1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
|
# -*- coding: utf-8 -*-
# Autogenerated by Sphinx on Tue Nov 19 11:42:25 2019
topics = {'assert': 'The "assert" statement\n'
'**********************\n'
'\n'
'Assert statements are a convenient way to insert debugging '
'assertions\n'
'into a program:\n'
'\n'
' assert_stmt ::= "assert" expression ["," expression]\n'
'\n'
'The simple form, "assert expression", is equivalent to\n'
'\n'
' if __debug__:\n'
' if not expression: raise AssertionError\n'
'\n'
'The extended form, "assert expression1, expression2", is '
'equivalent to\n'
'\n'
' if __debug__:\n'
' if not expression1: raise AssertionError(expression2)\n'
'\n'
'These equivalences assume that "__debug__" and "AssertionError" '
'refer\n'
'to the built-in variables with those names. In the current\n'
'implementation, the built-in variable "__debug__" is "True" under\n'
'normal circumstances, "False" when optimization is requested '
'(command\n'
'line option "-O"). The current code generator emits no code for '
'an\n'
'assert statement when optimization is requested at compile time. '
'Note\n'
'that it is unnecessary to include the source code for the '
'expression\n'
'that failed in the error message; it will be displayed as part of '
'the\n'
'stack trace.\n'
'\n'
'Assignments to "__debug__" are illegal. The value for the '
'built-in\n'
'variable is determined when the interpreter starts.\n',
'assignment': 'Assignment statements\n'
'*********************\n'
'\n'
'Assignment statements are used to (re)bind names to values and '
'to\n'
'modify attributes or items of mutable objects:\n'
'\n'
' assignment_stmt ::= (target_list "=")+ (starred_expression '
'| yield_expression)\n'
' target_list ::= target ("," target)* [","]\n'
' target ::= identifier\n'
' | "(" [target_list] ")"\n'
' | "[" [target_list] "]"\n'
' | attributeref\n'
' | subscription\n'
' | slicing\n'
' | "*" target\n'
'\n'
'(See section Primaries for the syntax definitions for '
'*attributeref*,\n'
'*subscription*, and *slicing*.)\n'
'\n'
'An assignment statement evaluates the expression list '
'(remember that\n'
'this can be a single expression or a comma-separated list, the '
'latter\n'
'yielding a tuple) and assigns the single resulting object to '
'each of\n'
'the target lists, from left to right.\n'
'\n'
'Assignment is defined recursively depending on the form of the '
'target\n'
'(list). When a target is part of a mutable object (an '
'attribute\n'
'reference, subscription or slicing), the mutable object must\n'
'ultimately perform the assignment and decide about its '
'validity, and\n'
'may raise an exception if the assignment is unacceptable. The '
'rules\n'
'observed by various types and the exceptions raised are given '
'with the\n'
'definition of the object types (see section The standard type\n'
'hierarchy).\n'
'\n'
'Assignment of an object to a target list, optionally enclosed '
'in\n'
'parentheses or square brackets, is recursively defined as '
'follows.\n'
'\n'
'* If the target list is a single target with no trailing '
'comma,\n'
' optionally in parentheses, the object is assigned to that '
'target.\n'
'\n'
'* Else: The object must be an iterable with the same number of '
'items\n'
' as there are targets in the target list, and the items are '
'assigned,\n'
' from left to right, to the corresponding targets.\n'
'\n'
' * If the target list contains one target prefixed with an\n'
' asterisk, called a “starred” target: The object must be '
'an\n'
' iterable with at least as many items as there are targets '
'in the\n'
' target list, minus one. The first items of the iterable '
'are\n'
' assigned, from left to right, to the targets before the '
'starred\n'
' target. The final items of the iterable are assigned to '
'the\n'
' targets after the starred target. A list of the remaining '
'items\n'
' in the iterable is then assigned to the starred target '
'(the list\n'
' can be empty).\n'
'\n'
' * Else: The object must be an iterable with the same number '
'of\n'
' items as there are targets in the target list, and the '
'items are\n'
' assigned, from left to right, to the corresponding '
'targets.\n'
'\n'
'Assignment of an object to a single target is recursively '
'defined as\n'
'follows.\n'
'\n'
'* If the target is an identifier (name):\n'
'\n'
' * If the name does not occur in a "global" or "nonlocal" '
'statement\n'
' in the current code block: the name is bound to the object '
'in the\n'
' current local namespace.\n'
'\n'
' * Otherwise: the name is bound to the object in the global\n'
' namespace or the outer namespace determined by '
'"nonlocal",\n'
' respectively.\n'
'\n'
' The name is rebound if it was already bound. This may cause '
'the\n'
' reference count for the object previously bound to the name '
'to reach\n'
' zero, causing the object to be deallocated and its '
'destructor (if it\n'
' has one) to be called.\n'
'\n'
'* If the target is an attribute reference: The primary '
'expression in\n'
' the reference is evaluated. It should yield an object with\n'
' assignable attributes; if this is not the case, "TypeError" '
'is\n'
' raised. That object is then asked to assign the assigned '
'object to\n'
' the given attribute; if it cannot perform the assignment, it '
'raises\n'
' an exception (usually but not necessarily '
'"AttributeError").\n'
'\n'
' Note: If the object is a class instance and the attribute '
'reference\n'
' occurs on both sides of the assignment operator, the '
'right-hand side\n'
' expression, "a.x" can access either an instance attribute or '
'(if no\n'
' instance attribute exists) a class attribute. The left-hand '
'side\n'
' target "a.x" is always set as an instance attribute, '
'creating it if\n'
' necessary. Thus, the two occurrences of "a.x" do not '
'necessarily\n'
' refer to the same attribute: if the right-hand side '
'expression\n'
' refers to a class attribute, the left-hand side creates a '
'new\n'
' instance attribute as the target of the assignment:\n'
'\n'
' class Cls:\n'
' x = 3 # class variable\n'
' inst = Cls()\n'
' inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x '
'as 3\n'
'\n'
' This description does not necessarily apply to descriptor\n'
' attributes, such as properties created with "property()".\n'
'\n'
'* If the target is a subscription: The primary expression in '
'the\n'
' reference is evaluated. It should yield either a mutable '
'sequence\n'
' object (such as a list) or a mapping object (such as a '
'dictionary).\n'
' Next, the subscript expression is evaluated.\n'
'\n'
' If the primary is a mutable sequence object (such as a '
'list), the\n'
' subscript must yield an integer. If it is negative, the '
'sequence’s\n'
' length is added to it. The resulting value must be a '
'nonnegative\n'
' integer less than the sequence’s length, and the sequence is '
'asked\n'
' to assign the assigned object to its item with that index. '
'If the\n'
' index is out of range, "IndexError" is raised (assignment to '
'a\n'
' subscripted sequence cannot add new items to a list).\n'
'\n'
' If the primary is a mapping object (such as a dictionary), '
'the\n'
' subscript must have a type compatible with the mapping’s key '
'type,\n'
' and the mapping is then asked to create a key/datum pair '
'which maps\n'
' the subscript to the assigned object. This can either '
'replace an\n'
' existing key/value pair with the same key value, or insert a '
'new\n'
' key/value pair (if no key with the same value existed).\n'
'\n'
' For user-defined objects, the "__setitem__()" method is '
'called with\n'
' appropriate arguments.\n'
'\n'
'* If the target is a slicing: The primary expression in the\n'
' reference is evaluated. It should yield a mutable sequence '
'object\n'
' (such as a list). The assigned object should be a sequence '
'object\n'
' of the same type. Next, the lower and upper bound '
'expressions are\n'
' evaluated, insofar they are present; defaults are zero and '
'the\n'
' sequence’s length. The bounds should evaluate to integers. '
'If\n'
' either bound is negative, the sequence’s length is added to '
'it. The\n'
' resulting bounds are clipped to lie between zero and the '
'sequence’s\n'
' length, inclusive. Finally, the sequence object is asked to '
'replace\n'
' the slice with the items of the assigned sequence. The '
'length of\n'
' the slice may be different from the length of the assigned '
'sequence,\n'
' thus changing the length of the target sequence, if the '
'target\n'
' sequence allows it.\n'
'\n'
'**CPython implementation detail:** In the current '
'implementation, the\n'
'syntax for targets is taken to be the same as for expressions, '
'and\n'
'invalid syntax is rejected during the code generation phase, '
'causing\n'
'less detailed error messages.\n'
'\n'
'Although the definition of assignment implies that overlaps '
'between\n'
'the left-hand side and the right-hand side are ‘simultaneous’ '
'(for\n'
'example "a, b = b, a" swaps two variables), overlaps *within* '
'the\n'
'collection of assigned-to variables occur left-to-right, '
'sometimes\n'
'resulting in confusion. For instance, the following program '
'prints\n'
'"[0, 2]":\n'
'\n'
' x = [0, 1]\n'
' i = 0\n'
' i, x[i] = 1, 2 # i is updated, then x[i] is '
'updated\n'
' print(x)\n'
'\n'
'See also:\n'
'\n'
' **PEP 3132** - Extended Iterable Unpacking\n'
' The specification for the "*target" feature.\n'
'\n'
'\n'
'Augmented assignment statements\n'
'===============================\n'
'\n'
'Augmented assignment is the combination, in a single '
'statement, of a\n'
'binary operation and an assignment statement:\n'
'\n'
' augmented_assignment_stmt ::= augtarget augop '
'(expression_list | yield_expression)\n'
' augtarget ::= identifier | attributeref | '
'subscription | slicing\n'
' augop ::= "+=" | "-=" | "*=" | "@=" | '
'"/=" | "//=" | "%=" | "**="\n'
' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
'\n'
'(See section Primaries for the syntax definitions of the last '
'three\n'
'symbols.)\n'
'\n'
'An augmented assignment evaluates the target (which, unlike '
'normal\n'
'assignment statements, cannot be an unpacking) and the '
'expression\n'
'list, performs the binary operation specific to the type of '
'assignment\n'
'on the two operands, and assigns the result to the original '
'target.\n'
'The target is only evaluated once.\n'
'\n'
'An augmented assignment expression like "x += 1" can be '
'rewritten as\n'
'"x = x + 1" to achieve a similar, but not exactly equal '
'effect. In the\n'
'augmented version, "x" is only evaluated once. Also, when '
'possible,\n'
'the actual operation is performed *in-place*, meaning that '
'rather than\n'
'creating a new object and assigning that to the target, the '
'old object\n'
'is modified instead.\n'
'\n'
'Unlike normal assignments, augmented assignments evaluate the '
'left-\n'
'hand side *before* evaluating the right-hand side. For '
'example, "a[i]\n'
'+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
'performs\n'
'the addition, and lastly, it writes the result back to '
'"a[i]".\n'
'\n'
'With the exception of assigning to tuples and multiple targets '
'in a\n'
'single statement, the assignment done by augmented assignment\n'
'statements is handled the same way as normal assignments. '
'Similarly,\n'
'with the exception of the possible *in-place* behavior, the '
'binary\n'
'operation performed by augmented assignment is the same as the '
'normal\n'
'binary operations.\n'
'\n'
'For targets which are attribute references, the same caveat '
'about\n'
'class and instance attributes applies as for regular '
'assignments.\n'
'\n'
'\n'
'Annotated assignment statements\n'
'===============================\n'
'\n'
'*Annotation* assignment is the combination, in a single '
'statement, of\n'
'a variable or attribute annotation and an optional assignment\n'
'statement:\n'
'\n'
' annotated_assignment_stmt ::= augtarget ":" expression\n'
' ["=" (starred_expression | '
'yield_expression)]\n'
'\n'
'The difference from normal Assignment statements is that only '
'single\n'
'target is allowed.\n'
'\n'
'For simple names as assignment targets, if in class or module '
'scope,\n'
'the annotations are evaluated and stored in a special class or '
'module\n'
'attribute "__annotations__" that is a dictionary mapping from '
'variable\n'
'names (mangled if private) to evaluated annotations. This '
'attribute is\n'
'writable and is automatically created at the start of class or '
'module\n'
'body execution, if annotations are found statically.\n'
'\n'
'For expressions as assignment targets, the annotations are '
'evaluated\n'
'if in class or module scope, but not stored.\n'
'\n'
'If a name is annotated in a function scope, then this name is '
'local\n'
'for that scope. Annotations are never evaluated and stored in '
'function\n'
'scopes.\n'
'\n'
'If the right hand side is present, an annotated assignment '
'performs\n'
'the actual assignment before evaluating annotations (where\n'
'applicable). If the right hand side is not present for an '
'expression\n'
'target, then the interpreter evaluates the target except for '
'the last\n'
'"__setitem__()" or "__setattr__()" call.\n'
'\n'
'See also:\n'
'\n'
' **PEP 526** - Syntax for Variable Annotations\n'
' The proposal that added syntax for annotating the types '
'of\n'
' variables (including class variables and instance '
'variables),\n'
' instead of expressing them through comments.\n'
'\n'
' **PEP 484** - Type hints\n'
' The proposal that added the "typing" module to provide a '
'standard\n'
' syntax for type annotations that can be used in static '
'analysis\n'
' tools and IDEs.\n'
'\n'
'Changed in version 3.8: Now annotated assignments allow same\n'
'expressions in the right hand side as the regular '
'assignments.\n'
'Previously, some expressions (like un-parenthesized tuple '
'expressions)\n'
'caused a syntax error.\n',
'async': 'Coroutines\n'
'**********\n'
'\n'
'New in version 3.5.\n'
'\n'
'\n'
'Coroutine function definition\n'
'=============================\n'
'\n'
' async_funcdef ::= [decorators] "async" "def" funcname "(" '
'[parameter_list] ")"\n'
' ["->" expression] ":" suite\n'
'\n'
'Execution of Python coroutines can be suspended and resumed at '
'many\n'
'points (see *coroutine*). Inside the body of a coroutine '
'function,\n'
'"await" and "async" identifiers become reserved keywords; "await"\n'
'expressions, "async for" and "async with" can only be used in\n'
'coroutine function bodies.\n'
'\n'
'Functions defined with "async def" syntax are always coroutine\n'
'functions, even if they do not contain "await" or "async" '
'keywords.\n'
'\n'
'It is a "SyntaxError" to use a "yield from" expression inside the '
'body\n'
'of a coroutine function.\n'
'\n'
'An example of a coroutine function:\n'
'\n'
' async def func(param1, param2):\n'
' do_stuff()\n'
' await some_coroutine()\n'
'\n'
'\n'
'The "async for" statement\n'
'=========================\n'
'\n'
' async_for_stmt ::= "async" for_stmt\n'
'\n'
'An *asynchronous iterable* is able to call asynchronous code in '
'its\n'
'*iter* implementation, and *asynchronous iterator* can call\n'
'asynchronous code in its *next* method.\n'
'\n'
'The "async for" statement allows convenient iteration over\n'
'asynchronous iterators.\n'
'\n'
'The following code:\n'
'\n'
' async for TARGET in ITER:\n'
' BLOCK\n'
' else:\n'
' BLOCK2\n'
'\n'
'Is semantically equivalent to:\n'
'\n'
' iter = (ITER)\n'
' iter = type(iter).__aiter__(iter)\n'
' running = True\n'
' while running:\n'
' try:\n'
' TARGET = await type(iter).__anext__(iter)\n'
' except StopAsyncIteration:\n'
' running = False\n'
' else:\n'
' BLOCK\n'
' else:\n'
' BLOCK2\n'
'\n'
'See also "__aiter__()" and "__anext__()" for details.\n'
'\n'
'It is a "SyntaxError" to use an "async for" statement outside the '
'body\n'
'of a coroutine function.\n'
'\n'
'\n'
'The "async with" statement\n'
'==========================\n'
'\n'
' async_with_stmt ::= "async" with_stmt\n'
'\n'
'An *asynchronous context manager* is a *context manager* that is '
'able\n'
'to suspend execution in its *enter* and *exit* methods.\n'
'\n'
'The following code:\n'
'\n'
' async with EXPR as VAR:\n'
' BLOCK\n'
'\n'
'Is semantically equivalent to:\n'
'\n'
' mgr = (EXPR)\n'
' aexit = type(mgr).__aexit__\n'
' aenter = type(mgr).__aenter__(mgr)\n'
'\n'
' VAR = await aenter\n'
' try:\n'
' BLOCK\n'
' except:\n'
' if not await aexit(mgr, *sys.exc_info()):\n'
' raise\n'
' else:\n'
' await aexit(mgr, None, None, None)\n'
'\n'
'See also "__aenter__()" and "__aexit__()" for details.\n'
'\n'
'It is a "SyntaxError" to use an "async with" statement outside the\n'
'body of a coroutine function.\n'
'\n'
'See also:\n'
'\n'
' **PEP 492** - Coroutines with async and await syntax\n'
' The proposal that made coroutines a proper standalone concept '
'in\n'
' Python, and added supporting syntax.\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] The exception is propagated to the invocation stack unless\n'
' there is a "finally" clause which happens to raise another\n'
' exception. That new exception causes the old one to be lost.\n'
'\n'
'[2] A string literal appearing as the first statement in the\n'
' function body is transformed into the function’s "__doc__"\n'
' attribute and therefore the function’s *docstring*.\n'
'\n'
'[3] A string literal appearing as the first statement in the class\n'
' body is transformed into the namespace’s "__doc__" item and\n'
' therefore the class’s *docstring*.\n',
'atom-identifiers': 'Identifiers (Names)\n'
'*******************\n'
'\n'
'An identifier occurring as an atom is a name. See '
'section Identifiers\n'
'and keywords for lexical definition and section Naming '
'and binding for\n'
'documentation of naming and binding.\n'
'\n'
'When the name is bound to an object, evaluation of the '
'atom yields\n'
'that object. When a name is not bound, an attempt to '
'evaluate it\n'
'raises a "NameError" exception.\n'
'\n'
'**Private name mangling:** When an identifier that '
'textually occurs in\n'
'a class definition begins with two or more underscore '
'characters and\n'
'does not end in two or more underscores, it is '
'considered a *private\n'
'name* of that class. Private names are transformed to a '
'longer form\n'
'before code is generated for them. The transformation '
'inserts the\n'
'class name, with leading underscores removed and a '
'single underscore\n'
'inserted, in front of the name. For example, the '
'identifier "__spam"\n'
'occurring in a class named "Ham" will be transformed to '
'"_Ham__spam".\n'
'This transformation is independent of the syntactical '
'context in which\n'
'the identifier is used. If the transformed name is '
'extremely long\n'
'(longer than 255 characters), implementation defined '
'truncation may\n'
'happen. If the class name consists only of underscores, '
'no\n'
'transformation is done.\n',
'atom-literals': 'Literals\n'
'********\n'
'\n'
'Python supports string and bytes literals and various '
'numeric\n'
'literals:\n'
'\n'
' literal ::= stringliteral | bytesliteral\n'
' | integer | floatnumber | imagnumber\n'
'\n'
'Evaluation of a literal yields an object of the given type '
'(string,\n'
'bytes, integer, floating point number, complex number) with '
'the given\n'
'value. The value may be approximated in the case of '
'floating point\n'
'and imaginary (complex) literals. See section Literals for '
'details.\n'
'\n'
'All literals correspond to immutable data types, and hence '
'the\n'
'object’s identity is less important than its value. '
'Multiple\n'
'evaluations of literals with the same value (either the '
'same\n'
'occurrence in the program text or a different occurrence) '
'may obtain\n'
'the same object or a different object with the same '
'value.\n',
'attribute-access': 'Customizing attribute access\n'
'****************************\n'
'\n'
'The following methods can be defined to customize the '
'meaning of\n'
'attribute access (use of, assignment to, or deletion of '
'"x.name") for\n'
'class instances.\n'
'\n'
'object.__getattr__(self, name)\n'
'\n'
' Called when the default attribute access fails with '
'an\n'
' "AttributeError" (either "__getattribute__()" raises '
'an\n'
' "AttributeError" because *name* is not an instance '
'attribute or an\n'
' attribute in the class tree for "self"; or '
'"__get__()" of a *name*\n'
' property raises "AttributeError"). This method '
'should either\n'
' return the (computed) attribute value or raise an '
'"AttributeError"\n'
' exception.\n'
'\n'
' Note that if the attribute is found through the '
'normal mechanism,\n'
' "__getattr__()" is not called. (This is an '
'intentional asymmetry\n'
' between "__getattr__()" and "__setattr__()".) This is '
'done both for\n'
' efficiency reasons and because otherwise '
'"__getattr__()" would have\n'
' no way to access other attributes of the instance. '
'Note that at\n'
' least for instance variables, you can fake total '
'control by not\n'
' inserting any values in the instance attribute '
'dictionary (but\n'
' instead inserting them in another object). See the\n'
' "__getattribute__()" method below for a way to '
'actually get total\n'
' control over attribute access.\n'
'\n'
'object.__getattribute__(self, name)\n'
'\n'
' Called unconditionally to implement attribute '
'accesses for\n'
' instances of the class. If the class also defines '
'"__getattr__()",\n'
' the latter will not be called unless '
'"__getattribute__()" either\n'
' calls it explicitly or raises an "AttributeError". '
'This method\n'
' should return the (computed) attribute value or raise '
'an\n'
' "AttributeError" exception. In order to avoid '
'infinite recursion in\n'
' this method, its implementation should always call '
'the base class\n'
' method with the same name to access any attributes it '
'needs, for\n'
' example, "object.__getattribute__(self, name)".\n'
'\n'
' Note: This method may still be bypassed when looking '
'up special\n'
' methods as the result of implicit invocation via '
'language syntax\n'
' or built-in functions. See Special method lookup.\n'
'\n'
'object.__setattr__(self, name, value)\n'
'\n'
' Called when an attribute assignment is attempted. '
'This is called\n'
' instead of the normal mechanism (i.e. store the value '
'in the\n'
' instance dictionary). *name* is the attribute name, '
'*value* is the\n'
' value to be assigned to it.\n'
'\n'
' If "__setattr__()" wants to assign to an instance '
'attribute, it\n'
' should call the base class method with the same name, '
'for example,\n'
' "object.__setattr__(self, name, value)".\n'
'\n'
'object.__delattr__(self, name)\n'
'\n'
' Like "__setattr__()" but for attribute deletion '
'instead of\n'
' assignment. This should only be implemented if "del '
'obj.name" is\n'
' meaningful for the object.\n'
'\n'
'object.__dir__(self)\n'
'\n'
' Called when "dir()" is called on the object. A '
'sequence must be\n'
' returned. "dir()" converts the returned sequence to a '
'list and\n'
' sorts it.\n'
'\n'
'\n'
'Customizing module attribute access\n'
'===================================\n'
'\n'
'Special names "__getattr__" and "__dir__" can be also '
'used to\n'
'customize access to module attributes. The "__getattr__" '
'function at\n'
'the module level should accept one argument which is the '
'name of an\n'
'attribute and return the computed value or raise an '
'"AttributeError".\n'
'If an attribute is not found on a module object through '
'the normal\n'
'lookup, i.e. "object.__getattribute__()", then '
'"__getattr__" is\n'
'searched in the module "__dict__" before raising an '
'"AttributeError".\n'
'If found, it is called with the attribute name and the '
'result is\n'
'returned.\n'
'\n'
'The "__dir__" function should accept no arguments, and '
'return a\n'
'sequence of strings that represents the names accessible '
'on module. If\n'
'present, this function overrides the standard "dir()" '
'search on a\n'
'module.\n'
'\n'
'For a more fine grained customization of the module '
'behavior (setting\n'
'attributes, properties, etc.), one can set the '
'"__class__" attribute\n'
'of a module object to a subclass of "types.ModuleType". '
'For example:\n'
'\n'
' import sys\n'
' from types import ModuleType\n'
'\n'
' class VerboseModule(ModuleType):\n'
' def __repr__(self):\n'
" return f'Verbose {self.__name__}'\n"
'\n'
' def __setattr__(self, attr, value):\n'
" print(f'Setting {attr}...')\n"
' super().__setattr__(attr, value)\n'
'\n'
' sys.modules[__name__].__class__ = VerboseModule\n'
'\n'
'Note: Defining module "__getattr__" and setting module '
'"__class__"\n'
' only affect lookups made using the attribute access '
'syntax –\n'
' directly accessing the module globals (whether by code '
'within the\n'
' module, or via a reference to the module’s globals '
'dictionary) is\n'
' unaffected.\n'
'\n'
'Changed in version 3.5: "__class__" module attribute is '
'now writable.\n'
'\n'
'New in version 3.7: "__getattr__" and "__dir__" module '
'attributes.\n'
'\n'
'See also:\n'
'\n'
' **PEP 562** - Module __getattr__ and __dir__\n'
' Describes the "__getattr__" and "__dir__" functions '
'on modules.\n'
'\n'
'\n'
'Implementing Descriptors\n'
'========================\n'
'\n'
'The following methods only apply when an instance of the '
'class\n'
'containing the method (a so-called *descriptor* class) '
'appears in an\n'
'*owner* class (the descriptor must be in either the '
'owner’s class\n'
'dictionary or in the class dictionary for one of its '
'parents). In the\n'
'examples below, “the attribute” refers to the attribute '
'whose name is\n'
'the key of the property in the owner class’ "__dict__".\n'
'\n'
'object.__get__(self, instance, owner=None)\n'
'\n'
' Called to get the attribute of the owner class (class '
'attribute\n'
' access) or of an instance of that class (instance '
'attribute\n'
' access). The optional *owner* argument is the owner '
'class, while\n'
' *instance* is the instance that the attribute was '
'accessed through,\n'
' or "None" when the attribute is accessed through the '
'*owner*.\n'
'\n'
' This method should return the computed attribute '
'value or raise an\n'
' "AttributeError" exception.\n'
'\n'
' **PEP 252** specifies that "__get__()" is callable '
'with one or two\n'
' arguments. Python’s own built-in descriptors support '
'this\n'
' specification; however, it is likely that some '
'third-party tools\n'
' have descriptors that require both arguments. '
'Python’s own\n'
' "__getattribute__()" implementation always passes in '
'both arguments\n'
' whether they are required or not.\n'
'\n'
'object.__set__(self, instance, value)\n'
'\n'
' Called to set the attribute on an instance *instance* '
'of the owner\n'
' class to a new value, *value*.\n'
'\n'
' Note, adding "__set__()" or "__delete__()" changes '
'the kind of\n'
' descriptor to a “data descriptor”. See Invoking '
'Descriptors for\n'
' more details.\n'
'\n'
'object.__delete__(self, instance)\n'
'\n'
' Called to delete the attribute on an instance '
'*instance* of the\n'
' owner class.\n'
'\n'
'object.__set_name__(self, owner, name)\n'
'\n'
' Called at the time the owning class *owner* is '
'created. The\n'
' descriptor has been assigned to *name*.\n'
'\n'
' New in version 3.6.\n'
'\n'
'The attribute "__objclass__" is interpreted by the '
'"inspect" module as\n'
'specifying the class where this object was defined '
'(setting this\n'
'appropriately can assist in runtime introspection of '
'dynamic class\n'
'attributes). For callables, it may indicate that an '
'instance of the\n'
'given type (or a subclass) is expected or required as '
'the first\n'
'positional argument (for example, CPython sets this '
'attribute for\n'
'unbound methods that are implemented in C).\n'
'\n'
'\n'
'Invoking Descriptors\n'
'====================\n'
'\n'
'In general, a descriptor is an object attribute with '
'“binding\n'
'behavior”, one whose attribute access has been '
'overridden by methods\n'
'in the descriptor protocol: "__get__()", "__set__()", '
'and\n'
'"__delete__()". If any of those methods are defined for '
'an object, it\n'
'is said to be a descriptor.\n'
'\n'
'The default behavior for attribute access is to get, '
'set, or delete\n'
'the attribute from an object’s dictionary. For instance, '
'"a.x" has a\n'
'lookup chain starting with "a.__dict__[\'x\']", then\n'
'"type(a).__dict__[\'x\']", and continuing through the '
'base classes of\n'
'"type(a)" excluding metaclasses.\n'
'\n'
'However, if the looked-up value is an object defining '
'one of the\n'
'descriptor methods, then Python may override the default '
'behavior and\n'
'invoke the descriptor method instead. Where this occurs '
'in the\n'
'precedence chain depends on which descriptor methods '
'were defined and\n'
'how they were called.\n'
'\n'
'The starting point for descriptor invocation is a '
'binding, "a.x". How\n'
'the arguments are assembled depends on "a":\n'
'\n'
'Direct Call\n'
' The simplest and least common call is when user code '
'directly\n'
' invokes a descriptor method: "x.__get__(a)".\n'
'\n'
'Instance Binding\n'
' If binding to an object instance, "a.x" is '
'transformed into the\n'
' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
'\n'
'Class Binding\n'
' If binding to a class, "A.x" is transformed into the '
'call:\n'
' "A.__dict__[\'x\'].__get__(None, A)".\n'
'\n'
'Super Binding\n'
' If "a" is an instance of "super", then the binding '
'"super(B,\n'
' obj).m()" searches "obj.__class__.__mro__" for the '
'base class "A"\n'
' immediately preceding "B" and then invokes the '
'descriptor with the\n'
' call: "A.__dict__[\'m\'].__get__(obj, '
'obj.__class__)".\n'
'\n'
'For instance bindings, the precedence of descriptor '
'invocation depends\n'
'on the which descriptor methods are defined. A '
'descriptor can define\n'
