE',
code='X',
arg=unicodestring4,
stack_before=[],
stack_after=[pyunicode],
proto=1,
doc="""Push a Python Unicode string object.
There are two arguments: the first is a 4-byte little-endian signed int
giving the number of bytes in the string. The second is that many
bytes, and is the UTF-8 encoding of the Unicode string.
"""),
# Ways to spell floats.
I(name='FLOAT',
code='F',
arg=floatnl,
stack_before=[],
stack_after=[pyfloat],
proto=0,
doc="""Newline-terminated decimal float literal.
The argument is repr(a_float), and in general requires 17 significant
digits for roundtrip conversion to be an identity (this is so for
IEEE-754 double precision values, which is what Python float maps to
on most boxes).
In general, FLOAT cannot be used to transport infinities, NaNs, or
minus zero across boxes (or even on a single box, if the platform C
library can't read the strings it produces for such things -- Windows
is like that), but may do less damage than BINFLOAT on boxes with
greater precision or dynamic range than IEEE-754 double.
"""),
I(name='BINFLOAT',
code='G',
arg=float8,
stack_before=[],
stack_after=[pyfloat],
proto=1,
doc="""Float stored in binary form, with 8 bytes of data.
This generally requires less than half the space of FLOAT encoding.
In general, BINFLOAT cannot be used to transport infinities, NaNs, or
minus zero, raises an exception if the exponent exceeds the range of
an IEEE-754 double, and retains no more than 53 bits of precision (if
there are more than that, "add a half and chop" rounding is used to
cut it back to 53 significant bits).
"""),
# Ways to build lists.
I(name='EMPTY_LIST',
code=']',
arg=None,
stack_before=[],
stack_after=[pylist],
proto=1,
doc="Push an empty list."),
I(name='APPEND',
code='a',
arg=None,
stack_before=[pylist, anyobject],
stack_after=[pylist],
proto=0,
doc="""Append an object to a list.
Stack before: ... pylist anyobject
Stack after: ... pylist+[anyobject]
although pylist is really extended in-place.
"""),
I(name='APPENDS',
code='e',
arg=None,
stack_before=[pylist, markobject, stackslice],
stack_after=[pylist],
proto=1,
doc="""Extend a list by a slice of stack objects.
Stack before: ... pylist markobject stackslice
Stack after: ... pylist+stackslice
although pylist is really extended in-place.
"""),
I(name='LIST',
code='l',
arg=None,
stack_before=[markobject, stackslice],
stack_after=[pylist],
proto=0,
doc="""Build a list out of the topmost stack slice, after markobject.
All the stack entries following the topmost markobject are placed into
a single Python list, which single list object replaces all of the
stack from the topmost markobject onward. For example,
Stack before: ... markobject 1 2 3 'abc'
Stack after: ... [1, 2, 3, 'abc']
"""),
# Ways to build tuples.
I(name='EMPTY_TUPLE',
code=')',
arg=None,
stack_before=[],
stack_after=[pytuple],
proto=1,
doc="Push an empty tuple."),
I(name='TUPLE',
code='t',
arg=None,
stack_before=[markobject, stackslice],
stack_after=[pytuple],
proto=0,
doc="""Build a tuple out of the topmost stack slice, after markobject.
All the stack entries following the topmost markobject are placed into
a single Python tuple, which single tuple object replaces all of the
stack from the topmost markobject onward. For example,
Stack before: ... markobject 1 2 3 'abc'
Stack after: ... (1, 2, 3, 'abc')
"""),
I(name='TUPLE1',
code='\x85',
arg=None,
stack_before=[anyobject],
stack_after=[pytuple],
proto=2,
doc="""One-tuple.
This code pops one value off the stack and pushes a tuple of
length 1 whose one item is that value back onto it. IOW:
stack[-1] = tuple(stack[-1:])
"""),
I(name='TUPLE2',
code='\x86',
arg=None,
stack_before=[anyobject, anyobject],
stack_after=[pytuple],
proto=2,
doc="""One-tuple.