'any combination of "__get__()", "__set__()" and '
'"__delete__()". If it\n'
'does not define "__get__()", then accessing the '
'attribute will return\n'
'the descriptor object itself unless there is a value in '
'the object’s\n'
'instance dictionary. If the descriptor defines '
'"__set__()" and/or\n'
'"__delete__()", it is a data descriptor; if it defines '
'neither, it is\n'
'a non-data descriptor. Normally, data descriptors '
'define both\n'
'"__get__()" and "__set__()", while non-data descriptors '
'have just the\n'
'"__get__()" method. Data descriptors with "__get__()" '
'and "__set__()"\n'
'(and/or "__delete__()") defined always override a '
'redefinition in an\n'
'instance dictionary. In contrast, non-data descriptors '
'can be\n'
'overridden by instances.\n'
'\n'
'Python methods (including "staticmethod()" and '
'"classmethod()") are\n'
'implemented as non-data descriptors. Accordingly, '
'instances can\n'
'redefine and override methods. This allows individual '
'instances to\n'
'acquire behaviors that differ from other instances of '
'the same class.\n'
'\n'
'The "property()" function is implemented as a data '
'descriptor.\n'
'Accordingly, instances cannot override the behavior of a '
'property.\n'
'\n'
'\n'
'__slots__\n'
'=========\n'
'\n'
'*__slots__* allow us to explicitly declare data members '
'(like\n'
'properties) and deny the creation of *__dict__* and '
'*__weakref__*\n'
'(unless explicitly declared in *__slots__* or available '
'in a parent.)\n'
'\n'
'The space saved over using *__dict__* can be '
'significant. Attribute\n'
'lookup speed can be significantly improved as well.\n'
'\n'
'object.__slots__\n'
'\n'
' This class variable can be assigned a string, '
'iterable, or sequence\n'
' of strings with variable names used by instances. '
'*__slots__*\n'
' reserves space for the declared variables and '
'prevents the\n'
' automatic creation of *__dict__* and *__weakref__* '
'for each\n'
' instance.\n'
'\n'
'\n'
'Notes on using *__slots__*\n'
'--------------------------\n'
'\n'
'* When inheriting from a class without *__slots__*, the '
'*__dict__*\n'
' and *__weakref__* attribute of the instances will '
'always be\n'
' accessible.\n'
'\n'
'* Without a *__dict__* variable, instances cannot be '
'assigned new\n'
' variables not listed in the *__slots__* definition. '
'Attempts to\n'
' assign to an unlisted variable name raises '
'"AttributeError". If\n'
' dynamic assignment of new variables is desired, then '
'add\n'
' "\'__dict__\'" to the sequence of strings in the '
'*__slots__*\n'
' declaration.\n'
'\n'
'* Without a *__weakref__* variable for each instance, '
'classes\n'
' defining *__slots__* do not support weak references to '
'its\n'
' instances. If weak reference support is needed, then '
'add\n'
' "\'__weakref__\'" to the sequence of strings in the '
'*__slots__*\n'
' declaration.\n'
'\n'
'* *__slots__* are implemented at the class level by '
'creating\n'
' descriptors (Implementing Descriptors) for each '
'variable name. As a\n'
' result, class attributes cannot be used to set default '
'values for\n'
' instance variables defined by *__slots__*; otherwise, '
'the class\n'
' attribute would overwrite the descriptor assignment.\n'
'\n'
'* The action of a *__slots__* declaration is not limited '
'to the\n'
' class where it is defined. *__slots__* declared in '
'parents are\n'
' available in child classes. However, child subclasses '
'will get a\n'
' *__dict__* and *__weakref__* unless they also define '
'*__slots__*\n'
' (which should only contain names of any *additional* '
'slots).\n'
'\n'
'* If a class defines a slot also defined in a base '
'class, the\n'
' instance variable defined by the base class slot is '
'inaccessible\n'
' (except by retrieving its descriptor directly from the '
'base class).\n'
' This renders the meaning of the program undefined. In '
'the future, a\n'
' check may be added to prevent this.\n'
'\n'
'* Nonempty *__slots__* does not work for classes derived '
'from\n'
' “variable-length” built-in types such as "int", '
'"bytes" and "tuple".\n'
'\n'
'* Any non-string iterable may be assigned to '
'*__slots__*. Mappings\n'
' may also be used; however, in the future, special '
'meaning may be\n'
' assigned to the values corresponding to each key.\n'
'\n'
'* *__class__* assignment works only if both classes have '
'the same\n'
' *__slots__*.\n'
'\n'
'* Multiple inheritance with multiple slotted parent '
'classes can be\n'
' used, but only one parent is allowed to have '
'attributes created by\n'
' slots (the other bases must have empty slot layouts) - '
'violations\n'
' raise "TypeError".\n'
'\n'
'* If an iterator is used for *__slots__* then a '
'descriptor is\n'
' created for each of the iterator’s values. However, '
'the *__slots__*\n'
' attribute will be an empty iterator.\n',
'attribute-references': 'Attribute references\n'
'********************\n'
'\n'
'An attribute reference is a primary followed by a '
'period and a name:\n'
'\n'
' attributeref ::= primary "." identifier\n'
'\n'
'The primary must evaluate to an object of a type '
'that supports\n'
'attribute references, which most objects do. This '
'object is then\n'
'asked to produce the attribute whose name is the '
'identifier. This\n'
'production can be customized by overriding the '
'"__getattr__()" method.\n'
'If this attribute is not available, the exception '
'"AttributeError" is\n'
'raised. Otherwise, the type and value of the object '
'produced is\n'
'determined by the object. Multiple evaluations of '
'the same attribute\n'
'reference may yield different objects.\n',
'augassign': 'Augmented assignment statements\n'
'*******************************\n'
'\n'
'Augmented assignment is the combination, in a single statement, '
'of a\n'
'binary operation and an assignment statement:\n'
'\n'
' augmented_assignment_stmt ::= augtarget augop '
'(expression_list | yield_expression)\n'
' augtarget ::= identifier | attributeref | '
'subscription | slicing\n'
' augop ::= "+=" | "-=" | "*=" | "@=" | '
'"/=" | "//=" | "%=" | "**="\n'
' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
'\n'
'(See section Primaries for the syntax definitions of the last '
'three\n'
'symbols.)\n'
'\n'
'An augmented assignment evaluates the target (which, unlike '
'normal\n'
'assignment statements, cannot be an unpacking) and the '
'expression\n'
'list, performs the binary operation specific to the type of '
'assignment\n'
'on the two operands, and assigns the result to the original '
'target.\n'
'The target is only evaluated once.\n'
'\n'
'An augmented assignment expression like "x += 1" can be '
'rewritten as\n'
'"x = x + 1" to achieve a similar, but not exactly equal effect. '
'In the\n'
'augmented version, "x" is only evaluated once. Also, when '
'possible,\n'
'the actual operation is performed *in-place*, meaning that '
'rather than\n'
'creating a new object and assigning that to the target, the old '
'object\n'
'is modified instead.\n'
'\n'
'Unlike normal assignments, augmented assignments evaluate the '
'left-\n'
'hand side *before* evaluating the right-hand side. For '
'example, "a[i]\n'
'+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
'performs\n'
'the addition, and lastly, it writes the result back to "a[i]".\n'
'\n'
'With the exception of assigning to tuples and multiple targets '
'in a\n'
'single statement, the assignment done by augmented assignment\n'
'statements is handled the same way as normal assignments. '
'Similarly,\n'
'with the exception of the possible *in-place* behavior, the '
'binary\n'
'operation performed by augmented assignment is the same as the '
'normal\n'
'binary operations.\n'
'\n'
'For targets which are attribute references, the same caveat '
'about\n'
'class and instance attributes applies as for regular '
'assignments.\n',
'await': 'Await expression\n'
'****************\n'
'\n'
'Suspend the execution of *coroutine* on an *awaitable* object. Can\n'
'only be used inside a *coroutine function*.\n'
'\n'
' await_expr ::= "await" primary\n'
'\n'
'New in version 3.5.\n',
'binary': 'Binary arithmetic operations\n'
'****************************\n'
'\n'
'The binary arithmetic operations have the conventional priority\n'
'levels. Note that some of these operations also apply to certain '
'non-\n'
'numeric types. Apart from the power operator, there are only two\n'
'levels, one for multiplicative operators and one for additive\n'
'operators:\n'
'\n'
' m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |\n'
' m_expr "//" u_expr | m_expr "/" u_expr |\n'
' m_expr "%" u_expr\n'
' a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n'
'\n'
'The "*" (multiplication) operator yields the product of its '
'arguments.\n'
'The arguments must either both be numbers, or one argument must be '
'an\n'
'integer and the other must be a sequence. In the former case, the\n'
'numbers are converted to a common type and then multiplied '
'together.\n'
'In the latter case, sequence repetition is performed; a negative\n'
'repetition factor yields an empty sequence.\n'
'\n'
'The "@" (at) operator is intended to be used for matrix\n'
'multiplication. No builtin Python types implement this operator.\n'
'\n'
'New in version 3.5.\n'
'\n'
'The "/" (division) and "//" (floor division) operators yield the\n'
'quotient of their arguments. The numeric arguments are first\n'
'converted to a common type. Division of integers yields a float, '
'while\n'
'floor division of integers results in an integer; the result is '
'that\n'
'of mathematical division with the ‘floor’ function applied to the\n'
'result. Division by zero raises the "ZeroDivisionError" '
'exception.\n'
'\n'
'The "%" (modulo) operator yields the remainder from the division '
'of\n'
'the first argument by the second. The numeric arguments are '
'first\n'
'converted to a common type. A zero right argument raises the\n'
'"ZeroDivisionError" exception. The arguments may be floating '
'point\n'
'numbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals '
'"4*0.7 +\n'
'0.34".) The modulo operator always yields a result with the same '
'sign\n'
'as its second operand (or zero); the absolute value of the result '
'is\n'
'strictly smaller than the absolute value of the second operand '
'[1].\n'
'\n'
'The floor division and modulo operators are connected by the '
'following\n'
'identity: "x == (x//y)*y + (x%y)". Floor division and modulo are '
'also\n'
'connected with the built-in function "divmod()": "divmod(x, y) ==\n'
'(x//y, x%y)". [2].\n'
'\n'
'In addition to performing the modulo operation on numbers, the '
'"%"\n'
'operator is also overloaded by string objects to perform '
'old-style\n'
'string formatting (also known as interpolation). The syntax for\n'
'string formatting is described in the Python Library Reference,\n'
'section printf-style String Formatting.\n'
'\n'
'The floor division operator, the modulo operator, and the '
'"divmod()"\n'
'function are not defined for complex numbers. Instead, convert to '
'a\n'
'floating point number using the "abs()" function if appropriate.\n'
'\n'
'The "+" (addition) operator yields the sum of its arguments. The\n'
'arguments must either both be numbers or both be sequences of the '
'same\n'
'type. In the former case, the numbers are converted to a common '
'type\n'
'and then added together. In the latter case, the sequences are\n'
'concatenated.\n'
'\n'
'The "-" (subtraction) operator yields the difference of its '
'arguments.\n'
'The numeric arguments are first converted to a common type.\n',
'bitwise': 'Binary bitwise operations\n'
'*************************\n'
'\n'
'Each of the three bitwise operations has a different priority '
'level:\n'
'\n'
' and_expr ::= shift_expr | and_expr "&" shift_expr\n'
' xor_expr ::= and_expr | xor_expr "^" and_expr\n'
' or_expr ::= xor_expr | or_expr "|" xor_expr\n'
'\n'
'The "&" operator yields the bitwise AND of its arguments, which '
'must\n'
'be integers.\n'
'\n'
'The "^" operator yields the bitwise XOR (exclusive OR) of its\n'
'arguments, which must be integers.\n'
'\n'
'The "|" operator yields the bitwise (inclusive) OR of its '
'arguments,\n'
'which must be integers.\n',
'bltin-code-objects': 'Code Objects\n'
'************\n'
'\n'
'Code objects are used by the implementation to '
'represent “pseudo-\n'
'compiled” executable Python code such as a function '
'body. They differ\n'
'from function objects because they don’t contain a '
'reference to their\n'
'global execution environment. Code objects are '
'returned by the built-\n'
'in "compile()" function and can be extracted from '
'function objects\n'
'through their "__code__" attribute. See also the '
'"code" module.\n'
'\n'
'A code object can be executed or evaluated by passing '
'it (instead of a\n'
'source string) to the "exec()" or "eval()" built-in '
'functions.\n'
'\n'
'See The standard type hierarchy for more '
'information.\n',
'bltin-ellipsis-object': 'The Ellipsis Object\n'
'*******************\n'
'\n'
'This object is commonly used by slicing (see '
'Slicings). It supports\n'
'no special operations. There is exactly one '
'ellipsis object, named\n'
'"Ellipsis" (a built-in name). "type(Ellipsis)()" '
'produces the\n'
'"Ellipsis" singleton.\n'
'\n'
'It is written as "Ellipsis" or "...".\n',
'bltin-null-object': 'The Null Object\n'
'***************\n'
'\n'
'This object is returned by functions that don’t '
'explicitly return a\n'
'value. It supports no special operations. There is '
'exactly one null\n'
'object, named "None" (a built-in name). "type(None)()" '
'produces the\n'
'same singleton.\n'
'\n'
'It is written as "None".\n',
'bltin-type-objects': 'Type Objects\n'
'************\n'
'\n'
'Type objects represent the various object types. An '
'object’s type is\n'
'accessed by the built-in function "type()". There are '
'no special\n'
'operations on types. The standard module "types" '
'defines names for\n'
'all standard built-in types.\n'
'\n'
'Types are written like this: "<class \'int\'>".\n',
'booleans': 'Boolean operations\n'
'******************\n'
'\n'
' or_test ::= and_test | or_test "or" and_test\n'
' and_test ::= not_test | and_test "and" not_test\n'
' not_test ::= comparison | "not" not_test\n'
'\n'
'In the context of Boolean operations, and also when expressions '
'are\n'
'used by control flow statements, the following values are '
'interpreted\n'
'as false: "False", "None", numeric zero of all types, and empty\n'
'strings and containers (including strings, tuples, lists,\n'
'dictionaries, sets and frozensets). All other values are '
'interpreted\n'
'as true. User-defined objects can customize their truth value '
'by\n'
'providing a "__bool__()" method.\n'
'\n'
'The operator "not" yields "True" if its argument is false, '
'"False"\n'
'otherwise.\n'
'\n'
'The expression "x and y" first evaluates *x*; if *x* is false, '
'its\n'
'value is returned; otherwise, *y* is evaluated and the resulting '
'value\n'
'is returned.\n'
'\n'
'The expression "x or y" first evaluates *x*; if *x* is true, its '
'value\n'
'is returned; otherwise, *y* is evaluated and the resulting value '
'is\n'
'returned.\n'
'\n'
'Note that neither "and" nor "or" restrict the value and type '
'they\n'
'return to "False" and "True", but rather return the last '
'evaluated\n'
'argument. This is sometimes useful, e.g., if "s" is a string '
'that\n'
'should be replaced by a default value if it is empty, the '
'expression\n'
'"s or \'foo\'" yields the desired value. Because "not" has to '
'create a\n'
'new value, it returns a boolean value regardless of the type of '
'its\n'
'argument (for example, "not \'foo\'" produces "False" rather '
'than "\'\'".)\n',
'break': 'The "break" statement\n'
'*********************\n'
'\n'
' break_stmt ::= "break"\n'
'\n'
'"break" may only occur syntactically nested in a "for" or "while"\n'
'loop, but not nested in a function or class definition within that\n'
'loop.\n'
'\n'
'It terminates the nearest enclosing loop, skipping the optional '
'"else"\n'
'clause if the loop has one.\n'
'\n'
'If a "for" loop is terminated by "break", the loop control target\n'
'keeps its current value.\n'
'\n'
'When "break" passes control out of a "try" statement with a '
'"finally"\n'
'clause, that "finally" clause is executed before really leaving '
'the\n'
'loop.\n',
'callable-types': 'Emulating callable objects\n'
'**************************\n'
'\n'
'object.__call__(self[, args...])\n'
'\n'
' Called when the instance is “called” as a function; if '
'this method\n'
' is defined, "x(arg1, arg2, ...)" is a shorthand for\n'
' "x.__call__(arg1, arg2, ...)".\n',
'calls': 'Calls\n'
'*****\n'
'\n'
'A call calls a callable object (e.g., a *function*) with a '
'possibly\n'
'empty series of *arguments*:\n'
'\n'
' call ::= primary "(" [argument_list [","] | '
'comprehension] ")"\n'
' argument_list ::= positional_arguments ["," '
'starred_and_keywords]\n'
' ["," keywords_arguments]\n'
' | starred_and_keywords ["," '
'keywords_arguments]\n'
' | keywords_arguments\n'
' positional_arguments ::= ["*"] expression ("," ["*"] '
'expression)*\n'
' starred_and_keywords ::= ("*" expression | keyword_item)\n'
' ("," "*" expression | "," '
'keyword_item)*\n'
' keywords_arguments ::= (keyword_item | "**" expression)\n'
' ("," keyword_item | "," "**" '
'expression)*\n'
' keyword_item ::= identifier "=" expression\n'
'\n'
'An optional trailing comma may be present after the positional and\n'
'keyword arguments but does not affect the semantics.\n'
'\n'
'The primary must evaluate to a callable object (user-defined\n'
'functions, built-in functions, methods of built-in objects, class\n'
'objects, methods of class instances, and all objects having a\n'
'"__call__()" method are callable). All argument expressions are\n'
'evaluated before the call is attempted. Please refer to section\n'
'Function definitions for the syntax of formal *parameter* lists.\n'
'\n'
'If keyword arguments are present, they are first converted to\n'
'positional arguments, as follows. First, a list of unfilled slots '
'is\n'
'created for the formal parameters. If there are N positional\n'
'arguments, they are placed in the first N slots. Next, for each\n'
'keyword argument, the identifier is used to determine the\n'
'corresponding slot (if the identifier is the same as the first '
'formal\n'
'parameter name, the first slot is used, and so on). If the slot '
'is\n'
'already filled, a "TypeError" exception is raised. Otherwise, the\n'
'value of the argument is placed in the slot, filling it (even if '
'the\n'
'expression is "None", it fills the slot). When all arguments have\n'
'been processed, the slots that are still unfilled are filled with '
'the\n'
'corresponding default value from the function definition. '
'(Default\n'
'values are calculated, once, when the function is defined; thus, a\n'
'mutable object such as a list or dictionary used as default value '
'will\n'
'be shared by all calls that don’t specify an argument value for '
'the\n'
'corresponding slot; this should usually be avoided.) If there are '
'any\n'
'unfilled slots for which no default value is specified, a '
'"TypeError"\n'
'exception is raised. Otherwise, the list of filled slots is used '
'as\n'
'the argument list for the call.\n'
'\n'
'**CPython implementation detail:** An implementation may provide\n'
'built-in functions whose positional parameters do not have names, '
'even\n'
'if they are ‘named’ for the purpose of documentation, and which\n'
'therefore cannot be supplied by keyword. In CPython, this is the '
'case\n'
'for functions implemented in C that use "PyArg_ParseTuple()" to '
'parse\n'
'their arguments.\n'
'\n'
'If there are more positional arguments than there are formal '
'parameter\n'
'slots, a "TypeError" exception is raised, unless a formal '
'parameter\n'
'using the syntax "*identifier" is present; in this case, that '
'formal\n'
'parameter receives a tuple containing the excess positional '
'arguments\n'
'(or an empty tuple if there were no excess positional arguments).\n'
'\n'
'If any keyword argument does not correspond to a formal parameter\n'
'name, a "TypeError" exception is raised, unless a formal parameter\n'
'using the syntax "**identifier" is present; in this case, that '
'formal\n'
'parameter receives a dictionary containing the excess keyword\n'
'arguments (using the keywords as keys and the argument values as\n'
'corresponding values), or a (new) empty dictionary if there were '
'no\n'
'excess keyword arguments.\n'
'\n'
'If the syntax "*expression" appears in the function call, '
'"expression"\n'
'must evaluate to an *iterable*. Elements from these iterables are\n'
'treated as if they were additional positional arguments. For the '
'call\n'
'"f(x1, x2, *y, x3, x4)", if *y* evaluates to a sequence *y1*, …, '
'*yM*,\n'
'this is equivalent to a call with M+4 positional arguments *x1*, '
'*x2*,\n'
'*y1*, …, *yM*, *x3*, *x4*.\n'
'\n'
'A consequence of this is that although the "*expression" syntax '
'may\n'
'appear *after* explicit keyword arguments, it is processed '
'*before*\n'
'the keyword arguments (and any "**expression" arguments – see '
'below).\n'
'So:\n'
'\n'
' >>> def f(a, b):\n'
' ... print(a, b)\n'
' ...\n'
' >>> f(b=1, *(2,))\n'
' 2 1\n'
' >>> f(a=1, *(2,))\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 1, in <module>\n'
" TypeError: f() got multiple values for keyword argument 'a'\n"
' >>> f(1, *(2,))\n'
' 1 2\n'
'\n'
'It is unusual for both keyword arguments and the "*expression" '
'syntax\n'
'to be used in the same call, so in practice this confusion does '
'not\n'
'arise.\n'
'\n'
'If the syntax "**expression" appears in the function call,\n'
'"expression" must evaluate to a *mapping*, the contents of which '
'are\n'
'treated as additional keyword arguments. If a keyword is already\n'
'present (as an explicit keyword argument, or from another '
'unpacking),\n'
'a "TypeError" exception is raised.\n'
'\n'
'Formal parameters using the syntax "*identifier" or "**identifier"\n'
'cannot be used as positional argument slots or as keyword argument\n'
'names.\n'
'\n'
'Changed in version 3.5: Function calls accept any number of "*" '
'and\n'
'"**" unpackings, positional arguments may follow iterable '
'unpackings\n'
'("*"), and keyword arguments may follow dictionary unpackings '
'("**").\n'
'Originally proposed by **PEP 448**.\n'
'\n'
'A call always returns some value, possibly "None", unless it raises '
'an\n'
'exception. How this value is computed depends on the type of the\n'
'callable object.\n'
'\n'
'If it is—\n'
'\n'
'a user-defined function:\n'
' The code block for the function is executed, passing it the\n'
' argument list. The first thing the code block will do is bind '
'the\n'
' formal parameters to the arguments; this is described in '
'section\n'
' Function definitions. When the code block executes a "return"\n'
' statement, this specifies the return value of the function '
'call.\n'
'\n'
'a built-in function or method:\n'
' The result is up to the interpreter; see Built-in Functions for '
'the\n'
' descriptions of built-in functions and methods.\n'
'\n'
'a class object:\n'
' A new instance of that class is returned.\n'
'\n'
'a class instance method:\n'
' The corresponding user-defined function is called, with an '
'argument\n'
' list that is one longer than the argument list of the call: the\n'
' instance becomes the first argument.\n'
'\n'
'a class instance:\n'
' The class must define a "__call__()" method; the effect is then '
'the\n'
' same as if that method was called.\n',
'class': 'Class definitions\n'
'*****************\n'
'\n'
'A class definition defines a class object (see section The '
'standard\n'
'type hierarchy):\n'
'\n'
' classdef ::= [decorators] "class" classname [inheritance] ":" '
'suite\n'
' inheritance ::= "(" [argument_list] ")"\n'
' classname ::= identifier\n'
'\n'
'A class definition is an executable statement. The inheritance '
'list\n'
'usually gives a list of base classes (see Metaclasses for more\n'
'advanced uses), so each item in the list should evaluate to a '
'class\n'
'object which allows subclassing. Classes without an inheritance '
'list\n'
'inherit, by default, from the base class "object"; hence,\n'
'\n'
' class Foo:\n'
' pass\n'
'\n'
'is equivalent to\n'
'\n'
' class Foo(object):\n'
' pass\n'
'\n'
'The class’s suite is then executed in a new execution frame (see\n'
'Naming and binding), using a newly created local namespace and the\n'
'original global namespace. (Usually, the suite contains mostly\n'
'function definitions.) When the class’s suite finishes execution, '
'its\n'
'execution frame is discarded but its local namespace is saved. [3] '
'A\n'
'class object is then created using the inheritance list for the '
'base\n'
'classes and the saved local namespace for the attribute '
'dictionary.\n'
'The class name is bound to this class object in the original local\n'
'namespace.\n'
'\n'
'The order in which attributes are defined in the class body is\n'
'preserved in the new class’s "__dict__". Note that this is '
'reliable\n'
'only right after the class is created and only for classes that '
'were\n'
'defined using the definition syntax.\n'
'\n'
'Class creation can be customized heavily using metaclasses.\n'
'\n'
'Classes can also be decorated: just like when decorating '
'functions,\n'
'\n'
' @f1(arg)\n'
' @f2\n'
' class Foo: pass\n'
'\n'
'is roughly equivalent to\n'
'\n'
' class Foo: pass\n'
' Foo = f1(arg)(f2(Foo))\n'
'\n'
'The evaluation rules for the decorator expressions are the same as '
'for\n'
'function decorators. The result is then bound to the class name.\n'
'\n'
'**Programmer’s note:** Variables defined in the class definition '
'are\n'
'class attributes; they are shared by instances. Instance '
'attributes\n'
'can be set in a method with "self.name = value". Both class and\n'
'instance attributes are accessible through the notation '
'“"self.name"”,\n'
'and an instance attribute hides a class attribute with the same '
'name\n'
'when accessed in this way. Class attributes can be used as '
'defaults\n'
'for instance attributes, but using mutable values there can lead '
'to\n'
'unexpected results. Descriptors can be used to create instance\n'
'variables with different implementation details.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3115** - Metaclasses in Python 3000\n'
' The proposal that changed the declaration of metaclasses to '
'the\n'
' current syntax, and the semantics for how classes with\n'
' metaclasses are constructed.\n'
'\n'
' **PEP 3129** - Class Decorators\n'
' The proposal that added class decorators. Function and '
'method\n'
' decorators were introduced in **PEP 318**.\n',
'comparisons': 'Comparisons\n'
'***********\n'
'\n'
'Unlike C, all comparison operations in Python have the same '
'priority,\n'
'which is lower than that of any arithmetic, shifting or '
'bitwise\n'
'operation. Also unlike C, expressions like "a < b < c" have '
'the\n'
'interpretation that is conventional in mathematics:\n'
'\n'
' comparison ::= or_expr (comp_operator or_expr)*\n'
' comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "!="\n'
' | "is" ["not"] | ["not"] "in"\n'
'\n'
'Comparisons yield boolean values: "True" or "False".\n'
'\n'
'Comparisons can be chained arbitrarily, e.g., "x < y <= z" '
'is\n'
'equivalent to "x < y and y <= z", except that "y" is '
'evaluated only\n'
'once (but in both cases "z" is not evaluated at all when "x < '
'y" is\n'
'found to be false).\n'
'\n'
'Formally, if *a*, *b*, *c*, …, *y*, *z* are expressions and '
'*op1*,\n'
'*op2*, …, *opN* are comparison operators, then "a op1 b op2 c '
'... y\n'
'opN z" is equivalent to "a op1 b and b op2 c and ... y opN '
'z", except\n'
'that each expression is evaluated at most once.\n'
'\n'
'Note that "a op1 b op2 c" doesn’t imply any kind of '
'comparison between\n'
'*a* and *c*, so that, e.g., "x < y > z" is perfectly legal '
'(though\n'
'perhaps not pretty).\n'
'\n'
'\n'
'Value comparisons\n'
'=================\n'
'\n'
'The operators "<", ">", "==", ">=", "<=", and "!=" compare '
'the values\n'
'of two objects. The objects do not need to have the same '
'type.\n'
'\n'
'Chapter Objects, values and types states that objects have a '
'value (in\n'
'addition to type and identity). The value of an object is a '
'rather\n'
'abstract notion in Python: For example, there is no canonical '
'access\n'
'method for an object’s value. Also, there is no requirement '
'that the\n'
'value of an object should be constructed in a particular way, '
'e.g.\n'
'comprised of all its data attributes. Comparison operators '
'implement a\n'
'particular notion of what the value of an object is. One can '
'think of\n'
'them as defining the value of an object indirectly, by means '
'of their\n'
'comparison implementation.\n'
'\n'
'Because all types are (direct or indirect) subtypes of '
'"object", they\n'
'inherit the default comparison behavior from "object". Types '
'can\n'
'customize their comparison behavior by implementing *rich '
'comparison\n'
'methods* like "__lt__()", described in Basic customization.\n'
'\n'
'The default behavior for equality comparison ("==" and "!=") '
'is based\n'
'on the identity of the objects. Hence, equality comparison '
'of\n'
'instances with the same identity results in equality, and '
'equality\n'
'comparison of instances with different identities results in\n'
'inequality. A motivation for this default behavior is the '
'desire that\n'
'all objects should be reflexive (i.e. "x is y" implies "x == '
'y").\n'
'\n'
'A default order comparison ("<", ">", "<=", and ">=") is not '
'provided;\n'
'an attempt raises "TypeError". A motivation for this default '
'behavior\n'
'is the lack of a similar invariant as for equality.\n'
'\n'
'The behavior of the default equality comparison, that '