This code pops two values off the stack and pushes a tuple
of length 2 whose items are those values back onto it. IOW:
stack[-2:] = [tuple(stack[-2:])]
"""),
I(name='TUPLE3',
code='\x87',
arg=None,
stack_before=[anyobject, anyobject, anyobject],
stack_after=[pytuple],
proto=2,
doc="""One-tuple.
This code pops three values off the stack and pushes a tuple
of length 3 whose items are those values back onto it. IOW:
stack[-3:] = [tuple(stack[-3:])]
"""),
# Ways to build dicts.
I(name='EMPTY_DICT',
code='}',
arg=None,
stack_before=[],
stack_after=[pydict],
proto=1,
doc="Push an empty dict."),
I(name='DICT',
code='d',
arg=None,
stack_before=[markobject, stackslice],
stack_after=[pydict],
proto=0,
doc="""Build a dict out of the topmost stack slice, after markobject.
All the stack entries following the topmost markobject are placed into
a single Python dict, which single dict object replaces all of the
stack from the topmost markobject onward. The stack slice alternates
key, value, key, value, .... For example,
Stack before: ... markobject 1 2 3 'abc'
Stack after: ... {1: 2, 3: 'abc'}
"""),
I(name='SETITEM',
code='s',
arg=None,
stack_before=[pydict, anyobject, anyobject],
stack_after=[pydict],
proto=0,
doc="""Add a key+value pair to an existing dict.
Stack before: ... pydict key value
Stack after: ... pydict
where pydict has been modified via pydict[key] = value.
"""),
I(name='SETITEMS',
code='u',
arg=None,
stack_before=[pydict, markobject, stackslice],
stack_after=[pydict],
proto=1,
doc="""Add an arbitrary number of key+value pairs to an existing dict.
The slice of the stack following the topmost markobject is taken as
an alternating sequence of keys and values, added to the dict
immediately under the topmost markobject. Everything at and after the
topmost markobject is popped, leaving the mutated dict at the top
of the stack.
Stack before: ... pydict markobject key_1 value_1 ... key_n value_n
Stack after: ... pydict
where pydict has been modified via pydict[key_i] = value_i for i in
1, 2, ..., n, and in that order.
"""),
# Stack manipulation.
I(name='POP',
code='0',
arg=None,
stack_before=[anyobject],
stack_after=[],
proto=0,
doc="Discard the top stack item, shrinking the stack by one item."),
I(name='DUP',
code='2',
arg=None,
stack_before=[anyobject],
stack_after=[anyobject, anyobject],
proto=0,
doc="Push the top stack item onto the stack again, duplicating it."),
I(name='MARK',
code='(',
arg=None,
stack_before=[],
stack_after=[markobject],
proto=0,
doc="""Push markobject onto the stack.
markobject is a unique object, used by other opcodes to identify a
region of the stack containing a variable number of objects for them
to work on. See markobject.doc for more detail.
"""),
I(name='POP_MARK',
code='1',
arg=None,
stack_before=[markobject, stackslice],
stack_after=[],
proto=0,
doc="""Pop all the stack objects at and above the topmost markobject.
When an opcode using a variable number of stack objects is done,
POP_MARK is used to remove those objects, and to remove the markobject
that delimited their starting position on the stack.
"""),
# Memo manipulation. There are really only two operations (get and put),
# each in all-text, "short binary", and "long binary" flavors.
I(name='GET',
code='g',
arg=decimalnl_short,
stack_before=[],
stack_after=[anyobject],
proto=0,
doc="""Read an object from the memo and push it on the stack.
The index of the memo object to push is given by the newline-teriminated
decimal string following. BINGET and LONG_BINGET are space-optimized
versions.
"""),
I(name='BINGET',
code='h',
arg=uint1,
stack_before=[],
stack_after=[anyobject],
proto=1,
doc="""Read an object from the memo and push it on the stack.
The index of the memo object to push is given by the 1-byte unsigned
integer following.
"""),
I(name='LONG_BINGET',
code='j',
arg=int4,
stack_before=[],
stack_after=[anyobject],
proto=1,
doc="""Read an object from the memo and push it on the stack.