'instances with\n'
'different identities are always unequal, may be in contrast '
'to what\n'
'types will need that have a sensible definition of object '
'value and\n'
'value-based equality. Such types will need to customize '
'their\n'
'comparison behavior, and in fact, a number of built-in types '
'have done\n'
'that.\n'
'\n'
'The following list describes the comparison behavior of the '
'most\n'
'important built-in types.\n'
'\n'
'* Numbers of built-in numeric types (Numeric Types — int, '
'float,\n'
' complex) and of the standard library types '
'"fractions.Fraction" and\n'
' "decimal.Decimal" can be compared within and across their '
'types,\n'
' with the restriction that complex numbers do not support '
'order\n'
' comparison. Within the limits of the types involved, they '
'compare\n'
' mathematically (algorithmically) correct without loss of '
'precision.\n'
'\n'
' The not-a-number values "float(\'NaN\')" and '
'"decimal.Decimal(\'NaN\')"\n'
' are special. Any ordered comparison of a number to a '
'not-a-number\n'
' value is false. A counter-intuitive implication is that '
'not-a-number\n'
' values are not equal to themselves. For example, if "x =\n'
' float(\'NaN\')", "3 < x", "x < 3", "x == x", "x != x" are '
'all false.\n'
' This behavior is compliant with IEEE 754.\n'
'\n'
'* "None" and "NotImplemented" are singletons. **PEP 8** '
'advises\n'
' that comparisons for singletons should always be done with '
'"is" or\n'
' "is not", never the equality operators.\n'
'\n'
'* Binary sequences (instances of "bytes" or "bytearray") can '
'be\n'
' compared within and across their types. They compare\n'
' lexicographically using the numeric values of their '
'elements.\n'
'\n'
'* Strings (instances of "str") compare lexicographically '
'using the\n'
' numerical Unicode code points (the result of the built-in '
'function\n'
' "ord()") of their characters. [3]\n'
'\n'
' Strings and binary sequences cannot be directly compared.\n'
'\n'
'* Sequences (instances of "tuple", "list", or "range") can '
'be\n'
' compared only within each of their types, with the '
'restriction that\n'
' ranges do not support order comparison. Equality '
'comparison across\n'
' these types results in inequality, and ordering comparison '
'across\n'
' these types raises "TypeError".\n'
'\n'
' Sequences compare lexicographically using comparison of\n'
' corresponding elements. The built-in containers typically '
'assume\n'
' identical objects are equal to themselves. That lets them '
'bypass\n'
' equality tests for identical objects to improve performance '
'and to\n'
' maintain their internal invariants.\n'
'\n'
' Lexicographical comparison between built-in collections '
'works as\n'
' follows:\n'
'\n'
' * For two collections to compare equal, they must be of the '
'same\n'
' type, have the same length, and each pair of '
'corresponding\n'
' elements must compare equal (for example, "[1,2] == '
'(1,2)" is\n'
' false because the type is not the same).\n'
'\n'
' * Collections that support order comparison are ordered the '
'same\n'
' as their first unequal elements (for example, "[1,2,x] <= '
'[1,2,y]"\n'
' has the same value as "x <= y"). If a corresponding '
'element does\n'
' not exist, the shorter collection is ordered first (for '
'example,\n'
' "[1,2] < [1,2,3]" is true).\n'
'\n'
'* Mappings (instances of "dict") compare equal if and only if '
'they\n'
' have equal *(key, value)* pairs. Equality comparison of the '
'keys and\n'
' values enforces reflexivity.\n'
'\n'
' Order comparisons ("<", ">", "<=", and ">=") raise '
'"TypeError".\n'
'\n'
'* Sets (instances of "set" or "frozenset") can be compared '
'within\n'
' and across their types.\n'
'\n'
' They define order comparison operators to mean subset and '
'superset\n'
' tests. Those relations do not define total orderings (for '
'example,\n'
' the two sets "{1,2}" and "{2,3}" are not equal, nor subsets '
'of one\n'
' another, nor supersets of one another). Accordingly, sets '
'are not\n'
' appropriate arguments for functions which depend on total '
'ordering\n'
' (for example, "min()", "max()", and "sorted()" produce '
'undefined\n'
' results given a list of sets as inputs).\n'
'\n'
' Comparison of sets enforces reflexivity of its elements.\n'
'\n'
'* Most other built-in types have no comparison methods '
'implemented,\n'
' so they inherit the default comparison behavior.\n'
'\n'
'User-defined classes that customize their comparison behavior '
'should\n'
'follow some consistency rules, if possible:\n'
'\n'
'* Equality comparison should be reflexive. In other words, '
'identical\n'
' objects should compare equal:\n'
'\n'
' "x is y" implies "x == y"\n'
'\n'
'* Comparison should be symmetric. In other words, the '
'following\n'
' expressions should have the same result:\n'
'\n'
' "x == y" and "y == x"\n'
'\n'
' "x != y" and "y != x"\n'
'\n'
' "x < y" and "y > x"\n'
'\n'
' "x <= y" and "y >= x"\n'
'\n'
'* Comparison should be transitive. The following '
'(non-exhaustive)\n'
' examples illustrate that:\n'
'\n'
' "x > y and y > z" implies "x > z"\n'
'\n'
' "x < y and y <= z" implies "x < z"\n'
'\n'
'* Inverse comparison should result in the boolean negation. '
'In other\n'
' words, the following expressions should have the same '
'result:\n'
'\n'
' "x == y" and "not x != y"\n'
'\n'
' "x < y" and "not x >= y" (for total ordering)\n'
'\n'
' "x > y" and "not x <= y" (for total ordering)\n'
'\n'
' The last two expressions apply to totally ordered '
'collections (e.g.\n'
' to sequences, but not to sets or mappings). See also the\n'
' "total_ordering()" decorator.\n'
'\n'
'* The "hash()" result should be consistent with equality. '
'Objects\n'
' that are equal should either have the same hash value, or '
'be marked\n'
' as unhashable.\n'
'\n'
'Python does not enforce these consistency rules. In fact, '
'the\n'
'not-a-number values are an example for not following these '
'rules.\n'
'\n'
'\n'
'Membership test operations\n'
'==========================\n'
'\n'
'The operators "in" and "not in" test for membership. "x in '
's"\n'
'evaluates to "True" if *x* is a member of *s*, and "False" '
'otherwise.\n'
'"x not in s" returns the negation of "x in s". All built-in '
'sequences\n'
'and set types support this as well as dictionary, for which '
'"in" tests\n'
'whether the dictionary has a given key. For container types '
'such as\n'
'list, tuple, set, frozenset, dict, or collections.deque, the\n'
'expression "x in y" is equivalent to "any(x is e or x == e '
'for e in\n'
'y)".\n'
'\n'
'For the string and bytes types, "x in y" is "True" if and '
'only if *x*\n'
'is a substring of *y*. An equivalent test is "y.find(x) != '
'-1".\n'
'Empty strings are always considered to be a substring of any '
'other\n'
'string, so """ in "abc"" will return "True".\n'
'\n'
'For user-defined classes which define the "__contains__()" '
'method, "x\n'
'in y" returns "True" if "y.__contains__(x)" returns a true '
'value, and\n'
'"False" otherwise.\n'
'\n'
'For user-defined classes which do not define "__contains__()" '
'but do\n'
'define "__iter__()", "x in y" is "True" if some value "z", '
'for which\n'
'the expression "x is z or x == z" is true, is produced while '
'iterating\n'
'over "y". If an exception is raised during the iteration, it '
'is as if\n'
'"in" raised that exception.\n'
'\n'
'Lastly, the old-style iteration protocol is tried: if a class '
'defines\n'
'"__getitem__()", "x in y" is "True" if and only if there is a '
'non-\n'
'negative integer index *i* such that "x is y[i] or x == '
'y[i]", and no\n'
'lower integer index raises the "IndexError" exception. (If '
'any other\n'
'exception is raised, it is as if "in" raised that '
'exception).\n'
'\n'
'The operator "not in" is defined to have the inverse truth '
'value of\n'
'"in".\n'
'\n'
'\n'
'Identity comparisons\n'
'====================\n'
'\n'
'The operators "is" and "is not" test for an object’s '
'identity: "x is\n'
'y" is true if and only if *x* and *y* are the same object. '
'An\n'
'Object’s identity is determined using the "id()" function. '
'"x is not\n'
'y" yields the inverse truth value. [4]\n',
'compound': 'Compound statements\n'
'*******************\n'
'\n'
'Compound statements contain (groups of) other statements; they '
'affect\n'
'or control the execution of those other statements in some way. '
'In\n'
'general, compound statements span multiple lines, although in '
'simple\n'
'incarnations a whole compound statement may be contained in one '
'line.\n'
'\n'
'The "if", "while" and "for" statements implement traditional '
'control\n'
'flow constructs. "try" specifies exception handlers and/or '
'cleanup\n'
'code for a group of statements, while the "with" statement '
'allows the\n'
'execution of initialization and finalization code around a block '
'of\n'
'code. Function and class definitions are also syntactically '
'compound\n'
'statements.\n'
'\n'
'A compound statement consists of one or more ‘clauses.’ A '
'clause\n'
'consists of a header and a ‘suite.’ The clause headers of a\n'
'particular compound statement are all at the same indentation '
'level.\n'
'Each clause header begins with a uniquely identifying keyword '
'and ends\n'
'with a colon. A suite is a group of statements controlled by a\n'
'clause. A suite can be one or more semicolon-separated simple\n'
'statements on the same line as the header, following the '
'header’s\n'
'colon, or it can be one or more indented statements on '
'subsequent\n'
'lines. Only the latter form of a suite can contain nested '
'compound\n'
'statements; the following is illegal, mostly because it wouldn’t '
'be\n'
'clear to which "if" clause a following "else" clause would '
'belong:\n'
'\n'
' if test1: if test2: print(x)\n'
'\n'
'Also note that the semicolon binds tighter than the colon in '
'this\n'
'context, so that in the following example, either all or none of '
'the\n'
'"print()" calls are executed:\n'
'\n'
' if x < y < z: print(x); print(y); print(z)\n'
'\n'
'Summarizing:\n'
'\n'
' compound_stmt ::= if_stmt\n'
' | while_stmt\n'
' | for_stmt\n'
' | try_stmt\n'
' | with_stmt\n'
' | funcdef\n'
' | classdef\n'
' | async_with_stmt\n'
' | async_for_stmt\n'
' | async_funcdef\n'
' suite ::= stmt_list NEWLINE | NEWLINE INDENT '
'statement+ DEDENT\n'
' statement ::= stmt_list NEWLINE | compound_stmt\n'
' stmt_list ::= simple_stmt (";" simple_stmt)* [";"]\n'
'\n'
'Note that statements always end in a "NEWLINE" possibly followed '
'by a\n'
'"DEDENT". Also note that optional continuation clauses always '
'begin\n'
'with a keyword that cannot start a statement, thus there are no\n'
'ambiguities (the ‘dangling "else"’ problem is solved in Python '
'by\n'
'requiring nested "if" statements to be indented).\n'
'\n'
'The formatting of the grammar rules in the following sections '
'places\n'
'each clause on a separate line for clarity.\n'
'\n'
'\n'
'The "if" statement\n'
'==================\n'
'\n'
'The "if" statement is used for conditional execution:\n'
'\n'
' if_stmt ::= "if" expression ":" suite\n'
' ("elif" expression ":" suite)*\n'
' ["else" ":" suite]\n'
'\n'
'It selects exactly one of the suites by evaluating the '
'expressions one\n'
'by one until one is found to be true (see section Boolean '
'operations\n'
'for the definition of true and false); then that suite is '
'executed\n'
'(and no other part of the "if" statement is executed or '
'evaluated).\n'
'If all expressions are false, the suite of the "else" clause, '
'if\n'
'present, is executed.\n'
'\n'
'\n'
'The "while" statement\n'
'=====================\n'
'\n'
'The "while" statement is used for repeated execution as long as '
'an\n'
'expression is true:\n'
'\n'
' while_stmt ::= "while" expression ":" suite\n'
' ["else" ":" suite]\n'
'\n'
'This repeatedly tests the expression and, if it is true, '
'executes the\n'
'first suite; if the expression is false (which may be the first '
'time\n'
'it is tested) the suite of the "else" clause, if present, is '
'executed\n'
'and the loop terminates.\n'
'\n'
'A "break" statement executed in the first suite terminates the '
'loop\n'
'without executing the "else" clause’s suite. A "continue" '
'statement\n'
'executed in the first suite skips the rest of the suite and goes '
'back\n'
'to testing the expression.\n'
'\n'
'\n'
'The "for" statement\n'
'===================\n'
'\n'
'The "for" statement is used to iterate over the elements of a '
'sequence\n'
'(such as a string, tuple or list) or other iterable object:\n'
'\n'
' for_stmt ::= "for" target_list "in" expression_list ":" '
'suite\n'
' ["else" ":" suite]\n'
'\n'
'The expression list is evaluated once; it should yield an '
'iterable\n'
'object. An iterator is created for the result of the\n'
'"expression_list". The suite is then executed once for each '
'item\n'
'provided by the iterator, in the order returned by the '
'iterator. Each\n'
'item in turn is assigned to the target list using the standard '
'rules\n'
'for assignments (see Assignment statements), and then the suite '
'is\n'
'executed. When the items are exhausted (which is immediately '
'when the\n'
'sequence is empty or an iterator raises a "StopIteration" '
'exception),\n'
'the suite in the "else" clause, if present, is executed, and the '
'loop\n'
'terminates.\n'
'\n'
'A "break" statement executed in the first suite terminates the '
'loop\n'
'without executing the "else" clause’s suite. A "continue" '
'statement\n'
'executed in the first suite skips the rest of the suite and '
'continues\n'
'with the next item, or with the "else" clause if there is no '
'next\n'
'item.\n'
'\n'
'The for-loop makes assignments to the variables in the target '
'list.\n'
'This overwrites all previous assignments to those variables '
'including\n'
'those made in the suite of the for-loop:\n'
'\n'
' for i in range(10):\n'
' print(i)\n'
' i = 5 # this will not affect the for-loop\n'
' # because i will be overwritten with '
'the next\n'
' # index in the range\n'
'\n'
'Names in the target list are not deleted when the loop is '
'finished,\n'
'but if the sequence is empty, they will not have been assigned '
'to at\n'
'all by the loop. Hint: the built-in function "range()" returns '
'an\n'
'iterator of integers suitable to emulate the effect of Pascal’s '
'"for i\n'
':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, '
'2]".\n'
'\n'
'Note: There is a subtlety when the sequence is being modified by '
'the\n'
' loop (this can only occur for mutable sequences, e.g. lists). '
'An\n'
' internal counter is used to keep track of which item is used '
'next,\n'
' and this is incremented on each iteration. When this counter '
'has\n'
' reached the length of the sequence the loop terminates. This '
'means\n'
' that if the suite deletes the current (or a previous) item '
'from the\n'
' sequence, the next item will be skipped (since it gets the '
'index of\n'
' the current item which has already been treated). Likewise, '
'if the\n'
' suite inserts an item in the sequence before the current item, '
'the\n'
' current item will be treated again the next time through the '
'loop.\n'
' This can lead to nasty bugs that can be avoided by making a\n'
' temporary copy using a slice of the whole sequence, e.g.,\n'
'\n'
' for x in a[:]:\n'
' if x < 0: a.remove(x)\n'
'\n'
'\n'
'The "try" statement\n'
'===================\n'
'\n'
'The "try" statement specifies exception handlers and/or cleanup '
'code\n'
'for a group of statements:\n'
'\n'
' try_stmt ::= try1_stmt | try2_stmt\n'
' try1_stmt ::= "try" ":" suite\n'
' ("except" [expression ["as" identifier]] ":" '
'suite)+\n'
' ["else" ":" suite]\n'
' ["finally" ":" suite]\n'
' try2_stmt ::= "try" ":" suite\n'
' "finally" ":" suite\n'
'\n'
'The "except" clause(s) specify one or more exception handlers. '
'When no\n'
'exception occurs in the "try" clause, no exception handler is\n'
'executed. When an exception occurs in the "try" suite, a search '
'for an\n'
'exception handler is started. This search inspects the except '
'clauses\n'
'in turn until one is found that matches the exception. An '
'expression-\n'
'less except clause, if present, must be last; it matches any\n'
'exception. For an except clause with an expression, that '
'expression\n'
'is evaluated, and the clause matches the exception if the '
'resulting\n'
'object is “compatible” with the exception. An object is '
'compatible\n'
'with an exception if it is the class or a base class of the '
'exception\n'
'object or a tuple containing an item compatible with the '
'exception.\n'
'\n'
'If no except clause matches the exception, the search for an '
'exception\n'
'handler continues in the surrounding code and on the invocation '
'stack.\n'
'[1]\n'
'\n'
'If the evaluation of an expression in the header of an except '
'clause\n'
'raises an exception, the original search for a handler is '
'canceled and\n'
'a search starts for the new exception in the surrounding code '
'and on\n'
'the call stack (it is treated as if the entire "try" statement '
'raised\n'
'the exception).\n'
'\n'
'When a matching except clause is found, the exception is '
'assigned to\n'
'the target specified after the "as" keyword in that except '
'clause, if\n'
'present, and the except clause’s suite is executed. All except\n'
'clauses must have an executable block. When the end of this '
'block is\n'
'reached, execution continues normally after the entire try '
'statement.\n'
'(This means that if two nested handlers exist for the same '
'exception,\n'
'and the exception occurs in the try clause of the inner handler, '
'the\n'
'outer handler will not handle the exception.)\n'
'\n'
'When an exception has been assigned using "as target", it is '
'cleared\n'
'at the end of the except clause. This is as if\n'
'\n'
' except E as N:\n'
' foo\n'
'\n'
'was translated to\n'
'\n'
' except E as N:\n'
' try:\n'
' foo\n'
' finally:\n'
' del N\n'
'\n'
'This means the exception must be assigned to a different name to '
'be\n'
'able to refer to it after the except clause. Exceptions are '
'cleared\n'
'because with the traceback attached to them, they form a '
'reference\n'
'cycle with the stack frame, keeping all locals in that frame '
'alive\n'
'until the next garbage collection occurs.\n'
'\n'
'Before an except clause’s suite is executed, details about the\n'
'exception are stored in the "sys" module and can be accessed '
'via\n'
'"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting '
'of the\n'
'exception class, the exception instance and a traceback object '
'(see\n'
'section The standard type hierarchy) identifying the point in '
'the\n'
'program where the exception occurred. "sys.exc_info()" values '
'are\n'
'restored to their previous values (before the call) when '
'returning\n'
'from a function that handled an exception.\n'
'\n'
'The optional "else" clause is executed if the control flow '
'leaves the\n'
'"try" suite, no exception was raised, and no "return", '
'"continue", or\n'
'"break" statement was executed. Exceptions in the "else" clause '
'are\n'
'not handled by the preceding "except" clauses.\n'
'\n'
'If "finally" is present, it specifies a ‘cleanup’ handler. The '
'"try"\n'
'clause is executed, including any "except" and "else" clauses. '
'If an\n'
'exception occurs in any of the clauses and is not handled, the\n'
'exception is temporarily saved. The "finally" clause is '
'executed. If\n'
'there is a saved exception it is re-raised at the end of the '
'"finally"\n'
'clause. If the "finally" clause raises another exception, the '
'saved\n'
'exception is set as the context of the new exception. If the '
'"finally"\n'
'clause executes a "return", "break" or "continue" statement, the '
'saved\n'
'exception is discarded:\n'
'\n'
' >>> def f():\n'
' ... try:\n'
' ... 1/0\n'
' ... finally:\n'
' ... return 42\n'
' ...\n'
' >>> f()\n'
' 42\n'
'\n'
'The exception information is not available to the program '
'during\n'
'execution of the "finally" clause.\n'
'\n'
'When a "return", "break" or "continue" statement is executed in '
'the\n'
'"try" suite of a "try"…"finally" statement, the "finally" clause '
'is\n'
'also executed ‘on the way out.’\n'
'\n'
'The return value of a function is determined by the last '
'"return"\n'
'statement executed. Since the "finally" clause always executes, '
'a\n'
'"return" statement executed in the "finally" clause will always '
'be the\n'
'last one executed:\n'
'\n'
' >>> def foo():\n'
' ... try:\n'
" ... return 'try'\n"
' ... finally:\n'
" ... return 'finally'\n"
' ...\n'
' >>> foo()\n'
" 'finally'\n"
'\n'
'Additional information on exceptions can be found in section\n'
'Exceptions, and information on using the "raise" statement to '
'generate\n'
'exceptions may be found in section The raise statement.\n'
'\n'
'Changed in version 3.8: Prior to Python 3.8, a "continue" '
'statement\n'
'was illegal in the "finally" clause due to a problem with the\n'
'implementation.\n'
'\n'
'\n'
'The "with" statement\n'
'====================\n'
'\n'
'The "with" statement is used to wrap the execution of a block '
'with\n'
'methods defined by a context manager (see section With '
'Statement\n'
'Context Managers). This allows common "try"…"except"…"finally" '
'usage\n'
'patterns to be encapsulated for convenient reuse.\n'
'\n'
' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
' with_item ::= expression ["as" target]\n'
'\n'
'The execution of the "with" statement with one “item” proceeds '
'as\n'
'follows:\n'
'\n'
'1. The context expression (the expression given in the '
'"with_item")\n'
' is evaluated to obtain a context manager.\n'
'\n'
'2. The context manager’s "__exit__()" is loaded for later use.\n'
'\n'
'3. The context manager’s "__enter__()" method is invoked.\n'
'\n'
'4. If a target was included in the "with" statement, the return\n'
' value from "__enter__()" is assigned to it.\n'
'\n'
' Note: The "with" statement guarantees that if the '
'"__enter__()"\n'
' method returns without an error, then "__exit__()" will '
'always be\n'
' called. Thus, if an error occurs during the assignment to '
'the\n'
' target list, it will be treated the same as an error '
'occurring\n'
' within the suite would be. See step 6 below.\n'
'\n'
'5. The suite is executed.\n'
'\n'
'6. The context manager’s "__exit__()" method is invoked. If an\n'
' exception caused the suite to be exited, its type, value, '
'and\n'
' traceback are passed as arguments to "__exit__()". Otherwise, '
'three\n'
' "None" arguments are supplied.\n'
'\n'
' If the suite was exited due to an exception, and the return '
'value\n'
' from the "__exit__()" method was false, the exception is '
'reraised.\n'
' If the return value was true, the exception is suppressed, '
'and\n'
' execution continues with the statement following the "with"\n'
' statement.\n'
'\n'
' If the suite was exited for any reason other than an '
'exception, the\n'
' return value from "__exit__()" is ignored, and execution '
'proceeds\n'
' at the normal location for the kind of exit that was taken.\n'
'\n'
'With more than one item, the context managers are processed as '
'if\n'
'multiple "with" statements were nested:\n'
'\n'
' with A() as a, B() as b:\n'
' suite\n'
'\n'
'is equivalent to\n'
'\n'
' with A() as a:\n'
' with B() as b:\n'
' suite\n'
'\n'
'Changed in version 3.1: Support for multiple context '
'expressions.\n'
'\n'
'See also:\n'
'\n'
' **PEP 343** - The “with” statement\n'
' The specification, background, and examples for the Python '
'"with"\n'
' statement.\n'
'\n'
'\n'
'Function definitions\n'
'====================\n'
'\n'
'A function definition defines a user-defined function object '
'(see\n'
'section The standard type hierarchy):\n'
'\n'
' funcdef ::= [decorators] "def" funcname "(" '
'[parameter_list] ")"\n'
' ["->" expression] ":" suite\n'
' decorators ::= decorator+\n'
' decorator ::= "@" dotted_name ["(" '
'[argument_list [","]] ")"] NEWLINE\n'
' dotted_name ::= identifier ("." identifier)*\n'
' parameter_list ::= defparameter ("," '
'defparameter)* "," "/" ["," [parameter_list_no_posonly]]\n'
' | parameter_list_no_posonly\n'
' parameter_list_no_posonly ::= defparameter ("," '
'defparameter)* ["," [parameter_list_starargs]]\n'
' | parameter_list_starargs\n'
' parameter_list_starargs ::= "*" [parameter] ("," '
'defparameter)* ["," ["**" parameter [","]]]\n'
' | "**" parameter [","]\n'
' parameter ::= identifier [":" expression]\n'
' defparameter ::= parameter ["=" expression]\n'
' funcname ::= identifier\n'
'\n'
'A function definition is an executable statement. Its execution '
'binds\n'
'the function name in the current local namespace to a function '
'object\n'
'(a wrapper around the executable code for the function). This\n'
'function object contains a reference to the current global '
'namespace\n'
'as the global namespace to be used when the function is called.\n'
'\n'
'The function definition does not execute the function body; this '
'gets\n'
'executed only when the function is called. [2]\n'
'\n'
'A function definition may be wrapped by one or more *decorator*\n'
'expressions. Decorator expressions are evaluated when the '
'function is\n'
'defined, in the scope that contains the function definition. '
'The\n'
'result must be a callable, which is invoked with the function '
'object\n'
'as the only argument. The returned value is bound to the '
'function name\n'
'instead of the function object. Multiple decorators are applied '
'in\n'
'nested fashion. For example, the following code\n'
'\n'
' @f1(arg)\n'
' @f2\n'
' def func(): pass\n'
'\n'
'is roughly equivalent to\n'
'\n'
' def func(): pass\n'
' func = f1(arg)(f2(func))\n'
'\n'
'except that the original function is not temporarily bound to '
'the name\n'
'"func".\n'
'\n'
'When one or more *parameters* have the form *parameter* "="\n'
'*expression*, the function is said to have “default parameter '
'values.”\n'
'For a parameter with a default value, the corresponding '
'*argument* may\n'
'be omitted from a call, in which case the parameter’s default '
'value is\n'
'substituted. If a parameter has a default value, all following\n'
'parameters up until the “"*"” must also have a default value — '
'this is\n'
'a syntactic restriction that is not expressed by the grammar.\n'
'\n'
'**Default parameter values are evaluated from left to right when '
'the\n'
'function definition is executed.** This means that the '
'expression is\n'
'evaluated once, when the function is defined, and that the same '
'“pre-\n'
'computed” value is used for each call. This is especially '
'important\n'
'to understand when a default parameter is a mutable object, such '
'as a\n'
'list or a dictionary: if the function modifies the object (e.g. '
'by\n'
'appending an item to a list), the default value is in effect '
'modified.\n'
'This is generally not what was intended. A way around this is '
'to use\n'
'"None" as the default, and explicitly test for it in the body of '
'the\n'
'function, e.g.:\n'
'\n'
' def whats_on_the_telly(penguin=None):\n'
' if penguin is None:\n'
' penguin = []\n'
' penguin.append("property of the zoo")\n'
' return penguin\n'
'\n'
'Function call semantics are described in more detail in section '
'Calls.\n'
'A function call always assigns values to all parameters '
'mentioned in\n'
'the parameter list, either from position arguments, from '
'keyword\n'
'arguments, or from default values. If the form “"*identifier"” '
'is\n'
'present, it is initialized to a tuple receiving any excess '
'positional\n'
'parameters, defaulting to the empty tuple. If the form\n'
'“"**identifier"” is present, it is initialized to a new ordered\n'
'mapping receiving any excess keyword arguments, defaulting to a '
'new\n'
'empty mapping of the same type. Parameters after “"*"” or\n'
'“"*identifier"” are keyword-only parameters and may only be '
'passed\n'
'used keyword arguments.\n'
'\n'
'Parameters may have an *annotation* of the form “": '
'expression"”\n'
'following the parameter name. Any parameter may have an '
'annotation,\n'
'even those of the form "*identifier" or "**identifier". '
'Functions may\n'
'have “return” annotation of the form “"-> expression"” after '
'the\n'
'parameter list. These annotations can be any valid Python '
'expression.\n'
'The presence of annotations does not change the semantics of a\n'
'function. The annotation values are available as values of a\n'
'dictionary keyed by the parameters’ names in the '
'"__annotations__"\n'
'attribute of the function object. If the "annotations" import '
'from\n'
'"__future__" is used, annotations are preserved as strings at '
'runtime\n'
'which enables postponed evaluation. Otherwise, they are '
'evaluated\n'
'when the function definition is executed. In this case '
'annotations\n'
'may be evaluated in a different order than they appear in the '
'source\n'
'code.\n'
'\n'
'It is also possible to create anonymous functions (functions not '
'bound\n'
'to a name), for immediate use in expressions. This uses lambda\n'
'expressions, described in section Lambdas. Note that the '
'lambda\n'
'expression is merely a shorthand for a simplified function '
'definition;\n'
'a function defined in a “"def"” statement can be passed around '
'or\n'
'assigned to another name just like a function defined by a '
'lambda\n'
'expression. The “"def"” form is actually more powerful since '
'it\n'
'allows the execution of multiple statements and annotations.\n'
'\n'
'**Programmer’s note:** Functions are first-class objects. A '
'“"def"”\n'
'statement executed inside a function definition defines a local\n'
'function that can be returned or passed around. Free variables '
'used\n'
'in the nested function can access the local variables of the '
'function\n'
'containing the def. See section Naming and binding for '
'details.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3107** - Function Annotations\n'
' The original specification for function annotations.\n'
'\n'
' **PEP 484** - Type Hints\n'
' Definition of a standard meaning for annotations: type '
'hints.\n'
'\n'
' **PEP 526** - Syntax for Variable Annotations\n'
' Ability to type hint variable declarations, including '
'class\n'
' variables and instance variables\n'
'\n'
' **PEP 563** - Postponed Evaluation of Annotations\n'
' Support for forward references within annotations by '
'preserving\n'
' annotations in a string form at runtime instead of eager\n'
' evaluation.\n'
'\n'
'\n'
'Class definitions\n'
'=================\n'
'\n'
'A class definition defines a class object (see section The '
'standard\n'
'type hierarchy):\n'
'\n'
' classdef ::= [decorators] "class" classname [inheritance] '
'":" suite\n'
' inheritance ::= "(" [argument_list] ")"\n'
' classname ::= identifier\n'
'\n'
'A class definition is an executable statement. The inheritance '
'list\n'
'usually gives a list of base classes (see Metaclasses for more\n'
'advanced uses), so each item in the list should evaluate to a '
'class\n'
'object which allows subclassing. Classes without an inheritance '
'list\n'
'inherit, by default, from the base class "object"; hence,\n'
'\n'
' class Foo:\n'
' pass\n'
'\n'
'is equivalent to\n'
'\n'
' class Foo(object):\n'
' pass\n'
'\n'
'The class’s suite is then executed in a new execution frame '
'(see\n'
'Naming and binding), using a newly created local namespace and '
'the\n'
'original global namespace. (Usually, the suite contains mostly\n'
'function definitions.) When the class’s suite finishes '
'execution, its\n'
'execution frame is discarded but its local namespace is saved. '
'[3] A\n'
'class object is then created using the inheritance list for the '
'base\n'
'classes and the saved local namespace for the attribute '
'dictionary.\n'
'The class name is bound to this class object in the original '
'local\n'
'namespace.\n'
'\n'
'The order in which attributes are defined in the class body is\n'
'preserved in the new class’s "__dict__". Note that this is '
'reliable\n'
'only right after the class is created and only for classes that '
'were\n'
'defined using the definition syntax.\n'
'\n'
'Class creation can be customized heavily using metaclasses.\n'
'\n'
'Classes can also be decorated: just like when decorating '
'functions,\n'
'\n'
' @f1(arg)\n'
' @f2\n'
' class Foo: pass\n'
'\n'
'is roughly equivalent to\n'
'\n'
' class Foo: pass\n'
' Foo = f1(arg)(f2(Foo))\n'
'\n'
'The evaluation rules for the decorator expressions are the same '
'as for\n'
'function decorators. The result is then bound to the class '
'name.\n'
'\n'
'**Programmer’s note:** Variables defined in the class definition '
'are\n'
'class attributes; they are shared by instances. Instance '
'attributes\n'
'can be set in a method with "self.name = value". Both class '
'and\n'
'instance attributes are accessible through the notation '
'“"self.name"”,\n'
'and an instance attribute hides a class attribute with the same '
'name\n'
'when accessed in this way. Class attributes can be used as '
'defaults\n'
'for instance attributes, but using mutable values there can lead '
'to\n'
'unexpected results. Descriptors can be used to create instance\n'
'variables with different implementation details.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3115** - Metaclasses in Python 3000\n'
' The proposal that changed the declaration of metaclasses to '
'the\n'
' current syntax, and the semantics for how classes with\n'
' metaclasses are constructed.\n'
'\n'
' **PEP 3129** - Class Decorators\n'
' The proposal that added class decorators. Function and '
'method\n'
' decorators were introduced in **PEP 318**.\n'
'\n'
'\n'
'Coroutines\n'
'==========\n'
'\n'
'New in version 3.5.\n'
'\n'
'\n'
'Coroutine function definition\n'
'-----------------------------\n'
'\n'
' async_funcdef ::= [decorators] "async" "def" funcname "(" '
'[parameter_list] ")"\n'
' ["->" expression] ":" suite\n'
'\n'
'Execution of Python coroutines can be suspended and resumed at '
'many\n'
'points (see *coroutine*). Inside the body of a coroutine '
'function,\n'
'"await" and "async" identifiers become reserved keywords; '
'"await"\n'
'expressions, "async for" and "async with" can only be used in\n'
'coroutine function bodies.\n'
'\n'
'Functions defined with "async def" syntax are always coroutine\n'
'functions, even if they do not contain "await" or "async" '
'keywords.\n'
'\n'
'It is a "SyntaxError" to use a "yield from" expression inside '
'the body\n'
'of a coroutine function.\n'
'\n'
'An example of a coroutine function:\n'
'\n'
' async def func(param1, param2):\n'
' do_stuff()\n'
' await some_coroutine()\n'
'\n'
'\n'
'The "async for" statement\n'
'-------------------------\n'
'\n'
' async_for_stmt ::= "async" for_stmt\n'
'\n'
'An *asynchronous iterable* is able to call asynchronous code in '
'its\n'
'*iter* implementation, and *asynchronous iterator* can call\n'
'asynchronous code in its *next* method.\n'
'\n'
'The "async for" statement allows convenient iteration over\n'
'asynchronous iterators.\n'
'\n'
'The following code:\n'
'\n'
' async for TARGET in ITER:\n'
' BLOCK\n'
' else:\n'
' BLOCK2\n'
'\n'
'Is semantically equivalent to:\n'
'\n'
' iter = (ITER)\n'
' iter = type(iter).__aiter__(iter)\n'
' running = True\n'
' while running:\n'
' try:\n'
' TARGET = await type(iter).__anext__(iter)\n'
' except StopAsyncIteration:\n'
' running = False\n'
' else:\n'
' BLOCK\n'
' else:\n'
' BLOCK2\n'
'\n'
'See also "__aiter__()" and "__anext__()" for details.\n'
'\n'
'It is a "SyntaxError" to use an "async for" statement outside '
'the body\n'
'of a coroutine function.\n'
'\n'
'\n'
'The "async with" statement\n'
'--------------------------\n'
'\n'
' async_with_stmt ::= "async" with_stmt\n'
'\n'
'An *asynchronous context manager* is a *context manager* that is '
'able\n'
'to suspend execution in its *enter* and *exit* methods.\n'
'\n'
'The following code:\n'
'\n'
' async with EXPR as VAR:\n'
' BLOCK\n'
'\n'
'Is semantically equivalent to:\n'
'\n'
' mgr = (EXPR)\n'
' aexit = type(mgr).__aexit__\n'
' aenter = type(mgr).__aenter__(mgr)\n'
'\n'
' VAR = await aenter\n'
' try:\n'
' BLOCK\n'
' except:\n'
' if not await aexit(mgr, *sys.exc_info()):\n'
' raise\n'
' else:\n'
' await aexit(mgr, None, None, None)\n'
'\n'
'See also "__aenter__()" and "__aexit__()" for details.\n'
'\n'
'It is a "SyntaxError" to use an "async with" statement outside '
'the\n'
'body of a coroutine function.\n'
'\n'
'See also:\n'
'\n'
' **PEP 492** - Coroutines with async and await syntax\n'
' The proposal that made coroutines a proper standalone '
'concept in\n'
' Python, and added supporting syntax.\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] The exception is propagated to the invocation stack unless\n'
' there is a "finally" clause which happens to raise another\n'
' exception. That new exception causes the old one to be '
'lost.\n'
'\n'
'[2] A string literal appearing as the first statement in the\n'
' function body is transformed into the function’s "__doc__"\n'
' attribute and therefore the function’s *docstring*.\n'
'\n'
'[3] A string literal appearing as the first statement in the '
'class\n'
' body is transformed into the namespace’s "__doc__" item and\n'
' therefore the class’s *docstring*.\n',
'context-managers': 'With Statement Context Managers\n'
'*******************************\n'
'\n'
'A *context manager* is an object that defines the '
'runtime context to\n'
'be established when executing a "with" statement. The '
'context manager\n'
'handles the entry into, and the exit from, the desired '
'runtime context\n'
'for the execution of the block of code. Context '
'managers are normally\n'
'invoked using the "with" statement (described in section '
'The with\n'
'statement), but can also be used by directly invoking '
'their methods.\n'
'\n'
'Typical uses of context managers include saving and '
'restoring various\n'
'kinds of global state, locking and unlocking resources, '
'closing opened\n'
'files, etc.\n'
'\n'
'For more information on context managers, see Context '
'Manager Types.\n'
'\n'
'object.__enter__(self)\n'
'\n'
' Enter the runtime context related to this object. The '
'"with"\n'
' statement will bind this method’s return value to the '
'target(s)\n'
' specified in the "as" clause of the statement, if '
'any.\n'
'\n'
'object.__exit__(self, exc_type, exc_value, traceback)\n'
'\n'
' Exit the runtime context related to this object. The '
'parameters\n'
' describe the exception that caused the context to be '
'exited. If the\n'
' context was exited without an exception, all three '
'arguments will\n'
' be "None".\n'
'\n'
' If an exception is supplied, and the method wishes to '
'suppress the\n'
' exception (i.e., prevent it from being propagated), '
'it should\n'
' return a true value. Otherwise, the exception will be '
'processed\n'
' normally upon exit from this method.\n'
'\n'
' Note that "__exit__()" methods should not reraise the '
'passed-in\n'
' exception; this is the caller’s responsibility.\n'
'\n'
'See also:\n'
'\n'
' **PEP 343** - The “with” statement\n'
' The specification, background, and examples for the '
'Python "with"\n'
' statement.\n',
'continue': 'The "continue" statement\n'
'************************\n'
'\n'
' continue_stmt ::= "continue"\n'
'\n'
'"continue" may only occur syntactically nested in a "for" or '
'"while"\n'
'loop, but not nested in a function or class definition within '
'that\n'
'loop. It continues with the next cycle of the nearest enclosing '
'loop.\n'
'\n'
'When "continue" passes control out of a "try" statement with a\n'
'"finally" clause, that "finally" clause is executed before '
'really\n'
'starting the next loop cycle.\n',
'conversions': 'Arithmetic conversions\n'
'**********************\n'
'\n'
'When a description of an arithmetic operator below uses the '
'phrase\n'
'“the numeric arguments are converted to a common type,” this '
'means\n'
'that the operator implementation for built-in types works as '
'follows:\n'
'\n'
'* If either argument is a complex number, the other is '
'converted to\n'
' complex;\n'
'\n'
'* otherwise, if either argument is a floating point number, '
'the\n'
' other is converted to floating point;\n'
'\n'
'* otherwise, both must be integers and no conversion is '
'necessary.\n'
'\n'
'Some additional rules apply for certain operators (e.g., a '
'string as a\n'
'left argument to the ‘%’ operator). Extensions must define '
'their own\n'
'conversion behavior.\n',
'customization': 'Basic customization\n'
'*******************\n'
'\n'
'object.__new__(cls[, ...])\n'
'\n'
' Called to create a new instance of class *cls*. '
'"__new__()" is a\n'
' static method (special-cased so you need not declare it '
'as such)\n'
' that takes the class of which an instance was requested '
'as its\n'
' first argument. The remaining arguments are those '
'passed to the\n'
' object constructor expression (the call to the class). '
'The return\n'
' value of "__new__()" should be the new object instance '
'(usually an\n'
' instance of *cls*).\n'
'\n'
' Typical implementations create a new instance of the '
'class by\n'
' invoking the superclass’s "__new__()" method using\n'
' "super().__new__(cls[, ...])" with appropriate arguments '
'and then\n'
' modifying the newly-created instance as necessary before '
'returning\n'
' it.\n'
'\n'
' If "__new__()" is invoked during object construction and '
'it returns\n'
' an instance or subclass of *cls*, then the new '
'instance’s\n'
' "__init__()" method will be invoked like '
'"__init__(self[, ...])",\n'
' where *self* is the new instance and the remaining '
'arguments are\n'
' the same as were passed to the object constructor.\n'
'\n'
' If "__new__()" does not return an instance of *cls*, '
'then the new\n'
' instance’s "__init__()" method will not be invoked.\n'
'\n'
' "__new__()" is intended mainly to allow subclasses of '
'immutable\n'
' types (like int, str, or tuple) to customize instance '
'creation. It\n'
' is also commonly overridden in custom metaclasses in '
'order to\n'
' customize class creation.\n'
'\n'
'object.__init__(self[, ...])\n'
'\n'
' Called after the instance has been created (by '
'"__new__()"), but\n'
' before it is returned to the caller. The arguments are '
'those\n'
' passed to the class constructor expression. If a base '
'class has an\n'
' "__init__()" method, the derived class’s "__init__()" '
'method, if\n'
' any, must explicitly call it to ensure proper '
'initialization of the\n'
' base class part of the instance; for example:\n'
' "super().__init__([args...])".\n'
'\n'
' Because "__new__()" and "__init__()" work together in '
'constructing\n'
' objects ("__new__()" to create it, and "__init__()" to '
'customize\n'
' it), no non-"None" value may be returned by '
'"__init__()"; doing so\n'
' will cause a "TypeError" to be raised at runtime.\n'
'\n'
'object.__del__(self)\n'
'\n'
' Called when the instance is about to be destroyed. This '
'is also\n'
' called a finalizer or (improperly) a destructor. If a '
'base class\n'
' has a "__del__()" method, the derived class’s '
'"__del__()" method,\n'
' if any, must explicitly call it to ensure proper '
'deletion of the\n'
' base class part of the instance.\n'
'\n'
' It is possible (though not recommended!) for the '
'"__del__()" method\n'
' to postpone destruction of the instance by creating a '
'new reference\n'
' to it. This is called object *resurrection*. It is\n'
' implementation-dependent whether "__del__()" is called a '
'second\n'
' time when a resurrected object is about to be destroyed; '
'the\n'
' current *CPython* implementation only calls it once.\n'
'\n'
' It is not guaranteed that "__del__()" methods are called '
'for\n'
' objects that still exist when the interpreter exits.\n'
'\n'
' Note: "del x" doesn’t directly call "x.__del__()" — the '
'former\n'
' decrements the reference count for "x" by one, and the '
'latter is\n'
' only called when "x"’s reference count reaches zero.\n'
'\n'
' **CPython implementation detail:** It is possible for a '
'reference\n'
' cycle to prevent the reference count of an object from '
'going to\n'
' zero. In this case, the cycle will be later detected '
'and deleted\n'
' by the *cyclic garbage collector*. A common cause of '
'reference\n'
' cycles is when an exception has been caught in a local '
'variable.\n'
' The frame’s locals then reference the exception, which '
'references\n'
' its own traceback, which references the locals of all '
'frames caught\n'
' in the traceback.\n'
'\n'
' See also: Documentation for the "gc" module.\n'
'\n'
' Warning: Due to the precarious circumstances under '
'which\n'
' "__del__()" methods are invoked, exceptions that occur '
'during\n'
' their execution are ignored, and a warning is printed '
'to\n'
' "sys.stderr" instead. In particular:\n'
'\n'
' * "__del__()" can be invoked when arbitrary code is '
'being\n'
' executed, including from any arbitrary thread. If '
'"__del__()"\n'
' needs to take a lock or invoke any other blocking '
'resource, it\n'
' may deadlock as the resource may already be taken by '
'the code\n'
' that gets interrupted to execute "__del__()".\n'
'\n'
' * "__del__()" can be executed during interpreter '
'shutdown. As\n'
' a consequence, the global variables it needs to '
'access\n'
' (including other modules) may already have been '
'deleted or set\n'
' to "None". Python guarantees that globals whose name '
'begins\n'
' with a single underscore are deleted from their '
'module before\n'
' other globals are deleted; if no other references to '
'such\n'
' globals exist, this may help in assuring that '
'imported modules\n'
' are still available at the time when the "__del__()" '
'method is\n'
' called.\n'
'\n'
'object.__repr__(self)\n'
'\n'
' Called by the "repr()" built-in function to compute the '
'“official”\n'
' string representation of an object. If at all possible, '
'this\n'
' should look like a valid Python expression that could be '
'used to\n'
' recreate an object with the same value (given an '
'appropriate\n'
' environment). If this is not possible, a string of the '
'form\n'
' "<...some useful description...>" should be returned. '
'The return\n'
' value must be a string object. If a class defines '
'"__repr__()" but\n'
' not "__str__()", then "__repr__()" is also used when an '
'“informal”\n'
' string representation of instances of that class is '
'required.\n'
'\n'
' This is typically used for debugging, so it is important '
'that the\n'
' representation is information-rich and unambiguous.\n'
'\n'
'object.__str__(self)\n'
'\n'
' Called by "str(object)" and the built-in functions '
'"format()" and\n'
' "print()" to compute the “informal” or nicely printable '
'string\n'
' representation of an object. The return value must be a '
'string\n'
' object.\n'
'\n'
' This method differs from "object.__repr__()" in that '
'there is no\n'
' expectation that "__str__()" return a valid Python '
'expression: a\n'
' more convenient or concise representation can be used.\n'
'\n'
' The default implementation defined by the built-in type '
'"object"\n'
' calls "object.__repr__()".\n'
'\n'
'object.__bytes__(self)\n'
'\n'
' Called by bytes to compute a byte-string representation '
'of an\n'
' object. This should return a "bytes" object.\n'
'\n'
'object.__format__(self, format_spec)\n'
'\n'
' Called by the "format()" built-in function, and by '
'extension,\n'
' evaluation of formatted string literals and the '
'"str.format()"\n'
' method, to produce a “formatted” string representation '
'of an\n'
' object. The *format_spec* argument is a string that '
'contains a\n'
' description of the formatting options desired. The '
'interpretation\n'
' of the *format_spec* argument is up to the type '
'implementing\n'
' "__format__()", however most classes will either '
'delegate\n'
' formatting to one of the built-in types, or use a '
'similar\n'
' formatting option syntax.\n'
'\n'
' See Format Specification Mini-Language for a description '
'of the\n'
' standard formatting syntax.\n'
'\n'
' The return value must be a string object.\n'
'\n'
' Changed in version 3.4: The __format__ method of '
'"object" itself\n'
' raises a "TypeError" if passed any non-empty string.\n'
'\n'
' Changed in version 3.7: "object.__format__(x, \'\')" is '
'now\n'
' equivalent to "str(x)" rather than "format(str(self), '
'\'\')".\n'
'\n'
'object.__lt__(self, other)\n'
'object.__le__(self, other)\n'
'object.__eq__(self, other)\n'
'object.__ne__(self, other)\n'
'object.__gt__(self, other)\n'
'object.__ge__(self, other)\n'
'\n'
' These are the so-called “rich comparison” methods. The\n'
' correspondence between operator symbols and method names '
'is as\n'
' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
'"x.__le__(y)",\n'
' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
'"x>y" calls\n'
' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
'\n'
' A rich comparison method may return the singleton '
'"NotImplemented"\n'
' if it does not implement the operation for a given pair '
'of\n'
' arguments. By convention, "False" and "True" are '
'returned for a\n'
' successful comparison. However, these methods can return '
'any value,\n'
' so if the comparison operator is used in a Boolean '
'context (e.g.,\n'
' in the condition of an "if" statement), Python will call '
'"bool()"\n'
' on the value to determine if the result is true or '
'false.\n'
'\n'
' By default, "__ne__()" delegates to "__eq__()" and '
'inverts the\n'
' result unless it is "NotImplemented". There are no '
'other implied\n'
' relationships among the comparison operators, for '
'example, the\n'
' truth of "(x<y or x==y)" does not imply "x<=y". To '
'automatically\n'
' generate ordering operations from a single root '
'operation, see\n'
' "functools.total_ordering()".\n'
'\n'
' See the paragraph on "__hash__()" for some important '
'notes on\n'
' creating *hashable* objects which support custom '
'comparison\n'
' operations and are usable as dictionary keys.\n'
'\n'
' There are no swapped-argument versions of these methods '
'(to be used\n'
' when the left argument does not support the operation '
'but the right\n'
' argument does); rather, "__lt__()" and "__gt__()" are '
'each other’s\n'
' reflection, "__le__()" and "__ge__()" are each other’s '
'reflection,\n'
' and "__eq__()" and "__ne__()" are their own reflection. '
'If the\n'
' operands are of different types, and right operand’s '
'type is a\n'
' direct or indirect subclass of the left operand’s type, '
'the\n'
' reflected method of the right operand has priority, '
'otherwise the\n'
' left operand’s method has priority. Virtual subclassing '
'is not\n'
' considered.\n'
'\n'
'object.__hash__(self)\n'
'\n'
' Called by built-in function "hash()" and for operations '
'on members\n'
' of hashed collections including "set", "frozenset", and '
'"dict".\n'
' "__hash__()" should return an integer. The only required '
'property\n'
' is that objects which compare equal have the same hash '
'value; it is\n'
' advised to mix together the hash values of the '
'components of the\n'
' object that also play a part in comparison of objects by '
'packing\n'
' them into a tuple and hashing the tuple. Example:\n'
'\n'
' def __hash__(self):\n'
' return hash((self.name, self.nick, self.color))\n'
'\n'
' Note: "hash()" truncates the value returned from an '
'object’s\n'
' custom "__hash__()" method to the size of a '
'"Py_ssize_t". This\n'
' is typically 8 bytes on 64-bit builds and 4 bytes on '
'32-bit\n'
' builds. If an object’s "__hash__()" must '
'interoperate on builds\n'
' of different bit sizes, be sure to check the width on '
'all\n'
' supported builds. An easy way to do this is with '
'"python -c\n'
' "import sys; print(sys.hash_info.width)"".\n'
'\n'
' If a class does not define an "__eq__()" method it '
'should not\n'
' define a "__hash__()" operation either; if it defines '
'"__eq__()"\n'
' but not "__hash__()", its instances will not be usable '
'as items in\n'
' hashable collections. If a class defines mutable '
'objects and\n'
' implements an "__eq__()" method, it should not '
'implement\n'
' "__hash__()", since the implementation of hashable '
'collections\n'
' requires that a key’s hash value is immutable (if the '
'object’s hash\n'
' value changes, it will be in the wrong hash bucket).\n'
'\n'
' User-defined classes have "__eq__()" and "__hash__()" '
'methods by\n'
' default; with them, all objects compare unequal (except '
'with\n'
' themselves) and "x.__hash__()" returns an appropriate '
'value such\n'
' that "x == y" implies both that "x is y" and "hash(x) == '
'hash(y)".\n'
'\n'
' A class that overrides "__eq__()" and does not define '
'"__hash__()"\n'
' will have its "__hash__()" implicitly set to "None". '
'When the\n'
' "__hash__()" method of a class is "None", instances of '
'the class\n'
' will raise an appropriate "TypeError" when a program '
'attempts to\n'
' retrieve their hash value, and will also be correctly '
'identified as\n'
' unhashable when checking "isinstance(obj,\n'
' collections.abc.Hashable)".\n'
'\n'
' If a class that overrides "__eq__()" needs to retain '
'the\n'
' implementation of "__hash__()" from a parent class, the '
'interpreter\n'
' must be told this explicitly by setting "__hash__ =\n'
' <ParentClass>.__hash__".\n'
'\n'
' If a class that does not override "__eq__()" wishes to '
'suppress\n'
' hash support, it should include "__hash__ = None" in the '
'class\n'
' definition. A class which defines its own "__hash__()" '
'that\n'
' explicitly raises a "TypeError" would be incorrectly '
'identified as\n'
' hashable by an "isinstance(obj, '
'collections.abc.Hashable)" call.\n'
'\n'
' Note: By default, the "__hash__()" values of str and '
'bytes\n'
' objects are “salted” with an unpredictable random '
'value.\n'
' Although they remain constant within an individual '
'Python\n'
' process, they are not predictable between repeated '
'invocations of\n'
' Python.This is intended to provide protection against '
'a denial-\n'
' of-service caused by carefully-chosen inputs that '
'exploit the\n'
' worst case performance of a dict insertion, O(n^2) '
'complexity.\n'
' See '
'http://www.ocert.org/advisories/ocert-2011-003.html for\n'
' details.Changing hash values affects the iteration '
'order of sets.\n'
' Python has never made guarantees about this ordering '
'(and it\n'
' typically varies between 32-bit and 64-bit builds).See '
'also\n'
' "PYTHONHASHSEED".\n'
'\n'
' Changed in version 3.3: Hash randomization is enabled by '
'default.\n'
'\n'
'object.__bool__(self)\n'
'\n'
' Called to implement truth value testing and the built-in '
'operation\n'
' "bool()"; should return "False" or "True". When this '
'method is not\n'
' defined, "__len__()" is called, if it is defined, and '
'the object is\n'
' considered true if its result is nonzero. If a class '
'defines\n'
' neither "__len__()" nor "__bool__()", all its instances '
'are\n'
' considered true.\n',
'debugger': '"pdb" — The Python Debugger\n'
'***************************\n'
'\n'
'**Source code:** Lib/pdb.py\n'
'\n'
'======================================================================\n'
'\n'
'The module "pdb" defines an interactive source code debugger '
'for\n'
'Python programs. It supports setting (conditional) breakpoints '
'and\n'
'single stepping at the source line level, inspection of stack '
'frames,\n'
'source code listing, and evaluation of arbitrary Python code in '
'the\n'
'context of any stack frame. It also supports post-mortem '
'debugging\n'
'and can be called under program control.\n'
'\n'
'The debugger is extensible – it is actually defined as the '
'class\n'
'"Pdb". This is currently undocumented but easily understood by '
'reading\n'
'the source. The extension interface uses the modules "bdb" and '
'"cmd".\n'
'\n'
'The debugger’s prompt is "(Pdb)". Typical usage to run a program '
'under\n'
'control of the debugger is:\n'
'\n'
' >>> import pdb\n'
' >>> import mymodule\n'
" >>> pdb.run('mymodule.test()')\n"
' > <string>(0)?()\n'
' (Pdb) continue\n'
' > <string>(1)?()\n'
' (Pdb) continue\n'
" NameError: 'spam'\n"
' > <string>(1)?()\n'
' (Pdb)\n'
'\n'
'Changed in version 3.3: Tab-completion via the "readline" module '
'is\n'
'available for commands and command arguments, e.g. the current '
'global\n'
'and local names are offered as arguments of the "p" command.\n'
'\n'
'"pdb.py" can also be invoked as a script to debug other '
'scripts. For\n'
'example:\n'
'\n'
' python3 -m pdb myscript.py\n'
'\n'
'When invoked as a script, pdb will automatically enter '
'post-mortem\n'
'debugging if the program being debugged exits abnormally. After '
'post-\n'
'mortem debugging (or after normal exit of the program), pdb '
'will\n'
'restart the program. Automatic restarting preserves pdb’s state '
'(such\n'
'as breakpoints) and in most cases is more useful than quitting '
'the\n'
'debugger upon program’s exit.\n'
'\n'
'New in version 3.2: "pdb.py" now accepts a "-c" option that '
'executes\n'
'commands as if given in a ".pdbrc" file, see Debugger Commands.\n'
'\n'
'New in version 3.7: "pdb.py" now accepts a "-m" option that '
'execute\n'
'modules similar to the way "python3 -m" does. As with a script, '
'the\n'
'debugger will pause execution just before the first line of the\n'
'module.\n'
'\n'
'The typical usage to break into the debugger from a running '
'program is\n'
'to insert\n'
'\n'
' import pdb; pdb.set_trace()\n'
'\n'
'at the location you want to break into the debugger. You can '
'then\n'
'step through the code following this statement, and continue '
'running\n'
'without the debugger using the "continue" command.\n'
'\n'
'New in version 3.7: The built-in "breakpoint()", when called '
'with\n'
'defaults, can be used instead of "import pdb; pdb.set_trace()".\n'
'\n'
'The typical usage to inspect a crashed program is:\n'
'\n'
' >>> import pdb\n'
' >>> import mymodule\n'
' >>> mymodule.test()\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 1, in <module>\n'
' File "./mymodule.py", line 4, in test\n'
' test2()\n'
' File "./mymodule.py", line 3, in test2\n'
' print(spam)\n'
' NameError: spam\n'
' >>> pdb.pm()\n'
' > ./mymodule.py(3)test2()\n'
' -> print(spam)\n'
' (Pdb)\n'
'\n'
'The module defines the following functions; each enters the '
'debugger\n'
'in a slightly different way:\n'
'\n'
'pdb.run(statement, globals=None, locals=None)\n'
'\n'
' Execute the *statement* (given as a string or a code object) '
'under\n'
' debugger control. The debugger prompt appears before any '
'code is\n'
' executed; you can set breakpoints and type "continue", or you '
'can\n'
' step through the statement using "step" or "next" (all these\n'
' commands are explained below). The optional *globals* and '
'*locals*\n'
' arguments specify the environment in which the code is '
'executed; by\n'
' default the dictionary of the module "__main__" is used. '
'(See the\n'
' explanation of the built-in "exec()" or "eval()" functions.)\n'
'\n'
'pdb.runeval(expression, globals=None, locals=None)\n'
'\n'
' Evaluate the *expression* (given as a string or a code '
'object)\n'
' under debugger control. When "runeval()" returns, it returns '
'the\n'
' value of the expression. Otherwise this function is similar '
'to\n'
' "run()".\n'
'\n'
'pdb.runcall(function, *args, **kwds)\n'
'\n'
' Call the *function* (a function or method object, not a '
'string)\n'
' with the given arguments. When "runcall()" returns, it '
'returns\n'
' whatever the function call returned. The debugger prompt '
'appears\n'
' as soon as the function is entered.\n'
'\n'
'pdb.set_trace(*, header=None)\n'
'\n'
' Enter the debugger at the calling stack frame. This is '
'useful to\n'