The index of the memo object to push is given by the 4-byte signed
little-endian integer following.
"""),
I(name='PUT',
code='p',
arg=decimalnl_short,
stack_before=[],
stack_after=[],
proto=0,
doc="""Store the stack top into the memo. The stack is not popped.
The index of the memo location to write into is given by the newline-
terminated decimal string following. BINPUT and LONG_BINPUT are
space-optimized versions.
"""),
I(name='BINPUT',
code='q',
arg=uint1,
stack_before=[],
stack_after=[],
proto=1,
doc="""Store the stack top into the memo. The stack is not popped.
The index of the memo location to write into is given by the 1-byte
unsigned integer following.
"""),
I(name='LONG_BINPUT',
code='r',
arg=int4,
stack_before=[],
stack_after=[],
proto=1,
doc="""Store the stack top into the memo. The stack is not popped.
The index of the memo location to write into is given by the 4-byte
signed little-endian integer following.
"""),
# Access the extension registry (predefined objects). Akin to the GET
# family.
I(name='EXT1',
code='\x82',
arg=uint1,
stack_before=[],
stack_after=[anyobject],
proto=2,
doc="""Extension code.
This code and the similar EXT2 and EXT4 allow using a registry
of popular objects that are pickled by name, typically classes.
It is envisioned that through a global negotiation and
registration process, third parties can set up a mapping between
ints and object names.
In order to guarantee pickle interchangeability, the extension
code registry ought to be global, although a range of codes may
be reserved for private use.
EXT1 has a 1-byte integer argument. This is used to index into the
extension registry, and the object at that index is pushed on the stack.
"""),
I(name='EXT2',
code='\x83',
arg=uint2,
stack_before=[],
stack_after=[anyobject],
proto=2,
doc="""Extension code.
See EXT1. EXT2 has a two-byte integer argument.
"""),
I(name='EXT4',
code='\x84',
arg=int4,
stack_before=[],
stack_after=[anyobject],
proto=2,
doc="""Extension code.
See EXT1. EXT4 has a four-byte integer argument.
"""),
# Push a class object, or module function, on the stack, via its module
# and name.
I(name='GLOBAL',
code='c',
arg=stringnl_noescape_pair,
stack_before=[],
stack_after=[anyobject],
proto=0,
doc="""Push a global object (module.attr) on the stack.
Two newline-terminated strings follow the GLOBAL opcode. The first is
taken as a module name, and the second as a class name. The class
object module.class is pushed on the stack. More accurately, the
object returned by self.find_class(module, class) is pushed on the
stack, so unpickling subclasses can override this form of lookup.
"""),
# Ways to build objects of classes pickle doesn't know about directly
# (user-defined classes). I despair of documenting this accurately
# and comprehensibly -- you really have to read the pickle code to
# find all the special cases.
I(name='REDUCE',
code='R',
arg=None,
stack_before=[anyobject, anyobject],
stack_after=[anyobject],
proto=0,
doc="""Push an object built from a callable and an argument tuple.
The opcode is named to remind of the __reduce__() method.
Stack before: ... callable pytuple
Stack after: ... callable(*pytuple)
The callable and the argument tuple are the first two items returned
by a __reduce__ method. Applying the callable to the argtuple is
supposed to reproduce the original object, or at least get it started.
If the __reduce__ method returns a 3-tuple, the last component is an
argument to be passed to the object's __setstate__, and then the REDUCE
opcode is followed by code to create setstate's argument, and then a
BUILD opcode to apply __setstate__ to that argument.
If type(callable) is not ClassType, REDUCE complains unless the
callable has been registered with the copy_reg module's
safe_constructors dict, or the callable has a magic
'__safe_for_unpickling__' attribute with a true value. I'm not sure
why it does this, but I've sure seen this complaint often enough when
I didn't want to <wink>.
"""),
I(name='BUILD',
code='b',
arg=None,
stack_before=[anyobject, anyobject],
stack_after=[anyobject],
proto=0,
doc="""Finish building an object, via __setstate__ or dict update.