' hard-code a breakpoint at a given point in a program, even if '
'the\n'
' code is not otherwise being debugged (e.g. when an assertion\n'
' fails). If given, *header* is printed to the console just '
'before\n'
' debugging begins.\n'
'\n'
' Changed in version 3.7: The keyword-only argument *header*.\n'
'\n'
'pdb.post_mortem(traceback=None)\n'
'\n'
' Enter post-mortem debugging of the given *traceback* object. '
'If no\n'
' *traceback* is given, it uses the one of the exception that '
'is\n'
' currently being handled (an exception must be being handled '
'if the\n'
' default is to be used).\n'
'\n'
'pdb.pm()\n'
'\n'
' Enter post-mortem debugging of the traceback found in\n'
' "sys.last_traceback".\n'
'\n'
'The "run*" functions and "set_trace()" are aliases for '
'instantiating\n'
'the "Pdb" class and calling the method of the same name. If you '
'want\n'
'to access further features, you have to do this yourself:\n'
'\n'
"class pdb.Pdb(completekey='tab', stdin=None, stdout=None, "
'skip=None, nosigint=False, readrc=True)\n'
'\n'
' "Pdb" is the debugger class.\n'
'\n'
' The *completekey*, *stdin* and *stdout* arguments are passed '
'to the\n'
' underlying "cmd.Cmd" class; see the description there.\n'
'\n'
' The *skip* argument, if given, must be an iterable of '
'glob-style\n'
' module name patterns. The debugger will not step into frames '
'that\n'
' originate in a module that matches one of these patterns. '
'[1]\n'
'\n'
' By default, Pdb sets a handler for the SIGINT signal (which '
'is sent\n'
' when the user presses "Ctrl-C" on the console) when you give '
'a\n'
' "continue" command. This allows you to break into the '
'debugger\n'
' again by pressing "Ctrl-C". If you want Pdb not to touch '
'the\n'
' SIGINT handler, set *nosigint* to true.\n'
'\n'
' The *readrc* argument defaults to true and controls whether '
'Pdb\n'
' will load .pdbrc files from the filesystem.\n'
'\n'
' Example call to enable tracing with *skip*:\n'
'\n'
" import pdb; pdb.Pdb(skip=['django.*']).set_trace()\n"
'\n'
' Raises an auditing event "pdb.Pdb" with no arguments.\n'
'\n'
' New in version 3.1: The *skip* argument.\n'
'\n'
' New in version 3.2: The *nosigint* argument. Previously, a '
'SIGINT\n'
' handler was never set by Pdb.\n'
'\n'
' Changed in version 3.6: The *readrc* argument.\n'
'\n'
' run(statement, globals=None, locals=None)\n'
' runeval(expression, globals=None, locals=None)\n'
' runcall(function, *args, **kwds)\n'
' set_trace()\n'
'\n'
' See the documentation for the functions explained above.\n'
'\n'
'\n'
'Debugger Commands\n'
'=================\n'
'\n'
'The commands recognized by the debugger are listed below. Most\n'
'commands can be abbreviated to one or two letters as indicated; '
'e.g.\n'
'"h(elp)" means that either "h" or "help" can be used to enter '
'the help\n'
'command (but not "he" or "hel", nor "H" or "Help" or "HELP").\n'
'Arguments to commands must be separated by whitespace (spaces '
'or\n'
'tabs). Optional arguments are enclosed in square brackets '
'("[]") in\n'
'the command syntax; the square brackets must not be typed.\n'
'Alternatives in the command syntax are separated by a vertical '
'bar\n'
'("|").\n'
'\n'
'Entering a blank line repeats the last command entered. '
'Exception: if\n'
'the last command was a "list" command, the next 11 lines are '
'listed.\n'
'\n'
'Commands that the debugger doesn’t recognize are assumed to be '
'Python\n'
'statements and are executed in the context of the program being\n'
'debugged. Python statements can also be prefixed with an '
'exclamation\n'
'point ("!"). This is a powerful way to inspect the program '
'being\n'
'debugged; it is even possible to change a variable or call a '
'function.\n'
'When an exception occurs in such a statement, the exception name '
'is\n'
'printed but the debugger’s state is not changed.\n'
'\n'
'The debugger supports aliases. Aliases can have parameters '
'which\n'
'allows one a certain level of adaptability to the context under\n'
'examination.\n'
'\n'
'Multiple commands may be entered on a single line, separated by '
'";;".\n'
'(A single ";" is not used as it is the separator for multiple '
'commands\n'
'in a line that is passed to the Python parser.) No intelligence '
'is\n'
'applied to separating the commands; the input is split at the '
'first\n'
'";;" pair, even if it is in the middle of a quoted string.\n'
'\n'
'If a file ".pdbrc" exists in the user’s home directory or in '
'the\n'
'current directory, it is read in and executed as if it had been '
'typed\n'
'at the debugger prompt. This is particularly useful for '
'aliases. If\n'
'both files exist, the one in the home directory is read first '
'and\n'
'aliases defined there can be overridden by the local file.\n'
'\n'
'Changed in version 3.2: ".pdbrc" can now contain commands that\n'
'continue debugging, such as "continue" or "next". Previously, '
'these\n'
'commands had no effect.\n'
'\n'
'h(elp) [command]\n'
'\n'
' Without argument, print the list of available commands. With '
'a\n'
' *command* as argument, print help about that command. "help '
'pdb"\n'
' displays the full documentation (the docstring of the "pdb"\n'
' module). Since the *command* argument must be an identifier, '
'"help\n'
' exec" must be entered to get help on the "!" command.\n'
'\n'
'w(here)\n'
'\n'
' Print a stack trace, with the most recent frame at the '
'bottom. An\n'
' arrow indicates the current frame, which determines the '
'context of\n'
' most commands.\n'
'\n'
'd(own) [count]\n'
'\n'
' Move the current frame *count* (default one) levels down in '
'the\n'
' stack trace (to a newer frame).\n'
'\n'
'u(p) [count]\n'
'\n'
' Move the current frame *count* (default one) levels up in the '
'stack\n'
' trace (to an older frame).\n'
'\n'
'b(reak) [([filename:]lineno | function) [, condition]]\n'
'\n'
' With a *lineno* argument, set a break there in the current '
'file.\n'
' With a *function* argument, set a break at the first '
'executable\n'
' statement within that function. The line number may be '
'prefixed\n'
' with a filename and a colon, to specify a breakpoint in '
'another\n'
' file (probably one that hasn’t been loaded yet). The file '
'is\n'
' searched on "sys.path". Note that each breakpoint is '
'assigned a\n'
' number to which all the other breakpoint commands refer.\n'
'\n'
' If a second argument is present, it is an expression which '
'must\n'
' evaluate to true before the breakpoint is honored.\n'
'\n'
' Without argument, list all breaks, including for each '
'breakpoint,\n'
' the number of times that breakpoint has been hit, the '
'current\n'
' ignore count, and the associated condition if any.\n'
'\n'
'tbreak [([filename:]lineno | function) [, condition]]\n'
'\n'
' Temporary breakpoint, which is removed automatically when it '
'is\n'
' first hit. The arguments are the same as for "break".\n'
'\n'
'cl(ear) [filename:lineno | bpnumber ...]\n'
'\n'
' With a *filename:lineno* argument, clear all the breakpoints '
'at\n'
' this line. With a space separated list of breakpoint numbers, '
'clear\n'
' those breakpoints. Without argument, clear all breaks (but '
'first\n'
' ask confirmation).\n'
'\n'
'disable [bpnumber ...]\n'
'\n'
' Disable the breakpoints given as a space separated list of\n'
' breakpoint numbers. Disabling a breakpoint means it cannot '
'cause\n'
' the program to stop execution, but unlike clearing a '
'breakpoint, it\n'
' remains in the list of breakpoints and can be (re-)enabled.\n'
'\n'
'enable [bpnumber ...]\n'
'\n'
' Enable the breakpoints specified.\n'
'\n'
'ignore bpnumber [count]\n'
'\n'
' Set the ignore count for the given breakpoint number. If '
'count is\n'
' omitted, the ignore count is set to 0. A breakpoint becomes '
'active\n'
' when the ignore count is zero. When non-zero, the count is\n'
' decremented each time the breakpoint is reached and the '
'breakpoint\n'
' is not disabled and any associated condition evaluates to '
'true.\n'
'\n'
'condition bpnumber [condition]\n'
'\n'
' Set a new *condition* for the breakpoint, an expression which '
'must\n'
' evaluate to true before the breakpoint is honored. If '
'*condition*\n'
' is absent, any existing condition is removed; i.e., the '
'breakpoint\n'
' is made unconditional.\n'
'\n'
'commands [bpnumber]\n'
'\n'
' Specify a list of commands for breakpoint number *bpnumber*. '
'The\n'
' commands themselves appear on the following lines. Type a '
'line\n'
' containing just "end" to terminate the commands. An example:\n'
'\n'
' (Pdb) commands 1\n'
' (com) p some_variable\n'
' (com) end\n'
' (Pdb)\n'
'\n'
' To remove all commands from a breakpoint, type "commands" '
'and\n'
' follow it immediately with "end"; that is, give no commands.\n'
'\n'
' With no *bpnumber* argument, "commands" refers to the last\n'
' breakpoint set.\n'
'\n'
' You can use breakpoint commands to start your program up '
'again.\n'
' Simply use the "continue" command, or "step", or any other '
'command\n'
' that resumes execution.\n'
'\n'
' Specifying any command resuming execution (currently '
'"continue",\n'
' "step", "next", "return", "jump", "quit" and their '
'abbreviations)\n'
' terminates the command list (as if that command was '
'immediately\n'
' followed by end). This is because any time you resume '
'execution\n'
' (even with a simple next or step), you may encounter another\n'
' breakpoint—which could have its own command list, leading to\n'
' ambiguities about which list to execute.\n'
'\n'
' If you use the ‘silent’ command in the command list, the '
'usual\n'
' message about stopping at a breakpoint is not printed. This '
'may be\n'
' desirable for breakpoints that are to print a specific '
'message and\n'
' then continue. If none of the other commands print anything, '
'you\n'
' see no sign that the breakpoint was reached.\n'
'\n'
's(tep)\n'
'\n'
' Execute the current line, stop at the first possible '
'occasion\n'
' (either in a function that is called or on the next line in '
'the\n'
' current function).\n'
'\n'
'n(ext)\n'
'\n'
' Continue execution until the next line in the current '
'function is\n'
' reached or it returns. (The difference between "next" and '
'"step"\n'
' is that "step" stops inside a called function, while "next"\n'
' executes called functions at (nearly) full speed, only '
'stopping at\n'
' the next line in the current function.)\n'
'\n'
'unt(il) [lineno]\n'
'\n'
' Without argument, continue execution until the line with a '
'number\n'
' greater than the current one is reached.\n'
'\n'
' With a line number, continue execution until a line with a '
'number\n'
' greater or equal to that is reached. In both cases, also '
'stop when\n'
' the current frame returns.\n'
'\n'
' Changed in version 3.2: Allow giving an explicit line '
'number.\n'
'\n'
'r(eturn)\n'
'\n'
' Continue execution until the current function returns.\n'
'\n'
'c(ont(inue))\n'
'\n'
' Continue execution, only stop when a breakpoint is '
'encountered.\n'
'\n'
'j(ump) lineno\n'
'\n'
' Set the next line that will be executed. Only available in '
'the\n'
' bottom-most frame. This lets you jump back and execute code '
'again,\n'
' or jump forward to skip code that you don’t want to run.\n'
'\n'
' It should be noted that not all jumps are allowed – for '
'instance it\n'
' is not possible to jump into the middle of a "for" loop or '
'out of a\n'
' "finally" clause.\n'
'\n'
'l(ist) [first[, last]]\n'
'\n'
' List source code for the current file. Without arguments, '
'list 11\n'
' lines around the current line or continue the previous '
'listing.\n'
' With "." as argument, list 11 lines around the current line. '
'With\n'
' one argument, list 11 lines around at that line. With two\n'
' arguments, list the given range; if the second argument is '
'less\n'
' than the first, it is interpreted as a count.\n'
'\n'
' The current line in the current frame is indicated by "->". '
'If an\n'
' exception is being debugged, the line where the exception '
'was\n'
' originally raised or propagated is indicated by ">>", if it '
'differs\n'
' from the current line.\n'
'\n'
' New in version 3.2: The ">>" marker.\n'
'\n'
'll | longlist\n'
'\n'
' List all source code for the current function or frame.\n'
' Interesting lines are marked as for "list".\n'
'\n'
' New in version 3.2.\n'
'\n'
'a(rgs)\n'
'\n'
' Print the argument list of the current function.\n'
'\n'
'p expression\n'
'\n'
' Evaluate the *expression* in the current context and print '
'its\n'
' value.\n'
'\n'
' Note: "print()" can also be used, but is not a debugger '
'command —\n'
' this executes the Python "print()" function.\n'
'\n'
'pp expression\n'
'\n'
' Like the "p" command, except the value of the expression is '
'pretty-\n'
' printed using the "pprint" module.\n'
'\n'
'whatis expression\n'
'\n'
' Print the type of the *expression*.\n'
'\n'
'source expression\n'
'\n'
' Try to get source code for the given object and display it.\n'
'\n'
' New in version 3.2.\n'
'\n'
'display [expression]\n'
'\n'
' Display the value of the expression if it changed, each time\n'
' execution stops in the current frame.\n'
'\n'
' Without expression, list all display expressions for the '
'current\n'
' frame.\n'
'\n'
' New in version 3.2.\n'
'\n'
'undisplay [expression]\n'
'\n'
' Do not display the expression any more in the current frame.\n'
' Without expression, clear all display expressions for the '
'current\n'
' frame.\n'
'\n'
' New in version 3.2.\n'
'\n'
'interact\n'
'\n'
' Start an interactive interpreter (using the "code" module) '
'whose\n'
' global namespace contains all the (global and local) names '
'found in\n'
' the current scope.\n'
'\n'
' New in version 3.2.\n'
'\n'
'alias [name [command]]\n'
'\n'
' Create an alias called *name* that executes *command*. The '
'command\n'
' must *not* be enclosed in quotes. Replaceable parameters can '
'be\n'
' indicated by "%1", "%2", and so on, while "%*" is replaced by '
'all\n'
' the parameters. If no command is given, the current alias '
'for\n'
' *name* is shown. If no arguments are given, all aliases are '
'listed.\n'
'\n'
' Aliases may be nested and can contain anything that can be '
'legally\n'
' typed at the pdb prompt. Note that internal pdb commands '
'*can* be\n'
' overridden by aliases. Such a command is then hidden until '
'the\n'
' alias is removed. Aliasing is recursively applied to the '
'first\n'
' word of the command line; all other words in the line are '
'left\n'
' alone.\n'
'\n'
' As an example, here are two useful aliases (especially when '
'placed\n'
' in the ".pdbrc" file):\n'
'\n'
' # Print instance variables (usage "pi classInst")\n'
' alias pi for k in %1.__dict__.keys(): '
'print("%1.",k,"=",%1.__dict__[k])\n'
' # Print instance variables in self\n'
' alias ps pi self\n'
'\n'
'unalias name\n'
'\n'
' Delete the specified alias.\n'
'\n'
'! statement\n'
'\n'
' Execute the (one-line) *statement* in the context of the '
'current\n'
' stack frame. The exclamation point can be omitted unless the '
'first\n'
' word of the statement resembles a debugger command. To set '
'a\n'
' global variable, you can prefix the assignment command with '
'a\n'
' "global" statement on the same line, e.g.:\n'
'\n'
" (Pdb) global list_options; list_options = ['-l']\n"
' (Pdb)\n'
'\n'
'run [args ...]\n'
'restart [args ...]\n'
'\n'
' Restart the debugged Python program. If an argument is '
'supplied,\n'
' it is split with "shlex" and the result is used as the new\n'
' "sys.argv". History, breakpoints, actions and debugger '
'options are\n'
' preserved. "restart" is an alias for "run".\n'
'\n'
'q(uit)\n'
'\n'
' Quit from the debugger. The program being executed is '
'aborted.\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] Whether a frame is considered to originate in a certain '
'module\n'
' is determined by the "__name__" in the frame globals.\n',
'del': 'The "del" statement\n'
'*******************\n'
'\n'
' del_stmt ::= "del" target_list\n'
'\n'
'Deletion is recursively defined very similar to the way assignment '
'is\n'
'defined. Rather than spelling it out in full details, here are some\n'
'hints.\n'
'\n'
'Deletion of a target list recursively deletes each target, from left\n'
'to right.\n'
'\n'
'Deletion of a name removes the binding of that name from the local '
'or\n'
'global namespace, depending on whether the name occurs in a "global"\n'
'statement in the same code block. If the name is unbound, a\n'
'"NameError" exception will be raised.\n'
'\n'
'Deletion of attribute references, subscriptions and slicings is '
'passed\n'
'to the primary object involved; deletion of a slicing is in general\n'
'equivalent to assignment of an empty slice of the right type (but '
'even\n'
'this is determined by the sliced object).\n'
'\n'
'Changed in version 3.2: Previously it was illegal to delete a name\n'
'from the local namespace if it occurs as a free variable in a nested\n'
'block.\n',
'dict': 'Dictionary displays\n'
'*******************\n'
'\n'
'A dictionary display is a possibly empty series of key/datum pairs\n'
'enclosed in curly braces:\n'
'\n'
' dict_display ::= "{" [key_datum_list | dict_comprehension] '
'"}"\n'
' key_datum_list ::= key_datum ("," key_datum)* [","]\n'
' key_datum ::= expression ":" expression | "**" or_expr\n'
' dict_comprehension ::= expression ":" expression comp_for\n'
'\n'
'A dictionary display yields a new dictionary object.\n'
'\n'
'If a comma-separated sequence of key/datum pairs is given, they are\n'
'evaluated from left to right to define the entries of the '
'dictionary:\n'
'each key object is used as a key into the dictionary to store the\n'
'corresponding datum. This means that you can specify the same key\n'
'multiple times in the key/datum list, and the final dictionary’s '
'value\n'
'for that key will be the last one given.\n'
'\n'
'A double asterisk "**" denotes *dictionary unpacking*. Its operand\n'
'must be a *mapping*. Each mapping item is added to the new\n'
'dictionary. Later values replace values already set by earlier\n'
'key/datum pairs and earlier dictionary unpackings.\n'
'\n'
'New in version 3.5: Unpacking into dictionary displays, originally\n'
'proposed by **PEP 448**.\n'
'\n'
'A dict comprehension, in contrast to list and set comprehensions,\n'
'needs two expressions separated with a colon followed by the usual\n'
'“for” and “if” clauses. When the comprehension is run, the '
'resulting\n'
'key and value elements are inserted in the new dictionary in the '
'order\n'
'they are produced.\n'
'\n'
'Restrictions on the types of the key values are listed earlier in\n'
'section The standard type hierarchy. (To summarize, the key type\n'
'should be *hashable*, which excludes all mutable objects.) Clashes\n'
'between duplicate keys are not detected; the last datum (textually\n'
'rightmost in the display) stored for a given key value prevails.\n'
'\n'
'Changed in version 3.8: Prior to Python 3.8, in dict '
'comprehensions,\n'
'the evaluation order of key and value was not well-defined. In\n'
'CPython, the value was evaluated before the key. Starting with '
'3.8,\n'
'the key is evaluated before the value, as proposed by **PEP 572**.\n',
'dynamic-features': 'Interaction with dynamic features\n'
'*********************************\n'
'\n'
'Name resolution of free variables occurs at runtime, not '
'at compile\n'
'time. This means that the following code will print 42:\n'
'\n'
' i = 10\n'
' def f():\n'
' print(i)\n'
' i = 42\n'
' f()\n'
'\n'
'The "eval()" and "exec()" functions do not have access '
'to the full\n'
'environment for resolving names. Names may be resolved '
'in the local\n'
'and global namespaces of the caller. Free variables are '
'not resolved\n'
'in the nearest enclosing namespace, but in the global '
'namespace. [1]\n'
'The "exec()" and "eval()" functions have optional '
'arguments to\n'
'override the global and local namespace. If only one '
'namespace is\n'
'specified, it is used for both.\n',
'else': 'The "if" statement\n'
'******************\n'
'\n'
'The "if" statement is used for conditional execution:\n'
'\n'
' if_stmt ::= "if" expression ":" suite\n'
' ("elif" expression ":" suite)*\n'
' ["else" ":" suite]\n'
'\n'
'It selects exactly one of the suites by evaluating the expressions '
'one\n'
'by one until one is found to be true (see section Boolean '
'operations\n'
'for the definition of true and false); then that suite is executed\n'
'(and no other part of the "if" statement is executed or evaluated).\n'
'If all expressions are false, the suite of the "else" clause, if\n'
'present, is executed.\n',
'exceptions': 'Exceptions\n'
'**********\n'
'\n'
'Exceptions are a means of breaking out of the normal flow of '
'control\n'
'of a code block in order to handle errors or other '
'exceptional\n'
'conditions. An exception is *raised* at the point where the '
'error is\n'
'detected; it may be *handled* by the surrounding code block or '
'by any\n'
'code block that directly or indirectly invoked the code block '
'where\n'
'the error occurred.\n'
'\n'
'The Python interpreter raises an exception when it detects a '
'run-time\n'
'error (such as division by zero). A Python program can also\n'
'explicitly raise an exception with the "raise" statement. '
'Exception\n'
'handlers are specified with the "try" … "except" statement. '
'The\n'
'"finally" clause of such a statement can be used to specify '
'cleanup\n'
'code which does not handle the exception, but is executed '
'whether an\n'
'exception occurred or not in the preceding code.\n'
'\n'
'Python uses the “termination” model of error handling: an '
'exception\n'
'handler can find out what happened and continue execution at '
'an outer\n'
'level, but it cannot repair the cause of the error and retry '
'the\n'
'failing operation (except by re-entering the offending piece '
'of code\n'
'from the top).\n'
'\n'
'When an exception is not handled at all, the interpreter '
'terminates\n'
'execution of the program, or returns to its interactive main '
'loop. In\n'
'either case, it prints a stack traceback, except when the '
'exception is\n'
'"SystemExit".\n'
'\n'
'Exceptions are identified by class instances. The "except" '
'clause is\n'
'selected depending on the class of the instance: it must '
'reference the\n'
'class of the instance or a base class thereof. The instance '
'can be\n'
'received by the handler and can carry additional information '
'about the\n'
'exceptional condition.\n'
'\n'
'Note: Exception messages are not part of the Python API. '
'Their\n'
' contents may change from one version of Python to the next '
'without\n'
' warning and should not be relied on by code which will run '
'under\n'
' multiple versions of the interpreter.\n'
'\n'
'See also the description of the "try" statement in section The '
'try\n'
'statement and "raise" statement in section The raise '
'statement.\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] This limitation occurs because the code that is executed '
'by\n'
' these operations is not available at the time the module '
'is\n'
' compiled.\n',
'execmodel': 'Execution model\n'
'***************\n'
'\n'
'\n'
'Structure of a program\n'
'======================\n'
'\n'
'A Python program is constructed from code blocks. A *block* is '
'a piece\n'
'of Python program text that is executed as a unit. The '
'following are\n'
'blocks: a module, a function body, and a class definition. '
'Each\n'
'command typed interactively is a block. A script file (a file '
'given\n'
'as standard input to the interpreter or specified as a command '
'line\n'
'argument to the interpreter) is a code block. A script command '
'(a\n'
'command specified on the interpreter command line with the '
'"-c"\n'
'option) is a code block. A module run as a top level script (as '
'module\n'
'"__main__") from the command line using a "-m" argument is also '
'a code\n'
'block. The string argument passed to the built-in functions '
'"eval()"\n'
'and "exec()" is a code block.\n'
'\n'
'A code block is executed in an *execution frame*. A frame '
'contains\n'
'some administrative information (used for debugging) and '
'determines\n'
'where and how execution continues after the code block’s '
'execution has\n'
'completed.\n'
'\n'
'\n'
'Naming and binding\n'
'==================\n'
'\n'
'\n'
'Binding of names\n'
'----------------\n'
'\n'
'*Names* refer to objects. Names are introduced by name '
'binding\n'
'operations.\n'
'\n'
'The following constructs bind names: formal parameters to '
'functions,\n'
'"import" statements, class and function definitions (these bind '
'the\n'
'class or function name in the defining block), and targets that '
'are\n'
'identifiers if occurring in an assignment, "for" loop header, '
'or after\n'
'"as" in a "with" statement or "except" clause. The "import" '
'statement\n'
'of the form "from ... import *" binds all names defined in the\n'
'imported module, except those beginning with an underscore. '
'This form\n'
'may only be used at the module level.\n'
'\n'
'A target occurring in a "del" statement is also considered '
'bound for\n'
'this purpose (though the actual semantics are to unbind the '
'name).\n'
'\n'
'Each assignment or import statement occurs within a block '
'defined by a\n'
'class or function definition or at the module level (the '
'top-level\n'
'code block).\n'
'\n'
'If a name is bound in a block, it is a local variable of that '
'block,\n'
'unless declared as "nonlocal" or "global". If a name is bound '
'at the\n'
'module level, it is a global variable. (The variables of the '
'module\n'
'code block are local and global.) If a variable is used in a '
'code\n'
'block but not defined there, it is a *free variable*.\n'
'\n'
'Each occurrence of a name in the program text refers to the '
'*binding*\n'
'of that name established by the following name resolution '
'rules.\n'
'\n'
'\n'
'Resolution of names\n'
'-------------------\n'
'\n'
'A *scope* defines the visibility of a name within a block. If '
'a local\n'
'variable is defined in a block, its scope includes that block. '
'If the\n'
'definition occurs in a function block, the scope extends to any '
'blocks\n'
'contained within the defining one, unless a contained block '
'introduces\n'
'a different binding for the name.\n'
'\n'
'When a name is used in a code block, it is resolved using the '
'nearest\n'
'enclosing scope. The set of all such scopes visible to a code '
'block\n'
'is called the block’s *environment*.\n'
'\n'
'When a name is not found at all, a "NameError" exception is '
'raised. If\n'
'the current scope is a function scope, and the name refers to a '
'local\n'
'variable that has not yet been bound to a value at the point '
'where the\n'
'name is used, an "UnboundLocalError" exception is raised.\n'
'"UnboundLocalError" is a subclass of "NameError".\n'
'\n'
'If a name binding operation occurs anywhere within a code '
'block, all\n'
'uses of the name within the block are treated as references to '
'the\n'
'current block. This can lead to errors when a name is used '
'within a\n'
'block before it is bound. This rule is subtle. Python lacks\n'
'declarations and allows name binding operations to occur '
'anywhere\n'
'within a code block. The local variables of a code block can '
'be\n'
'determined by scanning the entire text of the block for name '
'binding\n'
'operations.\n'
'\n'
'If the "global" statement occurs within a block, all uses of '
'the name\n'
'specified in the statement refer to the binding of that name in '
'the\n'
'top-level namespace. Names are resolved in the top-level '
'namespace by\n'
'searching the global namespace, i.e. the namespace of the '
'module\n'
'containing the code block, and the builtins namespace, the '
'namespace\n'
'of the module "builtins". The global namespace is searched '
'first. If\n'
'the name is not found there, the builtins namespace is '
'searched. The\n'
'"global" statement must precede all uses of the name.\n'
'\n'
'The "global" statement has the same scope as a name binding '
'operation\n'
'in the same block. If the nearest enclosing scope for a free '
'variable\n'
'contains a global statement, the free variable is treated as a '
'global.\n'
'\n'
'The "nonlocal" statement causes corresponding names to refer '
'to\n'
'previously bound variables in the nearest enclosing function '
'scope.\n'
'"SyntaxError" is raised at compile time if the given name does '
'not\n'
'exist in any enclosing function scope.\n'
'\n'
'The namespace for a module is automatically created the first '
'time a\n'
'module is imported. The main module for a script is always '
'called\n'
'"__main__".\n'
'\n'
'Class definition blocks and arguments to "exec()" and "eval()" '
'are\n'
'special in the context of name resolution. A class definition '
'is an\n'
'executable statement that may use and define names. These '
'references\n'
'follow the normal rules for name resolution with an exception '
'that\n'
'unbound local variables are looked up in the global namespace. '
'The\n'
'namespace of the class definition becomes the attribute '
'dictionary of\n'
'the class. The scope of names defined in a class block is '
'limited to\n'
'the class block; it does not extend to the code blocks of '
'methods –\n'
'this includes comprehensions and generator expressions since '
'they are\n'
'implemented using a function scope. This means that the '
'following\n'
'will fail:\n'
'\n'
' class A:\n'
' a = 42\n'
' b = list(a + i for i in range(10))\n'
'\n'
'\n'
'Builtins and restricted execution\n'
'---------------------------------\n'
'\n'
'**CPython implementation detail:** Users should not touch\n'
'"__builtins__"; it is strictly an implementation detail. '
'Users\n'
'wanting to override values in the builtins namespace should '
'"import"\n'
'the "builtins" module and modify its attributes appropriately.\n'
'\n'