Stack before: ... anyobject argument
Stack after: ... anyobject
where anyobject may have been mutated, as follows:
If the object has a __setstate__ method,
anyobject.__setstate__(argument)
is called.
Else the argument must be a dict, the object must have a __dict__, and
the object is updated via
anyobject.__dict__.update(argument)
This may raise RuntimeError in restricted execution mode (which
disallows access to __dict__ directly); in that case, the object
is updated instead via
for k, v in argument.items():
anyobject[k] = v
"""),
I(name='INST',
code='i',
arg=stringnl_noescape_pair,
stack_before=[markobject, stackslice],
stack_after=[anyobject],
proto=0,
doc="""Build a class instance.
This is the protocol 0 version of protocol 1's OBJ opcode.
INST is followed by two newline-terminated strings, giving a
module and class name, just as for the GLOBAL opcode (and see
GLOBAL for more details about that). self.find_class(module, name)
is used to get a class object.
In addition, all the objects on the stack following the topmost
markobject are gathered into a tuple and popped (along with the
topmost markobject), just as for the TUPLE opcode.
Now it gets complicated. If all of these are true:
+ The argtuple is empty (markobject was at the top of the stack
at the start).
+ It's an old-style class object (the type of the class object is
ClassType).
+ The class object does not have a __getinitargs__ attribute.
then we want to create an old-style class instance without invoking
its __init__() method (pickle has waffled on this over the years; not
calling __init__() is current wisdom). In this case, an instance of
an old-style dummy class is created, and then we try to rebind its
__class__ attribute to the desired class object. If this succeeds,
the new instance object is pushed on the stack, and we're done. In
restricted execution mode it can fail (assignment to __class__ is
disallowed), and I'm not really sure what happens then -- it looks
like the code ends up calling the class object's __init__ anyway,
via falling into the next case.
Else (the argtuple is not empty, it's not an old-style class object,
or the class object does have a __getinitargs__ attribute), the code
first insists that the class object have a __safe_for_unpickling__
attribute. Unlike as for the __safe_for_unpickling__ check in REDUCE,
it doesn't matter whether this attribute has a true or false value, it
only matters whether it exists (XXX this is a bug; cPickle
requires the attribute to be true). If __safe_for_unpickling__
doesn't exist, UnpicklingError is raised.
Else (the class object does have a __safe_for_unpickling__ attr),
the class object obtained from INST's arguments is applied to the
argtuple obtained from the stack, and the resulting instance object
is pushed on the stack.
NOTE: checks for __safe_for_unpickling__ went away in Python 2.3.
"""),
I(name='OBJ',
code='o',
arg=None,
stack_before=[markobject, anyobject, stackslice],
stack_after=[anyobject],
proto=1,
doc="""Build a class instance.
This is the protocol 1 version of protocol 0's INST opcode, and is
very much like it. The major difference is that the class object
is taken off the stack, allowing it to be retrieved from the memo
repeatedly if several instances of the same class are created. This
can be much more efficient (in both time and space) than repeatedly
embedding the module and class names in INST opcodes.
Unlike INST, OBJ takes no arguments from the opcode stream. Instead
the class object is taken off the stack, immediately above the
topmost markobject:
Stack before: ... markobject classobject stackslice
Stack after: ... new_instance_object
As for INST, the remainder of the stack above the markobject is
gathered into an argument tuple, and then the logic seems identical,
except that no __safe_for_unpickling__ check is done (XXX this is
a bug; cPickle does test __safe_for_unpickling__). See INST for
the gory details.
NOTE: In Python 2.3, INST and OBJ are identical except for how they
get the class object. That was always the intent; the implementations
had diverged for accidental reasons.
"""),
I(name='NEWOBJ',
code='\x81',
arg=None,
stack_before=[anyobject, anyobject],
stack_after=[anyobject],
proto=2,
doc="""Build an object instance.
The stack before should be thought of as containing a class
object followed by an argument tuple (the tuple being the stack
top). Call these cls and args. They are popped off the stack,
and the value returned by cls.__new__(cls, *args) is pushed back
onto the stack.