'The builtins namespace associated with the execution of a code '
'block\n'
'is actually found by looking up the name "__builtins__" in its '
'global\n'
'namespace; this should be a dictionary or a module (in the '
'latter case\n'
'the module’s dictionary is used). By default, when in the '
'"__main__"\n'
'module, "__builtins__" is the built-in module "builtins"; when '
'in any\n'
'other module, "__builtins__" is an alias for the dictionary of '
'the\n'
'"builtins" module itself.\n'
'\n'
'\n'
'Interaction with dynamic features\n'
'---------------------------------\n'
'\n'
'Name resolution of free variables occurs at runtime, not at '
'compile\n'
'time. This means that the following code will print 42:\n'
'\n'
' i = 10\n'
' def f():\n'
' print(i)\n'
' i = 42\n'
' f()\n'
'\n'
'The "eval()" and "exec()" functions do not have access to the '
'full\n'
'environment for resolving names. Names may be resolved in the '
'local\n'
'and global namespaces of the caller. Free variables are not '
'resolved\n'
'in the nearest enclosing namespace, but in the global '
'namespace. [1]\n'
'The "exec()" and "eval()" functions have optional arguments to\n'
'override the global and local namespace. If only one namespace '
'is\n'
'specified, it is used for both.\n'
'\n'
'\n'
'Exceptions\n'
'==========\n'
'\n'
'Exceptions are a means of breaking out of the normal flow of '
'control\n'
'of a code block in order to handle errors or other exceptional\n'
'conditions. An exception is *raised* at the point where the '
'error is\n'
'detected; it may be *handled* by the surrounding code block or '
'by any\n'
'code block that directly or indirectly invoked the code block '
'where\n'
'the error occurred.\n'
'\n'
'The Python interpreter raises an exception when it detects a '
'run-time\n'
'error (such as division by zero). A Python program can also\n'
'explicitly raise an exception with the "raise" statement. '
'Exception\n'
'handlers are specified with the "try" … "except" statement. '
'The\n'
'"finally" clause of such a statement can be used to specify '
'cleanup\n'
'code which does not handle the exception, but is executed '
'whether an\n'
'exception occurred or not in the preceding code.\n'
'\n'
'Python uses the “termination” model of error handling: an '
'exception\n'
'handler can find out what happened and continue execution at an '
'outer\n'
'level, but it cannot repair the cause of the error and retry '
'the\n'
'failing operation (except by re-entering the offending piece of '
'code\n'
'from the top).\n'
'\n'
'When an exception is not handled at all, the interpreter '
'terminates\n'
'execution of the program, or returns to its interactive main '
'loop. In\n'
'either case, it prints a stack traceback, except when the '
'exception is\n'
'"SystemExit".\n'
'\n'
'Exceptions are identified by class instances. The "except" '
'clause is\n'
'selected depending on the class of the instance: it must '
'reference the\n'
'class of the instance or a base class thereof. The instance '
'can be\n'
'received by the handler and can carry additional information '
'about the\n'
'exceptional condition.\n'
'\n'
'Note: Exception messages are not part of the Python API. '
'Their\n'
' contents may change from one version of Python to the next '
'without\n'
' warning and should not be relied on by code which will run '
'under\n'
' multiple versions of the interpreter.\n'
'\n'
'See also the description of the "try" statement in section The '
'try\n'
'statement and "raise" statement in section The raise '
'statement.\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] This limitation occurs because the code that is executed '
'by\n'
' these operations is not available at the time the module '
'is\n'
' compiled.\n',
'exprlists': 'Expression lists\n'
'****************\n'
'\n'
' expression_list ::= expression ("," expression)* [","]\n'
' starred_list ::= starred_item ("," starred_item)* '
'[","]\n'
' starred_expression ::= expression | (starred_item ",")* '
'[starred_item]\n'
' starred_item ::= expression | "*" or_expr\n'
'\n'
'Except when part of a list or set display, an expression list\n'
'containing at least one comma yields a tuple. The length of '
'the tuple\n'
'is the number of expressions in the list. The expressions are\n'
'evaluated from left to right.\n'
'\n'
'An asterisk "*" denotes *iterable unpacking*. Its operand must '
'be an\n'
'*iterable*. The iterable is expanded into a sequence of items, '
'which\n'
'are included in the new tuple, list, or set, at the site of '
'the\n'
'unpacking.\n'
'\n'
'New in version 3.5: Iterable unpacking in expression lists, '
'originally\n'
'proposed by **PEP 448**.\n'
'\n'
'The trailing comma is required only to create a single tuple '
'(a.k.a. a\n'
'*singleton*); it is optional in all other cases. A single '
'expression\n'
'without a trailing comma doesn’t create a tuple, but rather '
'yields the\n'
'value of that expression. (To create an empty tuple, use an '
'empty pair\n'
'of parentheses: "()".)\n',
'floating': 'Floating point literals\n'
'***********************\n'
'\n'
'Floating point literals are described by the following lexical\n'
'definitions:\n'
'\n'
' floatnumber ::= pointfloat | exponentfloat\n'
' pointfloat ::= [digitpart] fraction | digitpart "."\n'
' exponentfloat ::= (digitpart | pointfloat) exponent\n'
' digitpart ::= digit (["_"] digit)*\n'
' fraction ::= "." digitpart\n'
' exponent ::= ("e" | "E") ["+" | "-"] digitpart\n'
'\n'
'Note that the integer and exponent parts are always interpreted '
'using\n'
'radix 10. For example, "077e010" is legal, and denotes the same '
'number\n'
'as "77e10". The allowed range of floating point literals is\n'
'implementation-dependent. As in integer literals, underscores '
'are\n'
'supported for digit grouping.\n'
'\n'
'Some examples of floating point literals:\n'
'\n'
' 3.14 10. .001 1e100 3.14e-10 0e0 '
'3.14_15_93\n'
'\n'
'Changed in version 3.6: Underscores are now allowed for '
'grouping\n'
'purposes in literals.\n',
'for': 'The "for" statement\n'
'*******************\n'
'\n'
'The "for" statement is used to iterate over the elements of a '
'sequence\n'
'(such as a string, tuple or list) or other iterable object:\n'
'\n'
' for_stmt ::= "for" target_list "in" expression_list ":" suite\n'
' ["else" ":" suite]\n'
'\n'
'The expression list is evaluated once; it should yield an iterable\n'
'object. An iterator is created for the result of the\n'
'"expression_list". The suite is then executed once for each item\n'
'provided by the iterator, in the order returned by the iterator. '
'Each\n'
'item in turn is assigned to the target list using the standard rules\n'
'for assignments (see Assignment statements), and then the suite is\n'
'executed. When the items are exhausted (which is immediately when '
'the\n'
'sequence is empty or an iterator raises a "StopIteration" '
'exception),\n'
'the suite in the "else" clause, if present, is executed, and the '
'loop\n'
'terminates.\n'
'\n'
'A "break" statement executed in the first suite terminates the loop\n'
'without executing the "else" clause’s suite. A "continue" statement\n'
'executed in the first suite skips the rest of the suite and '
'continues\n'
'with the next item, or with the "else" clause if there is no next\n'
'item.\n'
'\n'
'The for-loop makes assignments to the variables in the target list.\n'
'This overwrites all previous assignments to those variables '
'including\n'
'those made in the suite of the for-loop:\n'
'\n'
' for i in range(10):\n'
' print(i)\n'
' i = 5 # this will not affect the for-loop\n'
' # because i will be overwritten with the '
'next\n'
' # index in the range\n'
'\n'
'Names in the target list are not deleted when the loop is finished,\n'
'but if the sequence is empty, they will not have been assigned to at\n'
'all by the loop. Hint: the built-in function "range()" returns an\n'
'iterator of integers suitable to emulate the effect of Pascal’s "for '
'i\n'
':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, 2]".\n'
'\n'
'Note: There is a subtlety when the sequence is being modified by the\n'
' loop (this can only occur for mutable sequences, e.g. lists). An\n'
' internal counter is used to keep track of which item is used next,\n'
' and this is incremented on each iteration. When this counter has\n'
' reached the length of the sequence the loop terminates. This '
'means\n'
' that if the suite deletes the current (or a previous) item from '
'the\n'
' sequence, the next item will be skipped (since it gets the index '
'of\n'
' the current item which has already been treated). Likewise, if '
'the\n'
' suite inserts an item in the sequence before the current item, the\n'
' current item will be treated again the next time through the loop.\n'
' This can lead to nasty bugs that can be avoided by making a\n'
' temporary copy using a slice of the whole sequence, e.g.,\n'
'\n'
' for x in a[:]:\n'
' if x < 0: a.remove(x)\n',
'formatstrings': 'Format String Syntax\n'
'********************\n'
'\n'
'The "str.format()" method and the "Formatter" class share '
'the same\n'
'syntax for format strings (although in the case of '
'"Formatter",\n'
'subclasses can define their own format string syntax). The '
'syntax is\n'
'related to that of formatted string literals, but there '
'are\n'
'differences.\n'
'\n'
'Format strings contain “replacement fields” surrounded by '
'curly braces\n'
'"{}". Anything that is not contained in braces is '
'considered literal\n'
'text, which is copied unchanged to the output. If you need '
'to include\n'
'a brace character in the literal text, it can be escaped by '
'doubling:\n'
'"{{" and "}}".\n'
'\n'
'The grammar for a replacement field is as follows:\n'
'\n'
' replacement_field ::= "{" [field_name] ["!" '
'conversion] [":" format_spec] "}"\n'
' field_name ::= arg_name ("." attribute_name | '
'"[" element_index "]")*\n'
' arg_name ::= [identifier | digit+]\n'
' attribute_name ::= identifier\n'
' element_index ::= digit+ | index_string\n'
' index_string ::= <any source character except '
'"]"> +\n'
' conversion ::= "r" | "s" | "a"\n'
' format_spec ::= <described in the next '
'section>\n'
'\n'
'In less formal terms, the replacement field can start with '
'a\n'
'*field_name* that specifies the object whose value is to be '
'formatted\n'
'and inserted into the output instead of the replacement '
'field. The\n'
'*field_name* is optionally followed by a *conversion* '
'field, which is\n'
'preceded by an exclamation point "\'!\'", and a '
'*format_spec*, which is\n'
'preceded by a colon "\':\'". These specify a non-default '
'format for the\n'
'replacement value.\n'
'\n'
'See also the Format Specification Mini-Language section.\n'
'\n'
'The *field_name* itself begins with an *arg_name* that is '
'either a\n'
'number or a keyword. If it’s a number, it refers to a '
'positional\n'
'argument, and if it’s a keyword, it refers to a named '
'keyword\n'
'argument. If the numerical arg_names in a format string '
'are 0, 1, 2,\n'
'… in sequence, they can all be omitted (not just some) and '
'the numbers\n'
'0, 1, 2, … will be automatically inserted in that order. '
'Because\n'
'*arg_name* is not quote-delimited, it is not possible to '
'specify\n'
'arbitrary dictionary keys (e.g., the strings "\'10\'" or '
'"\':-]\'") within\n'
'a format string. The *arg_name* can be followed by any '
'number of index\n'
'or attribute expressions. An expression of the form '
'"\'.name\'" selects\n'
'the named attribute using "getattr()", while an expression '
'of the form\n'
'"\'[index]\'" does an index lookup using "__getitem__()".\n'
'\n'
'Changed in version 3.1: The positional argument specifiers '
'can be\n'
'omitted for "str.format()", so "\'{} {}\'.format(a, b)" is '
'equivalent to\n'
'"\'{0} {1}\'.format(a, b)".\n'
'\n'
'Changed in version 3.4: The positional argument specifiers '
'can be\n'
'omitted for "Formatter".\n'
'\n'
'Some simple format string examples:\n'
'\n'
' "First, thou shalt count to {0}" # References first '
'positional argument\n'
' "Bring me a {}" # Implicitly '
'references the first positional argument\n'
' "From {} to {}" # Same as "From {0} to '
'{1}"\n'
' "My quest is {name}" # References keyword '
"argument 'name'\n"
' "Weight in tons {0.weight}" # \'weight\' attribute '
'of first positional arg\n'
' "Units destroyed: {players[0]}" # First element of '
"keyword argument 'players'.\n"
'\n'
'The *conversion* field causes a type coercion before '
'formatting.\n'
'Normally, the job of formatting a value is done by the '
'"__format__()"\n'
'method of the value itself. However, in some cases it is '
'desirable to\n'
'force a type to be formatted as a string, overriding its '
'own\n'
'definition of formatting. By converting the value to a '
'string before\n'
'calling "__format__()", the normal formatting logic is '
'bypassed.\n'
'\n'
'Three conversion flags are currently supported: "\'!s\'" '
'which calls\n'
'"str()" on the value, "\'!r\'" which calls "repr()" and '
'"\'!a\'" which\n'
'calls "ascii()".\n'
'\n'
'Some examples:\n'
'\n'
' "Harold\'s a clever {0!s}" # Calls str() on the '
'argument first\n'
' "Bring out the holy {name!r}" # Calls repr() on the '
'argument first\n'
' "More {!a}" # Calls ascii() on the '
'argument first\n'
'\n'
'The *format_spec* field contains a specification of how the '
'value\n'
'should be presented, including such details as field width, '
'alignment,\n'
'padding, decimal precision and so on. Each value type can '
'define its\n'
'own “formatting mini-language” or interpretation of the '
'*format_spec*.\n'
'\n'
'Most built-in types support a common formatting '
'mini-language, which\n'
'is described in the next section.\n'
'\n'
'A *format_spec* field can also include nested replacement '
'fields\n'
'within it. These nested replacement fields may contain a '
'field name,\n'
'conversion flag and format specification, but deeper '
'nesting is not\n'
'allowed. The replacement fields within the format_spec '
'are\n'
'substituted before the *format_spec* string is interpreted. '
'This\n'
'allows the formatting of a value to be dynamically '
'specified.\n'
'\n'
'See the Format examples section for some examples.\n'
'\n'
'\n'
'Format Specification Mini-Language\n'
'==================================\n'
'\n'
'“Format specifications” are used within replacement fields '
'contained\n'
'within a format string to define how individual values are '
'presented\n'
'(see Format String Syntax and Formatted string literals). '
'They can\n'
'also be passed directly to the built-in "format()" '
'function. Each\n'
'formattable type may define how the format specification is '
'to be\n'
'interpreted.\n'
'\n'
'Most built-in types implement the following options for '
'format\n'
'specifications, although some of the formatting options are '
'only\n'
'supported by the numeric types.\n'
'\n'
'A general convention is that an empty format string ("""") '
'produces\n'
'the same result as if you had called "str()" on the value. '
'A non-empty\n'
'format string typically modifies the result.\n'
'\n'
'The general form of a *standard format specifier* is:\n'
'\n'
' format_spec ::= '
'[[fill]align][sign][#][0][width][grouping_option][.precision][type]\n'
' fill ::= <any character>\n'
' align ::= "<" | ">" | "=" | "^"\n'
' sign ::= "+" | "-" | " "\n'
' width ::= digit+\n'
' grouping_option ::= "_" | ","\n'
' precision ::= digit+\n'
' type ::= "b" | "c" | "d" | "e" | "E" | "f" | '
'"F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n'
'\n'
'If a valid *align* value is specified, it can be preceded '
'by a *fill*\n'
'character that can be any character and defaults to a space '
'if\n'
'omitted. It is not possible to use a literal curly brace '
'(“"{"” or\n'
'“"}"”) as the *fill* character in a formatted string '
'literal or when\n'
'using the "str.format()" method. However, it is possible '
'to insert a\n'
'curly brace with a nested replacement field. This '
'limitation doesn’t\n'
'affect the "format()" function.\n'
'\n'
'The meaning of the various alignment options is as '
'follows:\n'
'\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | Option | '
'Meaning '
'|\n'
' '
'|===========|============================================================|\n'
' | "\'<\'" | Forces the field to be left-aligned '
'within the available |\n'
' | | space (this is the default for most '
'objects). |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'>\'" | Forces the field to be right-aligned '
'within the available |\n'
' | | space (this is the default for '
'numbers). |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'=\'" | Forces the padding to be placed after '
'the sign (if any) |\n'
' | | but before the digits. This is used for '
'printing fields |\n'
' | | in the form ‘+000000120’. This alignment '
'option is only |\n'
' | | valid for numeric types. It becomes the '
'default when ‘0’ |\n'
' | | immediately precedes the field '
'width. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'^\'" | Forces the field to be centered within '
'the available |\n'
' | | '
'space. '
'|\n'
' '
'+-----------+------------------------------------------------------------+\n'
'\n'
'Note that unless a minimum field width is defined, the '
'field width\n'
'will always be the same size as the data to fill it, so '
'that the\n'
'alignment option has no meaning in this case.\n'
'\n'
'The *sign* option is only valid for number types, and can '
'be one of\n'
'the following:\n'
'\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | Option | '
'Meaning '
'|\n'
' '
'|===========|============================================================|\n'
' | "\'+\'" | indicates that a sign should be used for '
'both positive as |\n'
' | | well as negative '
'numbers. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'-\'" | indicates that a sign should be used '
'only for negative |\n'
' | | numbers (this is the default '
'behavior). |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | space | indicates that a leading space should be '
'used on positive |\n'
' | | numbers, and a minus sign on negative '
'numbers. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
'\n'
'The "\'#\'" option causes the “alternate form” to be used '
'for the\n'
'conversion. The alternate form is defined differently for '
'different\n'
'types. This option is only valid for integer, float, '
'complex and\n'
'Decimal types. For integers, when binary, octal, or '
'hexadecimal output\n'
'is used, this option adds the prefix respective "\'0b\'", '
'"\'0o\'", or\n'
'"\'0x\'" to the output value. For floats, complex and '
'Decimal the\n'
'alternate form causes the result of the conversion to '
'always contain a\n'
'decimal-point character, even if no digits follow it. '
'Normally, a\n'
'decimal-point character appears in the result of these '
'conversions\n'
'only if a digit follows it. In addition, for "\'g\'" and '
'"\'G\'"\n'
'conversions, trailing zeros are not removed from the '
'result.\n'
'\n'
'The "\',\'" option signals the use of a comma for a '
'thousands separator.\n'
'For a locale aware separator, use the "\'n\'" integer '
'presentation type\n'
'instead.\n'
'\n'
'Changed in version 3.1: Added the "\',\'" option (see also '
'**PEP 378**).\n'
'\n'
'The "\'_\'" option signals the use of an underscore for a '
'thousands\n'
'separator for floating point presentation types and for '
'integer\n'
'presentation type "\'d\'". For integer presentation types '
'"\'b\'", "\'o\'",\n'
'"\'x\'", and "\'X\'", underscores will be inserted every 4 '
'digits. For\n'
'other presentation types, specifying this option is an '
'error.\n'
'\n'
'Changed in version 3.6: Added the "\'_\'" option (see also '
'**PEP 515**).\n'
'\n'
'*width* is a decimal integer defining the minimum field '
'width. If not\n'
'specified, then the field width will be determined by the '
'content.\n'
'\n'
'When no explicit alignment is given, preceding the *width* '
'field by a\n'
'zero ("\'0\'") character enables sign-aware zero-padding '
'for numeric\n'
'types. This is equivalent to a *fill* character of "\'0\'" '
'with an\n'
'*alignment* type of "\'=\'".\n'
'\n'
'The *precision* is a decimal number indicating how many '
'digits should\n'
'be displayed after the decimal point for a floating point '
'value\n'
'formatted with "\'f\'" and "\'F\'", or before and after the '
'decimal point\n'
'for a floating point value formatted with "\'g\'" or '
'"\'G\'". For non-\n'
'number types the field indicates the maximum field size - '
'in other\n'
'words, how many characters will be used from the field '
'content. The\n'
'*precision* is not allowed for integer values.\n'
'\n'
'Finally, the *type* determines how the data should be '
'presented.\n'
'\n'
'The available string presentation types are:\n'
'\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | Type | '
'Meaning '
'|\n'
' '
'|===========|============================================================|\n'
' | "\'s\'" | String format. This is the default type '
'for strings and |\n'
' | | may be '
'omitted. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | None | The same as '
'"\'s\'". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
'\n'
'The available integer presentation types are:\n'
'\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | Type | '
'Meaning '
'|\n'
' '
'|===========|============================================================|\n'
' | "\'b\'" | Binary format. Outputs the number in '
'base 2. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'c\'" | Character. Converts the integer to the '
'corresponding |\n'
' | | unicode character before '
'printing. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'d\'" | Decimal Integer. Outputs the number in '
'base 10. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'o\'" | Octal format. Outputs the number in base '
'8. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'x\'" | Hex format. Outputs the number in base '
'16, using lower- |\n'
' | | case letters for the digits above '
'9. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'X\'" | Hex format. Outputs the number in base '
'16, using upper- |\n'
' | | case letters for the digits above '
'9. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'n\'" | Number. This is the same as "\'d\'", '
'except that it uses the |\n'
' | | current locale setting to insert the '
'appropriate number |\n'
' | | separator '
'characters. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | None | The same as '
'"\'d\'". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
'\n'
'In addition to the above presentation types, integers can '
'be formatted\n'
'with the floating point presentation types listed below '
'(except "\'n\'"\n'
'and "None"). When doing so, "float()" is used to convert '
'the integer\n'
'to a floating point number before formatting.\n'
'\n'
'The available presentation types for floating point and '
'decimal values\n'
'are:\n'
'\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | Type | '
'Meaning '
'|\n'
' '
'|===========|============================================================|\n'
' | "\'e\'" | Exponent notation. Prints the number in '
'scientific |\n'
' | | notation using the letter ‘e’ to indicate '
'the exponent. |\n'
' | | The default precision is '
'"6". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'E\'" | Exponent notation. Same as "\'e\'" '
'except it uses an upper |\n'
' | | case ‘E’ as the separator '
'character. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'f\'" | Fixed-point notation. Displays the '
'number as a fixed-point |\n'
' | | number. The default precision is '
'"6". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'F\'" | Fixed-point notation. Same as "\'f\'", '
'but converts "nan" to |\n'
' | | "NAN" and "inf" to '
'"INF". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'g\'" | General format. For a given precision '
'"p >= 1", this |\n'
' | | rounds the number to "p" significant '
'digits and then |\n'
' | | formats the result in either fixed-point '
'format or in |\n'
' | | scientific notation, depending on its '
'magnitude. The |\n'
' | | precise rules are as follows: suppose that '
'the result |\n'
' | | formatted with presentation type "\'e\'" '
'and precision "p-1" |\n'
' | | would have exponent "exp". Then, if "m <= '
'exp < p", where |\n'
' | | "m" is -4 for floats and -6 for '
'"Decimals", the number is |\n'
' | | formatted with presentation type "\'f\'" '
'and precision |\n'
' | | "p-1-exp". Otherwise, the number is '
'formatted with |\n'
' | | presentation type "\'e\'" and precision '
'"p-1". In both cases |\n'
' | | insignificant trailing zeros are removed '
'from the |\n'
' | | significand, and the decimal point is also '
'removed if |\n'
' | | there are no remaining digits following '
'it, unless the |\n'
' | | "\'#\'" option is used. Positive and '
'negative infinity, |\n'
' | | positive and negative zero, and nans, are '
'formatted as |\n'
' | | "inf", "-inf", "0", "-0" and "nan" '
'respectively, |\n'
' | | regardless of the precision. A precision '
'of "0" is |\n'
' | | treated as equivalent to a precision of '
'"1". The default |\n'
' | | precision is '
'"6". |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'G\'" | General format. Same as "\'g\'" except '
'switches to "\'E\'" if |\n'
' | | the number gets too large. The '
'representations of infinity |\n'
' | | and NaN are uppercased, '
'too. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'n\'" | Number. This is the same as "\'g\'", '
'except that it uses the |\n'
' | | current locale setting to insert the '
'appropriate number |\n'
' | | separator '
'characters. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | "\'%\'" | Percentage. Multiplies the number by 100 '
'and displays in |\n'
' | | fixed ("\'f\'") format, followed by a '
'percent sign. |\n'
' '
'+-----------+------------------------------------------------------------+\n'
' | None | Similar to "\'g\'", except that '
'fixed-point notation, when |\n'
' | | used, has at least one digit past the '
'decimal point. The |\n'
' | | default precision is as high as needed to '
'represent the |\n'
' | | particular value. The overall effect is to '
'match the |\n'
' | | output of "str()" as altered by the other '
'format |\n'
' | | '
'modifiers. '
'|\n'
' '
'+-----------+------------------------------------------------------------+\n'
'\n'
'\n'
'Format examples\n'
'===============\n'
'\n'
'This section contains examples of the "str.format()" syntax '
'and\n'
'comparison with the old "%"-formatting.\n'
'\n'
'In most of the cases the syntax is similar to the old '
'"%"-formatting,\n'
'with the addition of the "{}" and with ":" used instead of '
'"%". For\n'
'example, "\'%03.2f\'" can be translated to "\'{:03.2f}\'".\n'
'\n'
'The new format syntax also supports new and different '
'options, shown\n'
'in the following examples.\n'
'\n'
'Accessing arguments by position:\n'
'\n'
" >>> '{0}, {1}, {2}'.format('a', 'b', 'c')\n"
" 'a, b, c'\n"
" >>> '{}, {}, {}'.format('a', 'b', 'c') # 3.1+ only\n"
" 'a, b, c'\n"
" >>> '{2}, {1}, {0}'.format('a', 'b', 'c')\n"
" 'c, b, a'\n"
" >>> '{2}, {1}, {0}'.format(*'abc') # unpacking "
'argument sequence\n'
" 'c, b, a'\n"
" >>> '{0}{1}{0}'.format('abra', 'cad') # arguments' "
'indices can be repeated\n'
" 'abracadabra'\n"
'\n'
'Accessing arguments by name:\n'
'\n'
" >>> 'Coordinates: {latitude}, "
"{longitude}'.format(latitude='37.24N', "
"longitude='-115.81W')\n"
" 'Coordinates: 37.24N, -115.81W'\n"
" >>> coord = {'latitude': '37.24N', 'longitude': "
"'-115.81W'}\n"
" >>> 'Coordinates: {latitude}, "
"{longitude}'.format(**coord)\n"
" 'Coordinates: 37.24N, -115.81W'\n"
'\n'
'Accessing arguments’ attributes:\n'
'\n'
' >>> c = 3-5j\n'
" >>> ('The complex number {0} is formed from the real "
"part {0.real} '\n"
" ... 'and the imaginary part {0.imag}.').format(c)\n"
" 'The complex number (3-5j) is formed from the real part "
"3.0 and the imaginary part -5.0.'\n"
' >>> class Point:\n'
' ... def __init__(self, x, y):\n'
' ... self.x, self.y = x, y\n'
' ... def __str__(self):\n'
" ... return 'Point({self.x}, "
"{self.y})'.format(self=self)\n"
' ...\n'
' >>> str(Point(4, 2))\n'
" 'Point(4, 2)'\n"
'\n'
'Accessing arguments’ items:\n'
'\n'
' >>> coord = (3, 5)\n'
" >>> 'X: {0[0]}; Y: {0[1]}'.format(coord)\n"
" 'X: 3; Y: 5'\n"
'\n'
'Replacing "%s" and "%r":\n'
'\n'
' >>> "repr() shows quotes: {!r}; str() doesn\'t: '
'{!s}".format(\'test1\', \'test2\')\n'
' "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n'
'\n'
'Aligning the text and specifying a width:\n'
'\n'
" >>> '{:<30}'.format('left aligned')\n"
" 'left aligned '\n"
" >>> '{:>30}'.format('right aligned')\n"
" ' right aligned'\n"
" >>> '{:^30}'.format('centered')\n"
" ' centered '\n"
" >>> '{:*^30}'.format('centered') # use '*' as a fill "
'char\n'
" '***********centered***********'\n"
'\n'
'Replacing "%+f", "%-f", and "% f" and specifying a sign:\n'
'\n'
" >>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it "
'always\n'
" '+3.140000; -3.140000'\n"
" >>> '{: f}; {: f}'.format(3.14, -3.14) # show a space "
'for positive numbers\n'
" ' 3.140000; -3.140000'\n"
" >>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the "
"minus -- same as '{:f}; {:f}'\n"
" '3.140000; -3.140000'\n"
'\n'
'Replacing "%x" and "%o" and converting the value to '
'different bases:\n'
'\n'
' >>> # format also supports binary numbers\n'
' >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: '
'{0:b}".format(42)\n'
" 'int: 42; hex: 2a; oct: 52; bin: 101010'\n"
' >>> # with 0x, 0o, or 0b as prefix:\n'
' >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: '
'{0:#b}".format(42)\n'
" 'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'\n"
'\n'
'Using the comma as a thousands separator:\n'