"""),
# Machine control.
I(name='PROTO',
code='\x80',
arg=uint1,
stack_before=[],
stack_after=[],
proto=2,
doc="""Protocol version indicator.
For protocol 2 and above, a pickle must start with this opcode.
The argument is the protocol version, an int in range(2, 256).
"""),
I(name='STOP',
code='.',
arg=None,
stack_before=[anyobject],
stack_after=[],
proto=0,
doc="""Stop the unpickling machine.
Every pickle ends with this opcode. The object at the top of the stack
is popped, and that's the result of unpickling. The stack should be
empty then.
"""),
# Ways to deal with persistent IDs.
I(name='PERSID',
code='P',
arg=stringnl_noescape,
stack_before=[],
stack_after=[anyobject],
proto=0,
doc="""Push an object identified by a persistent ID.
The pickle module doesn't define what a persistent ID means. PERSID's
argument is a newline-terminated str-style (no embedded escapes, no
bracketing quote characters) string, which *is* "the persistent ID".
The unpickler passes this string to self.persistent_load(). Whatever
object that returns is pushed on the stack. There is no implementation
of persistent_load() in Python's unpickler: it must be supplied by an
unpickler subclass.
"""),
I(name='BINPERSID',
code='Q',
arg=None,
stack_before=[anyobject],
stack_after=[anyobject],
proto=1,
doc="""Push an object identified by a persistent ID.
Like PERSID, except the persistent ID is popped off the stack (instead
of being a string embedded in the opcode bytestream). The persistent
ID is passed to self.persistent_load(), and whatever object that
returns is pushed on the stack. See PERSID for more detail.
"""),
]
del I
# Verify uniqueness of .name and .code members.
name2i = {}
code2i = {}
for i, d in enumerate(opcodes):
if d.name in name2i:
raise ValueError("repeated name %r at indices %d and %d" %
(d.name, name2i[d.name], i))
if d.code in code2i:
raise ValueError("repeated code %r at indices %d and %d" %
(d.code, code2i[d.code], i))
name2i[d.name] = i
code2i[d.code] = i
del name2i, code2i, i, d
##############################################################################
# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
# Also ensure we've got the same stuff as pickle.py, although the
# introspection here is dicey.
code2op = {}
for d in opcodes:
code2op[d.code] = d
del d
def assure_pickle_consistency(verbose=False):
import pickle, re
copy = code2op.copy()
for name in pickle.__all__:
if not re.match("[A-Z][A-Z0-9_]+$", name):
if verbose:
print "skipping %r: it doesn't look like an opcode name" % name
continue
picklecode = getattr(pickle, name)
if not isinstance(picklecode, str) or len(picklecode) != 1:
if verbose:
print ("skipping %r: value %r doesn't look like a pickle "
"code" % (name, picklecode))
continue
if picklecode in copy:
if verbose:
print "checking name %r w/ code %r for consistency" % (
name, picklecode)
d = copy[picklecode]
if d.name != name:
raise ValueError("for pickle code %r, pickle.py uses name %r "
"but we're using name %r" % (picklecode,
name,
d.name))
# Forget this one. Any left over in copy at the end are a problem
# of a different kind.
del copy[picklecode]
else:
raise ValueError("pickle.py appears to have a pickle opcode with "
"name %r and code %r, but we don't" %
(name, picklecode))
if copy:
msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
for code, d in copy.items():
msg.append(" name %r with code %r" % (d.name, code))
raise ValueError("\n".join(msg))
assure_pickle_consistency()
del assure_pickle_consistency
##############################################################################
# A pickle opcode generator.
def genops(pickle):
"""Generate all the opcodes in a pickle.
'pickle' is a file-like object, or string, containing the pickle.
Each opcode in the pickle is generated, from the current pickle position,
stopping after a STOP opcode is delivered. A triple is generated for
each opcode:
opcode, arg, pos
opcode is an OpcodeInfo record, describing the current opcode.