'\n'
" >>> '{:,}'.format(1234567890)\n"
" '1,234,567,890'\n"
'\n'
'Expressing a percentage:\n'
'\n'
' >>> points = 19\n'
' >>> total = 22\n'
" >>> 'Correct answers: {:.2%}'.format(points/total)\n"
" 'Correct answers: 86.36%'\n"
'\n'
'Using type-specific formatting:\n'
'\n'
' >>> import datetime\n'
' >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n'
" >>> '{:%Y-%m-%d %H:%M:%S}'.format(d)\n"
" '2010-07-04 12:15:58'\n"
'\n'
'Nesting arguments and more complex examples:\n'
'\n'
" >>> for align, text in zip('<^>', ['left', 'center', "
"'right']):\n"
" ... '{0:{fill}{align}16}'.format(text, fill=align, "
'align=align)\n'
' ...\n'
" 'left<<<<<<<<<<<<'\n"
" '^^^^^center^^^^^'\n"
" '>>>>>>>>>>>right'\n"
' >>>\n'
' >>> octets = [192, 168, 0, 1]\n'
" >>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)\n"
" 'C0A80001'\n"
' >>> int(_, 16)\n'
' 3232235521\n'
' >>>\n'
' >>> width = 5\n'
' >>> for num in range(5,12): \n'
" ... for base in 'dXob':\n"
" ... print('{0:{width}{base}}'.format(num, "
"base=base, width=width), end=' ')\n"
' ... print()\n'
' ...\n'
' 5 5 5 101\n'
' 6 6 6 110\n'
' 7 7 7 111\n'
' 8 8 10 1000\n'
' 9 9 11 1001\n'
' 10 A 12 1010\n'
' 11 B 13 1011\n',
'function': 'Function definitions\n'
'********************\n'
'\n'
'A function definition defines a user-defined function object '
'(see\n'
'section The standard type hierarchy):\n'
'\n'
' funcdef ::= [decorators] "def" funcname "(" '
'[parameter_list] ")"\n'
' ["->" expression] ":" suite\n'
' decorators ::= decorator+\n'
' decorator ::= "@" dotted_name ["(" '
'[argument_list [","]] ")"] NEWLINE\n'
' dotted_name ::= identifier ("." identifier)*\n'
' parameter_list ::= defparameter ("," '
'defparameter)* "," "/" ["," [parameter_list_no_posonly]]\n'
' | parameter_list_no_posonly\n'
' parameter_list_no_posonly ::= defparameter ("," '
'defparameter)* ["," [parameter_list_starargs]]\n'
' | parameter_list_starargs\n'
' parameter_list_starargs ::= "*" [parameter] ("," '
'defparameter)* ["," ["**" parameter [","]]]\n'
' | "**" parameter [","]\n'
' parameter ::= identifier [":" expression]\n'
' defparameter ::= parameter ["=" expression]\n'
' funcname ::= identifier\n'
'\n'
'A function definition is an executable statement. Its execution '
'binds\n'
'the function name in the current local namespace to a function '
'object\n'
'(a wrapper around the executable code for the function). This\n'
'function object contains a reference to the current global '
'namespace\n'
'as the global namespace to be used when the function is called.\n'
'\n'
'The function definition does not execute the function body; this '
'gets\n'
'executed only when the function is called. [2]\n'
'\n'
'A function definition may be wrapped by one or more *decorator*\n'
'expressions. Decorator expressions are evaluated when the '
'function is\n'
'defined, in the scope that contains the function definition. '
'The\n'
'result must be a callable, which is invoked with the function '
'object\n'
'as the only argument. The returned value is bound to the '
'function name\n'
'instead of the function object. Multiple decorators are applied '
'in\n'
'nested fashion. For example, the following code\n'
'\n'
' @f1(arg)\n'
' @f2\n'
' def func(): pass\n'
'\n'
'is roughly equivalent to\n'
'\n'
' def func(): pass\n'
' func = f1(arg)(f2(func))\n'
'\n'
'except that the original function is not temporarily bound to '
'the name\n'
'"func".\n'
'\n'
'When one or more *parameters* have the form *parameter* "="\n'
'*expression*, the function is said to have “default parameter '
'values.”\n'
'For a parameter with a default value, the corresponding '
'*argument* may\n'
'be omitted from a call, in which case the parameter’s default '
'value is\n'
'substituted. If a parameter has a default value, all following\n'
'parameters up until the “"*"” must also have a default value — '
'this is\n'
'a syntactic restriction that is not expressed by the grammar.\n'
'\n'
'**Default parameter values are evaluated from left to right when '
'the\n'
'function definition is executed.** This means that the '
'expression is\n'
'evaluated once, when the function is defined, and that the same '
'“pre-\n'
'computed” value is used for each call. This is especially '
'important\n'
'to understand when a default parameter is a mutable object, such '
'as a\n'
'list or a dictionary: if the function modifies the object (e.g. '
'by\n'
'appending an item to a list), the default value is in effect '
'modified.\n'
'This is generally not what was intended. A way around this is '
'to use\n'
'"None" as the default, and explicitly test for it in the body of '
'the\n'
'function, e.g.:\n'
'\n'
' def whats_on_the_telly(penguin=None):\n'
' if penguin is None:\n'
' penguin = []\n'
' penguin.append("property of the zoo")\n'
' return penguin\n'
'\n'
'Function call semantics are described in more detail in section '
'Calls.\n'
'A function call always assigns values to all parameters '
'mentioned in\n'
'the parameter list, either from position arguments, from '
'keyword\n'
'arguments, or from default values. If the form “"*identifier"” '
'is\n'
'present, it is initialized to a tuple receiving any excess '
'positional\n'
'parameters, defaulting to the empty tuple. If the form\n'
'“"**identifier"” is present, it is initialized to a new ordered\n'
'mapping receiving any excess keyword arguments, defaulting to a '
'new\n'
'empty mapping of the same type. Parameters after “"*"” or\n'
'“"*identifier"” are keyword-only parameters and may only be '
'passed\n'
'used keyword arguments.\n'
'\n'
'Parameters may have an *annotation* of the form “": '
'expression"”\n'
'following the parameter name. Any parameter may have an '
'annotation,\n'
'even those of the form "*identifier" or "**identifier". '
'Functions may\n'
'have “return” annotation of the form “"-> expression"” after '
'the\n'
'parameter list. These annotations can be any valid Python '
'expression.\n'
'The presence of annotations does not change the semantics of a\n'
'function. The annotation values are available as values of a\n'
'dictionary keyed by the parameters’ names in the '
'"__annotations__"\n'
'attribute of the function object. If the "annotations" import '
'from\n'
'"__future__" is used, annotations are preserved as strings at '
'runtime\n'
'which enables postponed evaluation. Otherwise, they are '
'evaluated\n'
'when the function definition is executed. In this case '
'annotations\n'
'may be evaluated in a different order than they appear in the '
'source\n'
'code.\n'
'\n'
'It is also possible to create anonymous functions (functions not '
'bound\n'
'to a name), for immediate use in expressions. This uses lambda\n'
'expressions, described in section Lambdas. Note that the '
'lambda\n'
'expression is merely a shorthand for a simplified function '
'definition;\n'
'a function defined in a “"def"” statement can be passed around '
'or\n'
'assigned to another name just like a function defined by a '
'lambda\n'
'expression. The “"def"” form is actually more powerful since '
'it\n'
'allows the execution of multiple statements and annotations.\n'
'\n'
'**Programmer’s note:** Functions are first-class objects. A '
'“"def"”\n'
'statement executed inside a function definition defines a local\n'
'function that can be returned or passed around. Free variables '
'used\n'
'in the nested function can access the local variables of the '
'function\n'
'containing the def. See section Naming and binding for '
'details.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3107** - Function Annotations\n'
' The original specification for function annotations.\n'
'\n'
' **PEP 484** - Type Hints\n'
' Definition of a standard meaning for annotations: type '
'hints.\n'
'\n'
' **PEP 526** - Syntax for Variable Annotations\n'
' Ability to type hint variable declarations, including '
'class\n'
' variables and instance variables\n'
'\n'
' **PEP 563** - Postponed Evaluation of Annotations\n'
' Support for forward references within annotations by '
'preserving\n'
' annotations in a string form at runtime instead of eager\n'
' evaluation.\n',
'global': 'The "global" statement\n'
'**********************\n'
'\n'
' global_stmt ::= "global" identifier ("," identifier)*\n'
'\n'
'The "global" statement is a declaration which holds for the '
'entire\n'
'current code block. It means that the listed identifiers are to '
'be\n'
'interpreted as globals. It would be impossible to assign to a '
'global\n'
'variable without "global", although free variables may refer to\n'
'globals without being declared global.\n'
'\n'
'Names listed in a "global" statement must not be used in the same '
'code\n'
'block textually preceding that "global" statement.\n'
'\n'
'Names listed in a "global" statement must not be defined as '
'formal\n'
'parameters or in a "for" loop control target, "class" definition,\n'
'function definition, "import" statement, or variable annotation.\n'
'\n'
'**CPython implementation detail:** The current implementation does '
'not\n'
'enforce some of these restrictions, but programs should not abuse '
'this\n'
'freedom, as future implementations may enforce them or silently '
'change\n'
'the meaning of the program.\n'
'\n'
'**Programmer’s note:** "global" is a directive to the parser. It\n'
'applies only to code parsed at the same time as the "global"\n'
'statement. In particular, a "global" statement contained in a '
'string\n'
'or code object supplied to the built-in "exec()" function does '
'not\n'
'affect the code block *containing* the function call, and code\n'
'contained in such a string is unaffected by "global" statements in '
'the\n'
'code containing the function call. The same applies to the '
'"eval()"\n'
'and "compile()" functions.\n',
'id-classes': 'Reserved classes of identifiers\n'
'*******************************\n'
'\n'
'Certain classes of identifiers (besides keywords) have '
'special\n'
'meanings. These classes are identified by the patterns of '
'leading and\n'
'trailing underscore characters:\n'
'\n'
'"_*"\n'
' Not imported by "from module import *". The special '
'identifier "_"\n'
' is used in the interactive interpreter to store the result '
'of the\n'
' last evaluation; it is stored in the "builtins" module. '
'When not\n'
' in interactive mode, "_" has no special meaning and is not '
'defined.\n'
' See section The import statement.\n'
'\n'
' Note: The name "_" is often used in conjunction with\n'
' internationalization; refer to the documentation for the\n'
' "gettext" module for more information on this '
'convention.\n'
'\n'
'"__*__"\n'
' System-defined names. These names are defined by the '
'interpreter\n'
' and its implementation (including the standard library). '
'Current\n'
' system names are discussed in the Special method names '
'section and\n'
' elsewhere. More will likely be defined in future versions '
'of\n'
' Python. *Any* use of "__*__" names, in any context, that '
'does not\n'
' follow explicitly documented use, is subject to breakage '
'without\n'
' warning.\n'
'\n'
'"__*"\n'
' Class-private names. Names in this category, when used '
'within the\n'
' context of a class definition, are re-written to use a '
'mangled form\n'
' to help avoid name clashes between “private” attributes of '
'base and\n'
' derived classes. See section Identifiers (Names).\n',
'identifiers': 'Identifiers and keywords\n'
'************************\n'
'\n'
'Identifiers (also referred to as *names*) are described by '
'the\n'
'following lexical definitions.\n'
'\n'
'The syntax of identifiers in Python is based on the Unicode '
'standard\n'
'annex UAX-31, with elaboration and changes as defined below; '
'see also\n'
'**PEP 3131** for further details.\n'
'\n'
'Within the ASCII range (U+0001..U+007F), the valid characters '
'for\n'
'identifiers are the same as in Python 2.x: the uppercase and '
'lowercase\n'
'letters "A" through "Z", the underscore "_" and, except for '
'the first\n'
'character, the digits "0" through "9".\n'
'\n'
'Python 3.0 introduces additional characters from outside the '
'ASCII\n'
'range (see **PEP 3131**). For these characters, the '
'classification\n'
'uses the version of the Unicode Character Database as '
'included in the\n'
'"unicodedata" module.\n'
'\n'
'Identifiers are unlimited in length. Case is significant.\n'
'\n'
' identifier ::= xid_start xid_continue*\n'
' id_start ::= <all characters in general categories Lu, '
'Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the '
'Other_ID_Start property>\n'
' id_continue ::= <all characters in id_start, plus '
'characters in the categories Mn, Mc, Nd, Pc and others with '
'the Other_ID_Continue property>\n'
' xid_start ::= <all characters in id_start whose NFKC '
'normalization is in "id_start xid_continue*">\n'
' xid_continue ::= <all characters in id_continue whose NFKC '
'normalization is in "id_continue*">\n'
'\n'
'The Unicode category codes mentioned above stand for:\n'
'\n'
'* *Lu* - uppercase letters\n'
'\n'
'* *Ll* - lowercase letters\n'
'\n'
'* *Lt* - titlecase letters\n'
'\n'
'* *Lm* - modifier letters\n'
'\n'
'* *Lo* - other letters\n'
'\n'
'* *Nl* - letter numbers\n'
'\n'
'* *Mn* - nonspacing marks\n'
'\n'
'* *Mc* - spacing combining marks\n'
'\n'
'* *Nd* - decimal numbers\n'
'\n'
'* *Pc* - connector punctuations\n'
'\n'
'* *Other_ID_Start* - explicit list of characters in '
'PropList.txt to\n'
' support backwards compatibility\n'
'\n'
'* *Other_ID_Continue* - likewise\n'
'\n'
'All identifiers are converted into the normal form NFKC while '
'parsing;\n'
'comparison of identifiers is based on NFKC.\n'
'\n'
'A non-normative HTML file listing all valid identifier '
'characters for\n'
'Unicode 4.1 can be found at https://www.dcl.hpi.uni-\n'
'potsdam.de/home/loewis/table-3131.html.\n'
'\n'
'\n'
'Keywords\n'
'========\n'
'\n'
'The following identifiers are used as reserved words, or '
'*keywords* of\n'
'the language, and cannot be used as ordinary identifiers. '
'They must\n'
'be spelled exactly as written here:\n'
'\n'
' False await else import pass\n'
' None break except in raise\n'
' True class finally is return\n'
' and continue for lambda try\n'
' as def from nonlocal while\n'
' assert del global not with\n'
' async elif if or yield\n'
'\n'
'\n'
'Reserved classes of identifiers\n'
'===============================\n'
'\n'
'Certain classes of identifiers (besides keywords) have '
'special\n'
'meanings. These classes are identified by the patterns of '
'leading and\n'
'trailing underscore characters:\n'
'\n'
'"_*"\n'
' Not imported by "from module import *". The special '
'identifier "_"\n'
' is used in the interactive interpreter to store the result '
'of the\n'
' last evaluation; it is stored in the "builtins" module. '
'When not\n'
' in interactive mode, "_" has no special meaning and is not '
'defined.\n'
' See section The import statement.\n'
'\n'
' Note: The name "_" is often used in conjunction with\n'
' internationalization; refer to the documentation for '
'the\n'
' "gettext" module for more information on this '
'convention.\n'
'\n'
'"__*__"\n'
' System-defined names. These names are defined by the '
'interpreter\n'
' and its implementation (including the standard library). '
'Current\n'
' system names are discussed in the Special method names '
'section and\n'
' elsewhere. More will likely be defined in future versions '
'of\n'
' Python. *Any* use of "__*__" names, in any context, that '
'does not\n'
' follow explicitly documented use, is subject to breakage '
'without\n'
' warning.\n'
'\n'
'"__*"\n'
' Class-private names. Names in this category, when used '
'within the\n'
' context of a class definition, are re-written to use a '
'mangled form\n'
' to help avoid name clashes between “private” attributes of '
'base and\n'
' derived classes. See section Identifiers (Names).\n',
'if': 'The "if" statement\n'
'******************\n'
'\n'
'The "if" statement is used for conditional execution:\n'
'\n'
' if_stmt ::= "if" expression ":" suite\n'
' ("elif" expression ":" suite)*\n'
' ["else" ":" suite]\n'
'\n'
'It selects exactly one of the suites by evaluating the expressions '
'one\n'
'by one until one is found to be true (see section Boolean operations\n'
'for the definition of true and false); then that suite is executed\n'
'(and no other part of the "if" statement is executed or evaluated).\n'
'If all expressions are false, the suite of the "else" clause, if\n'
'present, is executed.\n',
'imaginary': 'Imaginary literals\n'
'******************\n'
'\n'
'Imaginary literals are described by the following lexical '
'definitions:\n'
'\n'
' imagnumber ::= (floatnumber | digitpart) ("j" | "J")\n'
'\n'
'An imaginary literal yields a complex number with a real part '
'of 0.0.\n'
'Complex numbers are represented as a pair of floating point '
'numbers\n'
'and have the same restrictions on their range. To create a '
'complex\n'
'number with a nonzero real part, add a floating point number to '
'it,\n'
'e.g., "(3+4j)". Some examples of imaginary literals:\n'
'\n'
' 3.14j 10.j 10j .001j 1e100j 3.14e-10j '
'3.14_15_93j\n',
'import': 'The "import" statement\n'
'**********************\n'
'\n'
' import_stmt ::= "import" module ["as" identifier] ("," '
'module ["as" identifier])*\n'
' | "from" relative_module "import" identifier '
'["as" identifier]\n'
' ("," identifier ["as" identifier])*\n'
' | "from" relative_module "import" "(" '
'identifier ["as" identifier]\n'
' ("," identifier ["as" identifier])* [","] ")"\n'
' | "from" module "import" "*"\n'
' module ::= (identifier ".")* identifier\n'
' relative_module ::= "."* module | "."+\n'
'\n'
'The basic import statement (no "from" clause) is executed in two\n'
'steps:\n'
'\n'
'1. find a module, loading and initializing it if necessary\n'
'\n'
'2. define a name or names in the local namespace for the scope\n'
' where the "import" statement occurs.\n'
'\n'
'When the statement contains multiple clauses (separated by commas) '
'the\n'
'two steps are carried out separately for each clause, just as '
'though\n'
'the clauses had been separated out into individual import '
'statements.\n'
'\n'
'The details of the first step, finding and loading modules are\n'
'described in greater detail in the section on the import system, '
'which\n'
'also describes the various types of packages and modules that can '
'be\n'
'imported, as well as all the hooks that can be used to customize '
'the\n'
'import system. Note that failures in this step may indicate '
'either\n'
'that the module could not be located, *or* that an error occurred\n'
'while initializing the module, which includes execution of the\n'
'module’s code.\n'
'\n'
'If the requested module is retrieved successfully, it will be '
'made\n'
'available in the local namespace in one of three ways:\n'
'\n'
'* If the module name is followed by "as", then the name following\n'
' "as" is bound directly to the imported module.\n'
'\n'
'* If no other name is specified, and the module being imported is '
'a\n'
' top level module, the module’s name is bound in the local '
'namespace\n'
' as a reference to the imported module\n'
'\n'
'* If the module being imported is *not* a top level module, then '
'the\n'
' name of the top level package that contains the module is bound '
'in\n'
' the local namespace as a reference to the top level package. '
'The\n'
' imported module must be accessed using its full qualified name\n'
' rather than directly\n'
'\n'
'The "from" form uses a slightly more complex process:\n'
'\n'
'1. find the module specified in the "from" clause, loading and\n'
' initializing it if necessary;\n'
'\n'
'2. for each of the identifiers specified in the "import" clauses:\n'
'\n'
' 1. check if the imported module has an attribute by that name\n'
'\n'
' 2. if not, attempt to import a submodule with that name and '
'then\n'
' check the imported module again for that attribute\n'
'\n'
' 3. if the attribute is not found, "ImportError" is raised.\n'
'\n'
' 4. otherwise, a reference to that value is stored in the local\n'
' namespace, using the name in the "as" clause if it is '
'present,\n'
' otherwise using the attribute name\n'
'\n'
'Examples:\n'
'\n'
' import foo # foo imported and bound locally\n'
' import foo.bar.baz # foo.bar.baz imported, foo bound '
'locally\n'
' import foo.bar.baz as fbb # foo.bar.baz imported and bound as '
'fbb\n'
' from foo.bar import baz # foo.bar.baz imported and bound as '
'baz\n'
' from foo import attr # foo imported and foo.attr bound as '
'attr\n'
'\n'
'If the list of identifiers is replaced by a star ("\'*\'"), all '
'public\n'
'names defined in the module are bound in the local namespace for '
'the\n'
'scope where the "import" statement occurs.\n'
'\n'
'The *public names* defined by a module are determined by checking '
'the\n'
'module’s namespace for a variable named "__all__"; if defined, it '
'must\n'
'be a sequence of strings which are names defined or imported by '
'that\n'
'module. The names given in "__all__" are all considered public '
'and\n'
'are required to exist. If "__all__" is not defined, the set of '
'public\n'
'names includes all names found in the module’s namespace which do '
'not\n'
'begin with an underscore character ("\'_\'"). "__all__" should '
'contain\n'
'the entire public API. It is intended to avoid accidentally '
'exporting\n'
'items that are not part of the API (such as library modules which '
'were\n'
'imported and used within the module).\n'
'\n'
'The wild card form of import — "from module import *" — is only\n'
'allowed at the module level. Attempting to use it in class or\n'
'function definitions will raise a "SyntaxError".\n'
'\n'
'When specifying what module to import you do not have to specify '
'the\n'
'absolute name of the module. When a module or package is '
'contained\n'
'within another package it is possible to make a relative import '
'within\n'
'the same top package without having to mention the package name. '
'By\n'
'using leading dots in the specified module or package after "from" '
'you\n'
'can specify how high to traverse up the current package hierarchy\n'
'without specifying exact names. One leading dot means the current\n'
'package where the module making the import exists. Two dots means '
'up\n'
'one package level. Three dots is up two levels, etc. So if you '
'execute\n'
'"from . import mod" from a module in the "pkg" package then you '
'will\n'
'end up importing "pkg.mod". If you execute "from ..subpkg2 import '
'mod"\n'
'from within "pkg.subpkg1" you will import "pkg.subpkg2.mod". The\n'
'specification for relative imports is contained in the Package\n'
'Relative Imports section.\n'
'\n'
'"importlib.import_module()" is provided to support applications '
'that\n'
'determine dynamically the modules to be loaded.\n'
'\n'
'Raises an auditing event "import" with arguments "module", '
'"filename",\n'
'"sys.path", "sys.meta_path", "sys.path_hooks".\n'
'\n'
'\n'
'Future statements\n'
'=================\n'
'\n'
'A *future statement* is a directive to the compiler that a '
'particular\n'
'module should be compiled using syntax or semantics that will be\n'
'available in a specified future release of Python where the '
'feature\n'
'becomes standard.\n'
'\n'
'The future statement is intended to ease migration to future '
'versions\n'
'of Python that introduce incompatible changes to the language. '
'It\n'
'allows use of the new features on a per-module basis before the\n'
'release in which the feature becomes standard.\n'
'\n'
' future_stmt ::= "from" "__future__" "import" feature ["as" '
'identifier]\n'
' ("," feature ["as" identifier])*\n'
' | "from" "__future__" "import" "(" feature '
'["as" identifier]\n'
' ("," feature ["as" identifier])* [","] ")"\n'
' feature ::= identifier\n'
'\n'
'A future statement must appear near the top of the module. The '
'only\n'
'lines that can appear before a future statement are:\n'
'\n'
'* the module docstring (if any),\n'
'\n'
'* comments,\n'
'\n'
'* blank lines, and\n'
'\n'
'* other future statements.\n'
'\n'
'The only feature in Python 3.7 that requires using the future\n'
'statement is "annotations".\n'
'\n'
'All historical features enabled by the future statement are still\n'
'recognized by Python 3. The list includes "absolute_import",\n'
'"division", "generators", "generator_stop", "unicode_literals",\n'
'"print_function", "nested_scopes" and "with_statement". They are '
'all\n'
'redundant because they are always enabled, and only kept for '
'backwards\n'
'compatibility.\n'
'\n'
'A future statement is recognized and treated specially at compile\n'
'time: Changes to the semantics of core constructs are often\n'
'implemented by generating different code. It may even be the '
'case\n'
'that a new feature introduces new incompatible syntax (such as a '
'new\n'
'reserved word), in which case the compiler may need to parse the\n'
'module differently. Such decisions cannot be pushed off until\n'
'runtime.\n'
'\n'
'For any given release, the compiler knows which feature names '
'have\n'
'been defined, and raises a compile-time error if a future '
'statement\n'
'contains a feature not known to it.\n'
'\n'
'The direct runtime semantics are the same as for any import '
'statement:\n'
'there is a standard module "__future__", described later, and it '
'will\n'
'be imported in the usual way at the time the future statement is\n'
'executed.\n'
'\n'
'The interesting runtime semantics depend on the specific feature\n'
'enabled by the future statement.\n'
'\n'
'Note that there is nothing special about the statement:\n'
'\n'
' import __future__ [as name]\n'
'\n'
'That is not a future statement; it’s an ordinary import statement '
'with\n'
'no special semantics or syntax restrictions.\n'
'\n'
'Code compiled by calls to the built-in functions "exec()" and\n'
'"compile()" that occur in a module "M" containing a future '
'statement\n'
'will, by default, use the new syntax or semantics associated with '
'the\n'
'future statement. This can be controlled by optional arguments '
'to\n'
'"compile()" — see the documentation of that function for details.\n'
'\n'
'A future statement typed at an interactive interpreter prompt '
'will\n'
'take effect for the rest of the interpreter session. If an\n'
'interpreter is started with the "-i" option, is passed a script '
'name\n'
'to execute, and the script includes a future statement, it will be '
'in\n'
'effect in the interactive session started after the script is\n'
'executed.\n'
'\n'
'See also:\n'
'\n'
' **PEP 236** - Back to the __future__\n'
' The original proposal for the __future__ mechanism.\n',
'in': 'Membership test operations\n'
'**************************\n'
'\n'
'The operators "in" and "not in" test for membership. "x in s"\n'
'evaluates to "True" if *x* is a member of *s*, and "False" otherwise.\n'
'"x not in s" returns the negation of "x in s". All built-in '
'sequences\n'
'and set types support this as well as dictionary, for which "in" '
'tests\n'
'whether the dictionary has a given key. For container types such as\n'
'list, tuple, set, frozenset, dict, or collections.deque, the\n'
'expression "x in y" is equivalent to "any(x is e or x == e for e in\n'
'y)".\n'
'\n'
'For the string and bytes types, "x in y" is "True" if and only if *x*\n'
'is a substring of *y*. An equivalent test is "y.find(x) != -1".\n'
'Empty strings are always considered to be a substring of any other\n'
'string, so """ in "abc"" will return "True".\n'
'\n'
'For user-defined classes which define the "__contains__()" method, "x\n'
'in y" returns "True" if "y.__contains__(x)" returns a true value, and\n'
'"False" otherwise.\n'
'\n'
'For user-defined classes which do not define "__contains__()" but do\n'
'define "__iter__()", "x in y" is "True" if some value "z", for which\n'
'the expression "x is z or x == z" is true, is produced while '
'iterating\n'
'over "y". If an exception is raised during the iteration, it is as if\n'
'"in" raised that exception.\n'
'\n'
'Lastly, the old-style iteration protocol is tried: if a class defines\n'
'"__getitem__()", "x in y" is "True" if and only if there is a non-\n'
'negative integer index *i* such that "x is y[i] or x == y[i]", and no\n'
'lower integer index raises the "IndexError" exception. (If any other\n'
'exception is raised, it is as if "in" raised that exception).\n'
'\n'
'The operator "not in" is defined to have the inverse truth value of\n'
'"in".\n',
'integers': 'Integer literals\n'
'****************\n'
'\n'
'Integer literals are described by the following lexical '
'definitions:\n'
'\n'
' integer ::= decinteger | bininteger | octinteger | '
'hexinteger\n'
' decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] '
'"0")*\n'
' bininteger ::= "0" ("b" | "B") (["_"] bindigit)+\n'
' octinteger ::= "0" ("o" | "O") (["_"] octdigit)+\n'
' hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+\n'
' nonzerodigit ::= "1"..."9"\n'
' digit ::= "0"..."9"\n'
' bindigit ::= "0" | "1"\n'
' octdigit ::= "0"..."7"\n'
' hexdigit ::= digit | "a"..."f" | "A"..."F"\n'
'\n'
'There is no limit for the length of integer literals apart from '
'what\n'
'can be stored in available memory.\n'
'\n'
'Underscores are ignored for determining the numeric value of '
'the\n'
'literal. They can be used to group digits for enhanced '
'readability.\n'
'One underscore can occur between digits, and after base '
'specifiers\n'
'like "0x".\n'
'\n'
'Note that leading zeros in a non-zero decimal number are not '
'allowed.\n'
'This is for disambiguation with C-style octal literals, which '
'Python\n'
'used before version 3.0.\n'
'\n'
'Some examples of integer literals:\n'
'\n'
' 7 2147483647 0o177 0b100110111\n'
' 3 79228162514264337593543950336 0o377 0xdeadbeef\n'
' 100_000_000_000 0b_1110_0101\n'
'\n'
'Changed in version 3.6: Underscores are now allowed for '
'grouping\n'