If the opcode has an argument embedded in the pickle, arg is its decoded
value, as a Python object. If the opcode doesn't have an argument, arg
is None.
If the pickle has a tell() method, pos was the value of pickle.tell()
before reading the current opcode. If the pickle is a string object,
it's wrapped in a StringIO object, and the latter's tell() result is
used. Else (the pickle doesn't have a tell(), and it's not obvious how
to query its current position) pos is None.
"""
import cStringIO as StringIO
if isinstance(pickle, str):
pickle = StringIO.StringIO(pickle)
if hasattr(pickle, "tell"):
getpos = pickle.tell
else:
getpos = lambda: None
while True:
pos = getpos()
code = pickle.read(1)
opcode = code2op.get(code)
if opcode is None:
if code == "":
raise ValueError("pickle exhausted before seeing STOP")
else:
raise ValueError("at position %s, opcode %r unknown" % (
pos is None and "<unknown>" or pos,
code))
if opcode.arg is None:
arg = None
else:
arg = opcode.arg.reader(pickle)
yield opcode, arg, pos
if code == '.':
assert opcode.name == 'STOP'
break
##############################################################################
# A symbolic pickle disassembler.
def dis(pickle, out=None, memo=None, indentlevel=4):
"""Produce a symbolic disassembly of a pickle.
'pickle' is a file-like object, or string, containing a (at least one)
pickle. The pickle is disassembled from the current position, through
the first STOP opcode encountered.
Optional arg 'out' is a file-like object to which the disassembly is
printed. It defaults to sys.stdout.
Optional arg 'memo' is a Python dict, used as the pickle's memo. It
may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
Passing the same memo object to another dis() call then allows disassembly
to proceed across multiple pickles that were all created by the same
pickler with the same memo. Ordinarily you don't need to worry about this.
Optional arg indentlevel is the number of blanks by which to indent
a new MARK level. It defaults to 4.
In addition to printing the disassembly, some sanity checks are made:
+ All embedded opcode arguments "make sense".
+ Explicit and implicit pop operations have enough items on the stack.
+ When an opcode implicitly refers to a markobject, a markobject is
actually on the stack.
+ A memo entry isn't referenced before it's defined.
+ The markobject isn't stored in the memo.
+ A memo entry isn't redefined.
"""
# Most of the hair here is for sanity checks, but most of it is needed
# anyway to detect when a protocol 0 POP takes a MARK off the stack
# (which in turn is needed to indent MARK blocks correctly).
stack = [] # crude emulation of unpickler stack
if memo is None:
memo = {} # crude emulation of unpicker memo
maxproto = -1 # max protocol number seen
markstack = [] # bytecode positions of MARK opcodes
indentchunk = ' ' * indentlevel
errormsg = None
for opcode, arg, pos in genops(pickle):
if pos is not None:
print >> out, "%5d:" % pos,
line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
indentchunk * len(markstack),
opcode.name)
maxproto = max(maxproto, opcode.proto)
before = opcode.stack_before # don't mutate
after = opcode.stack_after # don't mutate
numtopop = len(before)
# See whether a MARK should be popped.
markmsg = None
if markobject in before or (opcode.name == "POP" and
stack and
stack[-1] is markobject):
assert markobject not in after
if __debug__:
if markobject in before:
assert before[-1] is stackslice
if markstack:
markpos = markstack.pop()
if markpos is None:
markmsg = "(MARK at unknown opcode offset)"
else:
markmsg = "(MARK at %d)" % markpos
# Pop everything at and after the topmost markobject.
while stack[-1] is not markobject:
stack.pop()
stack.pop()
# Stop later code from popping too much.
try:
numtopop = before.index(markobject)
except ValueError:
assert opcode.name == "POP"
numtopop = 0
else:
errormsg = markmsg = "no MARK exists on stack"
# Check for correct memo usage.
if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
assert arg is not None
if arg in memo:
errormsg = "memo key %r already defined" % arg
elif not stack:
errormsg = "stack is empty -- can't store into memo"
elif stack[-1] is markobject:
errormsg = "can't store markobject in the memo"
else:
memo[arg] = stack[-1]
elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
if arg in memo:
assert len(after) == 1
after = [memo[arg]] # for better stack emulation
else:
errormsg = "memo key %r has never been stored into" % arg
if arg is not None or markmsg:
# make a mild effort to align arguments
line += ' ' * (10 - len(opcode.name))
if arg is not None:
line += ' ' + repr(arg)
if markmsg:
line += ' ' + markmsg
print >> out, line
if errormsg:
# Note that we delayed complaining until the offending opcode
# was printed.
raise ValueError(errormsg)
# Emulate the stack effects.
if len(stack) < numtopop:
raise ValueError("tries to pop %d items from stack with "
"only %d items" % (numtopop, len(stack)))
if numtopop:
del stack[-numtopop:]
if markobject in after:
assert markobject not in before
markstack.append(pos)
stack.extend(after)
print >> out, "highest protocol among opcodes =", maxproto
if stack:
raise ValueError("stack not empty after STOP: %r" % stack)
# For use in the doctest, simply as an example of a class to pickle.
class _Example:
def __init__(self, value):
self.value = value
_dis_test = r"""
>>> import pickle
>>> x = [1, 2, (3, 4), {'abc': u"def"}]
>>> pkl = pickle.dumps(x, 0)
>>> dis(pkl)
0: ( MARK
1: l LIST (MARK at 0)
2: p PUT 0
5: I INT 1
8: a APPEND
9: I INT 2
12: a APPEND
13: ( MARK
14: I INT 3
17: I INT 4
20: t TUPLE (MARK at 13)
21: p PUT 1
24: a APPEND
25: ( MARK
26: d DICT (MARK at 25)
27: p PUT 2
30: S STRING 'abc'
37: p PUT 3
40: V UNICODE u'def'
45: p PUT 4
48: s SETITEM
49: a APPEND
50: . STOP
highest protocol among opcodes = 0
Try again with a "binary" pickle.
>>> pkl = pickle.dumps(x, 1)
>>> dis(pkl)
0: ] EMPTY_LIST
1: q BINPUT 0
3: ( MARK
4: K BININT1 1
6: K BININT1 2
8: ( MARK
9: K BININT1 3
11: K BININT1 4
13: t TUPLE (MARK at 8)
14: q BINPUT 1
16: } EMPTY_DICT
17: q BINPUT 2
19: U SHORT_BINSTRING 'abc'
24: q BINPUT 3
26: X BINUNICODE u'def'
34: q BINPUT 4
36: s SETITEM
37: e APPENDS (MARK at 3)
38: . STOP
highest protocol among opcodes = 1
Exercise the INST/OBJ/BUILD family.
>>> import random
>>> dis(pickle.dumps(random.random, 0))
0: c GLOBAL 'random random'
15: p PUT 0
18: . STOP
highest protocol among opcodes = 0
>>> from pickletools import _Example
>>> x = [_Example(42)] * 2
>>> dis(pickle.dumps(x, 0))
0: ( MARK
1: l LIST (MARK at 0)
2: p PUT 0
5: c GLOBAL 'copy_reg _reconstructor'
30: p PUT 1
33: ( MARK
34: c GLOBAL 'pickletools _Example'
56: p PUT 2
59: c GLOBAL '__builtin__ object'
79: p PUT 3
82: N NONE
83: t TUPLE (MARK at 33)
84: p PUT 4
87: R REDUCE
88: p PUT 5
91: ( MARK
92: d DICT (MARK at 91)
93: p PUT 6
96: S STRING 'value'
105: p PUT 7
108: I INT 42
112: s SETITEM
113: b BUILD
114: a APPEND
115: g GET 5
118: a APPEND
119: . STOP
highest protocol among opcodes = 0
>>> dis(pickle.dumps(x, 1))
0: ] EMPTY_LIST
1: q BINPUT 0
3: ( MARK
4: c GLOBAL 'copy_reg _reconstructor'
29: q BINPUT 1
31: ( MARK
32: c GLOBAL 'pickletools _Example'
54: q BINPUT 2
56: c GLOBAL '__builtin__ object'
76: q BINPUT 3
78: N NONE
79: t TUPLE (MARK at 31)
80: q BINPUT 4
82: R REDUCE
83: q BINPUT 5
85: } EMPTY_DICT
86: q BINPUT 6
88: U SHORT_BINSTRING 'value'
95: q BINPUT 7
97: K BININT1 42
99: s SETITEM
100: b BUILD
101: h BINGET 5
103: e APPENDS (MARK at 3)
104: . STOP
highest protocol among opcodes = 1
Try "the canonical" recursive-object test.
>>> L = []
>>> T = L,
>>> L.append(T)
>>> L[0] is T
True
>>> T[0] is L
True
>>> L[0][0] is L
True
>>> T[0][0] is T
True
>>> dis(pickle.dumps(L, 0))
0: ( MARK
1: l LIST (MARK at 0)
2: p PUT 0
5: ( MARK
6: g GET 0
9: t TUPLE (MARK at 5)
10: p PUT 1
13: a APPEND
14: . STOP
highest protocol among opcodes = 0
>>> dis(pickle.dumps(L, 1))
0: ] EMPTY_LIST
1: q BINPUT 0
3: ( MARK
4: h BINGET 0
6: t TUPLE (MARK at 3)
7: q BINPUT 1
9: a APPEND
10: . STOP
highest protocol among opcodes = 1
Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
has to emulate the stack in order to realize that the POP opcode at 16 gets
rid of the MARK at 0.
>>> dis(pickle.dumps(T, 0))
0: ( MARK
1: ( MARK
2: l LIST (MARK at 1)
3: p PUT 0
6: ( MARK
7: g GET 0
10: t TUPLE (MARK at 6)
11: p PUT 1
14: a APPEND
15: 0 POP
16: 0 POP (MARK at 0)
17: g GET 1
20: . STOP
highest protocol among opcodes = 0
>>> dis(pickle.dumps(T, 1))
0: ( MARK
1: ] EMPTY_LIST
2: q BINPUT 0
4: ( MARK
5: h BINGET 0
7: t TUPLE (MARK at 4)
8: q BINPUT 1
10: a APPEND
11: 1 POP_MARK (MARK at 0)
12: h BINGET 1
14: . STOP
highest protocol among opcodes = 1
Try protocol 2.
>>> dis(pickle.dumps(L, 2))
0: \x80 PROTO 2
2: ] EMPTY_LIST
3: q BINPUT 0
5: h BINGET 0
7: \x85 TUPLE1
8: q BINPUT 1
10: a APPEND
11: . STOP
highest protocol among opcodes = 2
>>> dis(pickle.dumps(T, 2))
0: \x80 PROTO 2
2: ] EMPTY_LIST
3: q BINPUT 0
5: h BINGET 0
7: \x85 TUPLE1
8: q BINPUT 1
10: a APPEND
11: 0 POP
12: h BINGET 1
14: . STOP
highest protocol among opcodes = 2
"""
_memo_test = r"""
>>> import pickle
>>> from StringIO import StringIO
>>> f = StringIO()
>>> p = pickle.Pickler(f, 2)
>>> x = [1, 2, 3]
>>> p.dump(x)
>>> p.dump(x)
>>> f.seek(0)
>>> memo = {}
>>> dis(f, memo=memo)
0: \x80 PROTO 2
2: ] EMPTY_LIST
3: q BINPUT 0
5: ( MARK
6: K BININT1 1
8: K BININT1 2
10: K BININT1 3
12: e APPENDS (MARK at 5)
13: . STOP
highest protocol among opcodes = 2
>>> dis(f, memo=memo)
14: \x80 PROTO 2
16: h BINGET 0
18: . STOP
highest protocol among opcodes = 2
"""
__test__ = {'disassembler_test': _dis_test,
'disassembler_memo_test': _memo_test,
}
def _test():
import doctest
return doctest.testmod()
if __name__ == "__main__":
_test()
|