'purposes in literals.\n',
'lambda': 'Lambdas\n'
'*******\n'
'\n'
' lambda_expr ::= "lambda" [parameter_list] ":" '
'expression\n'
' lambda_expr_nocond ::= "lambda" [parameter_list] ":" '
'expression_nocond\n'
'\n'
'Lambda expressions (sometimes called lambda forms) are used to '
'create\n'
'anonymous functions. The expression "lambda parameters: '
'expression"\n'
'yields a function object. The unnamed object behaves like a '
'function\n'
'object defined with:\n'
'\n'
' def <lambda>(parameters):\n'
' return expression\n'
'\n'
'See section Function definitions for the syntax of parameter '
'lists.\n'
'Note that functions created with lambda expressions cannot '
'contain\n'
'statements or annotations.\n',
'lists': 'List displays\n'
'*************\n'
'\n'
'A list display is a possibly empty series of expressions enclosed '
'in\n'
'square brackets:\n'
'\n'
' list_display ::= "[" [starred_list | comprehension] "]"\n'
'\n'
'A list display yields a new list object, the contents being '
'specified\n'
'by either a list of expressions or a comprehension. When a comma-\n'
'separated list of expressions is supplied, its elements are '
'evaluated\n'
'from left to right and placed into the list object in that order.\n'
'When a comprehension is supplied, the list is constructed from the\n'
'elements resulting from the comprehension.\n',
'naming': 'Naming and binding\n'
'******************\n'
'\n'
'\n'
'Binding of names\n'
'================\n'
'\n'
'*Names* refer to objects. Names are introduced by name binding\n'
'operations.\n'
'\n'
'The following constructs bind names: formal parameters to '
'functions,\n'
'"import" statements, class and function definitions (these bind '
'the\n'
'class or function name in the defining block), and targets that '
'are\n'
'identifiers if occurring in an assignment, "for" loop header, or '
'after\n'
'"as" in a "with" statement or "except" clause. The "import" '
'statement\n'
'of the form "from ... import *" binds all names defined in the\n'
'imported module, except those beginning with an underscore. This '
'form\n'
'may only be used at the module level.\n'
'\n'
'A target occurring in a "del" statement is also considered bound '
'for\n'
'this purpose (though the actual semantics are to unbind the '
'name).\n'
'\n'
'Each assignment or import statement occurs within a block defined '
'by a\n'
'class or function definition or at the module level (the '
'top-level\n'
'code block).\n'
'\n'
'If a name is bound in a block, it is a local variable of that '
'block,\n'
'unless declared as "nonlocal" or "global". If a name is bound at '
'the\n'
'module level, it is a global variable. (The variables of the '
'module\n'
'code block are local and global.) If a variable is used in a '
'code\n'
'block but not defined there, it is a *free variable*.\n'
'\n'
'Each occurrence of a name in the program text refers to the '
'*binding*\n'
'of that name established by the following name resolution rules.\n'
'\n'
'\n'
'Resolution of names\n'
'===================\n'
'\n'
'A *scope* defines the visibility of a name within a block. If a '
'local\n'
'variable is defined in a block, its scope includes that block. If '
'the\n'
'definition occurs in a function block, the scope extends to any '
'blocks\n'
'contained within the defining one, unless a contained block '
'introduces\n'
'a different binding for the name.\n'
'\n'
'When a name is used in a code block, it is resolved using the '
'nearest\n'
'enclosing scope. The set of all such scopes visible to a code '
'block\n'
'is called the block’s *environment*.\n'
'\n'
'When a name is not found at all, a "NameError" exception is '
'raised. If\n'
'the current scope is a function scope, and the name refers to a '
'local\n'
'variable that has not yet been bound to a value at the point where '
'the\n'
'name is used, an "UnboundLocalError" exception is raised.\n'
'"UnboundLocalError" is a subclass of "NameError".\n'
'\n'
'If a name binding operation occurs anywhere within a code block, '
'all\n'
'uses of the name within the block are treated as references to '
'the\n'
'current block. This can lead to errors when a name is used within '
'a\n'
'block before it is bound. This rule is subtle. Python lacks\n'
'declarations and allows name binding operations to occur anywhere\n'
'within a code block. The local variables of a code block can be\n'
'determined by scanning the entire text of the block for name '
'binding\n'
'operations.\n'
'\n'
'If the "global" statement occurs within a block, all uses of the '
'name\n'
'specified in the statement refer to the binding of that name in '
'the\n'
'top-level namespace. Names are resolved in the top-level '
'namespace by\n'
'searching the global namespace, i.e. the namespace of the module\n'
'containing the code block, and the builtins namespace, the '
'namespace\n'
'of the module "builtins". The global namespace is searched '
'first. If\n'
'the name is not found there, the builtins namespace is searched. '
'The\n'
'"global" statement must precede all uses of the name.\n'
'\n'
'The "global" statement has the same scope as a name binding '
'operation\n'
'in the same block. If the nearest enclosing scope for a free '
'variable\n'
'contains a global statement, the free variable is treated as a '
'global.\n'
'\n'
'The "nonlocal" statement causes corresponding names to refer to\n'
'previously bound variables in the nearest enclosing function '
'scope.\n'
'"SyntaxError" is raised at compile time if the given name does '
'not\n'
'exist in any enclosing function scope.\n'
'\n'
'The namespace for a module is automatically created the first time '
'a\n'
'module is imported. The main module for a script is always '
'called\n'
'"__main__".\n'
'\n'
'Class definition blocks and arguments to "exec()" and "eval()" '
'are\n'
'special in the context of name resolution. A class definition is '
'an\n'
'executable statement that may use and define names. These '
'references\n'
'follow the normal rules for name resolution with an exception '
'that\n'
'unbound local variables are looked up in the global namespace. '
'The\n'
'namespace of the class definition becomes the attribute dictionary '
'of\n'
'the class. The scope of names defined in a class block is limited '
'to\n'
'the class block; it does not extend to the code blocks of methods '
'–\n'
'this includes comprehensions and generator expressions since they '
'are\n'
'implemented using a function scope. This means that the '
'following\n'
'will fail:\n'
'\n'
' class A:\n'
' a = 42\n'
' b = list(a + i for i in range(10))\n'
'\n'
'\n'
'Builtins and restricted execution\n'
'=================================\n'
'\n'
'**CPython implementation detail:** Users should not touch\n'
'"__builtins__"; it is strictly an implementation detail. Users\n'
'wanting to override values in the builtins namespace should '
'"import"\n'
'the "builtins" module and modify its attributes appropriately.\n'
'\n'
'The builtins namespace associated with the execution of a code '
'block\n'
'is actually found by looking up the name "__builtins__" in its '
'global\n'
'namespace; this should be a dictionary or a module (in the latter '
'case\n'
'the module’s dictionary is used). By default, when in the '
'"__main__"\n'
'module, "__builtins__" is the built-in module "builtins"; when in '
'any\n'
'other module, "__builtins__" is an alias for the dictionary of '
'the\n'
'"builtins" module itself.\n'
'\n'
'\n'
'Interaction with dynamic features\n'
'=================================\n'
'\n'
'Name resolution of free variables occurs at runtime, not at '
'compile\n'
'time. This means that the following code will print 42:\n'
'\n'
' i = 10\n'
' def f():\n'
' print(i)\n'
' i = 42\n'
' f()\n'
'\n'
'The "eval()" and "exec()" functions do not have access to the '
'full\n'
'environment for resolving names. Names may be resolved in the '
'local\n'
'and global namespaces of the caller. Free variables are not '
'resolved\n'
'in the nearest enclosing namespace, but in the global namespace. '
'[1]\n'
'The "exec()" and "eval()" functions have optional arguments to\n'
'override the global and local namespace. If only one namespace '
'is\n'
'specified, it is used for both.\n',
'nonlocal': 'The "nonlocal" statement\n'
'************************\n'
'\n'
' nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*\n'
'\n'
'The "nonlocal" statement causes the listed identifiers to refer '
'to\n'
'previously bound variables in the nearest enclosing scope '
'excluding\n'
'globals. This is important because the default behavior for '
'binding is\n'
'to search the local namespace first. The statement allows\n'
'encapsulated code to rebind variables outside of the local '
'scope\n'
'besides the global (module) scope.\n'
'\n'
'Names listed in a "nonlocal" statement, unlike those listed in '
'a\n'
'"global" statement, must refer to pre-existing bindings in an\n'
'enclosing scope (the scope in which a new binding should be '
'created\n'
'cannot be determined unambiguously).\n'
'\n'
'Names listed in a "nonlocal" statement must not collide with '
'pre-\n'
'existing bindings in the local scope.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3104** - Access to Names in Outer Scopes\n'
' The specification for the "nonlocal" statement.\n',
'numbers': 'Numeric literals\n'
'****************\n'
'\n'
'There are three types of numeric literals: integers, floating '
'point\n'
'numbers, and imaginary numbers. There are no complex literals\n'
'(complex numbers can be formed by adding a real number and an\n'
'imaginary number).\n'
'\n'
'Note that numeric literals do not include a sign; a phrase like '
'"-1"\n'
'is actually an expression composed of the unary operator ‘"-"‘ '
'and the\n'
'literal "1".\n',
'numeric-types': 'Emulating numeric types\n'
'***********************\n'
'\n'
'The following methods can be defined to emulate numeric '
'objects.\n'
'Methods corresponding to operations that are not supported '
'by the\n'
'particular kind of number implemented (e.g., bitwise '
'operations for\n'
'non-integral numbers) should be left undefined.\n'
'\n'
'object.__add__(self, other)\n'
'object.__sub__(self, other)\n'
'object.__mul__(self, other)\n'
'object.__matmul__(self, other)\n'
'object.__truediv__(self, other)\n'
'object.__floordiv__(self, other)\n'
'object.__mod__(self, other)\n'
'object.__divmod__(self, other)\n'
'object.__pow__(self, other[, modulo])\n'
'object.__lshift__(self, other)\n'
'object.__rshift__(self, other)\n'
'object.__and__(self, other)\n'
'object.__xor__(self, other)\n'
'object.__or__(self, other)\n'
'\n'
' These methods are called to implement the binary '
'arithmetic\n'
' operations ("+", "-", "*", "@", "/", "//", "%", '
'"divmod()",\n'
' "pow()", "**", "<<", ">>", "&", "^", "|"). For '
'instance, to\n'
' evaluate the expression "x + y", where *x* is an '
'instance of a\n'
' class that has an "__add__()" method, "x.__add__(y)" is '
'called.\n'
' The "__divmod__()" method should be the equivalent to '
'using\n'
' "__floordiv__()" and "__mod__()"; it should not be '
'related to\n'
' "__truediv__()". Note that "__pow__()" should be '
'defined to accept\n'
' an optional third argument if the ternary version of the '
'built-in\n'
' "pow()" function is to be supported.\n'
'\n'
' If one of those methods does not support the operation '
'with the\n'
' supplied arguments, it should return "NotImplemented".\n'
'\n'
'object.__radd__(self, other)\n'
'object.__rsub__(self, other)\n'
'object.__rmul__(self, other)\n'
'object.__rmatmul__(self, other)\n'
'object.__rtruediv__(self, other)\n'
'object.__rfloordiv__(self, other)\n'
'object.__rmod__(self, other)\n'
'object.__rdivmod__(self, other)\n'
'object.__rpow__(self, other)\n'
'object.__rlshift__(self, other)\n'
'object.__rrshift__(self, other)\n'
'object.__rand__(self, other)\n'
'object.__rxor__(self, other)\n'
'object.__ror__(self, other)\n'
'\n'
' These methods are called to implement the binary '
'arithmetic\n'
' operations ("+", "-", "*", "@", "/", "//", "%", '
'"divmod()",\n'
' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
'(swapped)\n'
' operands. These functions are only called if the left '
'operand does\n'
' not support the corresponding operation [3] and the '
'operands are of\n'
' different types. [4] For instance, to evaluate the '
'expression "x -\n'
' y", where *y* is an instance of a class that has an '
'"__rsub__()"\n'
' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
'returns\n'
' *NotImplemented*.\n'
'\n'
' Note that ternary "pow()" will not try calling '
'"__rpow__()" (the\n'
' coercion rules would become too complicated).\n'
'\n'
' Note: If the right operand’s type is a subclass of the '
'left\n'
' operand’s type and that subclass provides the '
'reflected method\n'
' for the operation, this method will be called before '
'the left\n'
' operand’s non-reflected method. This behavior allows '
'subclasses\n'
' to override their ancestors’ operations.\n'
'\n'
'object.__iadd__(self, other)\n'
'object.__isub__(self, other)\n'
'object.__imul__(self, other)\n'
'object.__imatmul__(self, other)\n'
'object.__itruediv__(self, other)\n'
'object.__ifloordiv__(self, other)\n'
'object.__imod__(self, other)\n'
'object.__ipow__(self, other[, modulo])\n'
'object.__ilshift__(self, other)\n'
'object.__irshift__(self, other)\n'
'object.__iand__(self, other)\n'
'object.__ixor__(self, other)\n'
'object.__ior__(self, other)\n'
'\n'
' These methods are called to implement the augmented '
'arithmetic\n'
' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
'"**=",\n'
' "<<=", ">>=", "&=", "^=", "|="). These methods should '
'attempt to\n'
' do the operation in-place (modifying *self*) and return '
'the result\n'
' (which could be, but does not have to be, *self*). If a '
'specific\n'
' method is not defined, the augmented assignment falls '
'back to the\n'
' normal methods. For instance, if *x* is an instance of '
'a class\n'
' with an "__iadd__()" method, "x += y" is equivalent to '
'"x =\n'
' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
'"y.__radd__(x)" are\n'
' considered, as with the evaluation of "x + y". In '
'certain\n'
' situations, augmented assignment can result in '
'unexpected errors\n'
' (see Why does a_tuple[i] += [‘item’] raise an exception '
'when the\n'
' addition works?), but this behavior is in fact part of '
'the data\n'
' model.\n'
'\n'
'object.__neg__(self)\n'
'object.__pos__(self)\n'
'object.__abs__(self)\n'
'object.__invert__(self)\n'
'\n'
' Called to implement the unary arithmetic operations '
'("-", "+",\n'
' "abs()" and "~").\n'
'\n'
'object.__complex__(self)\n'
'object.__int__(self)\n'
'object.__float__(self)\n'
'\n'
' Called to implement the built-in functions "complex()", '
'"int()" and\n'
' "float()". Should return a value of the appropriate '
'type.\n'
'\n'
'object.__index__(self)\n'
'\n'
' Called to implement "operator.index()", and whenever '
'Python needs\n'
' to losslessly convert the numeric object to an integer '
'object (such\n'
' as in slicing, or in the built-in "bin()", "hex()" and '
'"oct()"\n'
' functions). Presence of this method indicates that the '
'numeric\n'
' object is an integer type. Must return an integer.\n'
'\n'
' If "__int__()", "__float__()" and "__complex__()" are '
'not defined\n'
' then corresponding built-in functions "int()", "float()" '
'and\n'
' "complex()" fall back to "__index__()".\n'
'\n'
'object.__round__(self[, ndigits])\n'
'object.__trunc__(self)\n'
'object.__floor__(self)\n'
'object.__ceil__(self)\n'
'\n'
' Called to implement the built-in function "round()" and '
'"math"\n'
' functions "trunc()", "floor()" and "ceil()". Unless '
'*ndigits* is\n'
' passed to "__round__()" all these methods should return '
'the value\n'
' of the object truncated to an "Integral" (typically an '
'"int").\n'
'\n'
' If "__int__()" is not defined then the built-in function '
'"int()"\n'
' falls back to "__trunc__()".\n',
'objects': 'Objects, values and types\n'
'*************************\n'
'\n'
'*Objects* are Python’s abstraction for data. All data in a '
'Python\n'
'program is represented by objects or by relations between '
'objects. (In\n'
'a sense, and in conformance to Von Neumann’s model of a “stored\n'
'program computer,” code is also represented by objects.)\n'
'\n'
'Every object has an identity, a type and a value. An object’s\n'
'*identity* never changes once it has been created; you may think '
'of it\n'
'as the object’s address in memory. The ‘"is"’ operator compares '
'the\n'
'identity of two objects; the "id()" function returns an integer\n'
'representing its identity.\n'
'\n'
'**CPython implementation detail:** For CPython, "id(x)" is the '
'memory\n'
'address where "x" is stored.\n'
'\n'
'An object’s type determines the operations that the object '
'supports\n'
'(e.g., “does it have a length?”) and also defines the possible '
'values\n'
'for objects of that type. The "type()" function returns an '
'object’s\n'
'type (which is an object itself). Like its identity, an '
'object’s\n'
'*type* is also unchangeable. [1]\n'
'\n'
'The *value* of some objects can change. Objects whose value can\n'
'change are said to be *mutable*; objects whose value is '
'unchangeable\n'
'once they are created are called *immutable*. (The value of an\n'
'immutable container object that contains a reference to a '
'mutable\n'
'object can change when the latter’s value is changed; however '
'the\n'
'container is still considered immutable, because the collection '
'of\n'
'objects it contains cannot be changed. So, immutability is not\n'
'strictly the same as having an unchangeable value, it is more '
'subtle.)\n'
'An object’s mutability is determined by its type; for instance,\n'
'numbers, strings and tuples are immutable, while dictionaries '
'and\n'
'lists are mutable.\n'
'\n'
'Objects are never explicitly destroyed; however, when they '
'become\n'
'unreachable they may be garbage-collected. An implementation is\n'
'allowed to postpone garbage collection or omit it altogether — it '
'is a\n'
'matter of implementation quality how garbage collection is\n'
'implemented, as long as no objects are collected that are still\n'
'reachable.\n'
'\n'
'**CPython implementation detail:** CPython currently uses a '
'reference-\n'
'counting scheme with (optional) delayed detection of cyclically '
'linked\n'
'garbage, which collects most objects as soon as they become\n'
'unreachable, but is not guaranteed to collect garbage containing\n'
'circular references. See the documentation of the "gc" module '
'for\n'
'information on controlling the collection of cyclic garbage. '
'Other\n'
'implementations act differently and CPython may change. Do not '
'depend\n'
'on immediate finalization of objects when they become unreachable '
'(so\n'
'you should always close files explicitly).\n'
'\n'
'Note that the use of the implementation’s tracing or debugging\n'
'facilities may keep objects alive that would normally be '
'collectable.\n'
'Also note that catching an exception with a ‘"try"…"except"’ '
'statement\n'
'may keep objects alive.\n'
'\n'
'Some objects contain references to “external” resources such as '
'open\n'
'files or windows. It is understood that these resources are '
'freed\n'
'when the object is garbage-collected, but since garbage '
'collection is\n'
'not guaranteed to happen, such objects also provide an explicit '
'way to\n'
'release the external resource, usually a "close()" method. '
'Programs\n'
'are strongly recommended to explicitly close such objects. The\n'
'‘"try"…"finally"’ statement and the ‘"with"’ statement provide\n'
'convenient ways to do this.\n'
'\n'
'Some objects contain references to other objects; these are '
'called\n'
'*containers*. Examples of containers are tuples, lists and\n'
'dictionaries. The references are part of a container’s value. '
'In\n'
'most cases, when we talk about the value of a container, we imply '
'the\n'
'values, not the identities of the contained objects; however, '
'when we\n'
'talk about the mutability of a container, only the identities of '
'the\n'
'immediately contained objects are implied. So, if an immutable\n'
'container (like a tuple) contains a reference to a mutable '
'object, its\n'
'value changes if that mutable object is changed.\n'
'\n'
'Types affect almost all aspects of object behavior. Even the\n'
'importance of object identity is affected in some sense: for '
'immutable\n'
'types, operations that compute new values may actually return a\n'
'reference to any existing object with the same type and value, '
'while\n'
'for mutable objects this is not allowed. E.g., after "a = 1; b = '
'1",\n'
'"a" and "b" may or may not refer to the same object with the '
'value\n'
'one, depending on the implementation, but after "c = []; d = []", '
'"c"\n'
'and "d" are guaranteed to refer to two different, unique, newly\n'
'created empty lists. (Note that "c = d = []" assigns the same '
'object\n'
'to both "c" and "d".)\n',
'operator-summary': 'Operator precedence\n'
'*******************\n'
'\n'
'The following table summarizes the operator precedence '
'in Python, from\n'
'lowest precedence (least binding) to highest precedence '
'(most\n'
'binding). Operators in the same box have the same '
'precedence. Unless\n'
'the syntax is explicitly given, operators are binary. '
'Operators in\n'
'the same box group left to right (except for '
'exponentiation, which\n'
'groups from right to left).\n'
'\n'
'Note that comparisons, membership tests, and identity '
'tests, all have\n'
'the same precedence and have a left-to-right chaining '
'feature as\n'
'described in the Comparisons section.\n'
'\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| Operator | '
'Description |\n'
'|=================================================|=======================================|\n'
'| ":=" | '
'Assignment expression |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "lambda" | '
'Lambda expression |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "if" – "else" | '
'Conditional expression |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "or" | '
'Boolean OR |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "and" | '
'Boolean AND |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "not" "x" | '
'Boolean NOT |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "in", "not in", "is", "is not", "<", "<=", ">", | '
'Comparisons, including membership |\n'
'| ">=", "!=", "==" | '
'tests and identity tests |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "|" | '
'Bitwise OR |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "^" | '
'Bitwise XOR |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "&" | '
'Bitwise AND |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "<<", ">>" | '
'Shifts |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "+", "-" | '
'Addition and subtraction |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "*", "@", "/", "//", "%" | '
'Multiplication, matrix |\n'
'| | '
'multiplication, division, floor |\n'
'| | '
'division, remainder [5] |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "+x", "-x", "~x" | '
'Positive, negative, bitwise NOT |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "**" | '
'Exponentiation [6] |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "await" "x" | '
'Await expression |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "x[index]", "x[index:index]", | '
'Subscription, slicing, call, |\n'
'| "x(arguments...)", "x.attribute" | '
'attribute reference |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'| "(expressions...)", "[expressions...]", "{key: | '
'Binding or parenthesized expression, |\n'
'| value...}", "{expressions...}" | list '
'display, dictionary display, set |\n'
'| | '
'display |\n'
'+-------------------------------------------------+---------------------------------------+\n'
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] While "abs(x%y) < abs(y)" is true mathematically, '
'for floats\n'
' it may not be true numerically due to roundoff. For '
'example, and\n'
' assuming a platform on which a Python float is an '
'IEEE 754 double-\n'
' precision number, in order that "-1e-100 % 1e100" '
'have the same\n'
' sign as "1e100", the computed result is "-1e-100 + '
'1e100", which\n'
' is numerically exactly equal to "1e100". The '
'function\n'
' "math.fmod()" returns a result whose sign matches '
'the sign of the\n'
' first argument instead, and so returns "-1e-100" in '
'this case.\n'
' Which approach is more appropriate depends on the '
'application.\n'
'\n'
'[2] If x is very close to an exact integer multiple of '
'y, it’s\n'
' possible for "x//y" to be one larger than '
'"(x-x%y)//y" due to\n'
' rounding. In such cases, Python returns the latter '
'result, in\n'
' order to preserve that "divmod(x,y)[0] * y + x % y" '
'be very close\n'
' to "x".\n'
'\n'
'[3] The Unicode standard distinguishes between *code '
'points* (e.g.\n'
' U+0041) and *abstract characters* (e.g. “LATIN '
'CAPITAL LETTER A”).\n'
' While most abstract characters in Unicode are only '
'represented\n'
' using one code point, there is a number of abstract '
'characters\n'
' that can in addition be represented using a sequence '
'of more than\n'
' one code point. For example, the abstract character '
'“LATIN\n'
' CAPITAL LETTER C WITH CEDILLA” can be represented as '
'a single\n'
' *precomposed character* at code position U+00C7, or '
'as a sequence\n'
' of a *base character* at code position U+0043 (LATIN '
'CAPITAL\n'
' LETTER C), followed by a *combining character* at '
'code position\n'
' U+0327 (COMBINING CEDILLA).\n'
'\n'
' The comparison operators on strings compare at the '
'level of\n'
' Unicode code points. This may be counter-intuitive '
'to humans. For\n'
' example, ""\\u00C7" == "\\u0043\\u0327"" is "False", '
'even though both\n'
' strings represent the same abstract character “LATIN '
'CAPITAL\n'
' LETTER C WITH CEDILLA”.\n'
'\n'
' To compare strings at the level of abstract '
'characters (that is,\n'
' in a way intuitive to humans), use '
'"unicodedata.normalize()".\n'
'\n'
'[4] Due to automatic garbage-collection, free lists, and '
'the\n'
' dynamic nature of descriptors, you may notice '
'seemingly unusual\n'
' behaviour in certain uses of the "is" operator, like '
'those\n'
' involving comparisons between instance methods, or '
'constants.\n'
' Check their documentation for more info.\n'
'\n'
'[5] The "%" operator is also used for string formatting; '
'the same\n'
' precedence applies.\n'
'\n'
'[6] The power operator "**" binds less tightly than an '
'arithmetic\n'
' or bitwise unary operator on its right, that is, '
'"2**-1" is "0.5".\n',
'pass': 'The "pass" statement\n'
'********************\n'
'\n'
' pass_stmt ::= "pass"\n'
'\n'
'"pass" is a null operation — when it is executed, nothing happens. '
'It\n'
'is useful as a placeholder when a statement is required '
'syntactically,\n'
'but no code needs to be executed, for example:\n'
'\n'
' def f(arg): pass # a function that does nothing (yet)\n'
'\n'
' class C: pass # a class with no methods (yet)\n',
'power': 'The power operator\n'
'******************\n'
'\n'
'The power operator binds more tightly than unary operators on its\n'
'left; it binds less tightly than unary operators on its right. '
'The\n'
'syntax is:\n'
'\n'
' power ::= (await_expr | primary) ["**" u_expr]\n'
'\n'
'Thus, in an unparenthesized sequence of power and unary operators, '
'the\n'
'operators are evaluated from right to left (this does not '
'constrain\n'
'the evaluation order for the operands): "-1**2" results in "-1".\n'
'\n'
'The power operator has the same semantics as the built-in "pow()"\n'
'function, when called with two arguments: it yields its left '
'argument\n'
'raised to the power of its right argument. The numeric arguments '
'are\n'
'first converted to a common type, and the result is of that type.\n'
'\n'
'For int operands, the result has the same type as the operands '
'unless\n'
'the second argument is negative; in that case, all arguments are\n'
'converted to float and a float result is delivered. For example,\n'
'"10**2" returns "100", but "10**-2" returns "0.01".\n'
'\n'
'Raising "0.0" to a negative power results in a '
'"ZeroDivisionError".\n'
'Raising a negative number to a fractional power results in a '
'"complex"\n'
'number. (In earlier versions it raised a "ValueError".)\n',
'raise': 'The "raise" statement\n'
'*********************\n'
'\n'
' raise_stmt ::= "raise" [expression ["from" expression]]\n'
'\n'
'If no expressions are present, "raise" re-raises the last '
'exception\n'
'that was active in the current scope. If no exception is active '
'in\n'
'the current scope, a "RuntimeError" exception is raised indicating\n'
'that this is an error.\n'
'\n'
'Otherwise, "raise" evaluates the first expression as the exception\n'
'object. It must be either a subclass or an instance of\n'
'"BaseException". If it is a class, the exception instance will be\n'
'obtained when needed by instantiating the class with no arguments.\n'
'\n'
'The *type* of the exception is the exception instance’s class, the\n'
'*value* is the instance itself.\n'
'\n'
'A traceback object is normally created automatically when an '
'exception\n'
'is raised and attached to it as the "__traceback__" attribute, '
'which\n'
'is writable. You can create an exception and set your own traceback '
'in\n'
'one step using the "with_traceback()" exception method (which '
'returns\n'
'the same exception instance, with its traceback set to its '
'argument),\n'
'like so:\n'
'\n'
' raise Exception("foo occurred").with_traceback(tracebackobj)\n'
'\n'
'The "from" clause is used for exception chaining: if given, the '
'second\n'
'*expression* must be another exception class or instance, which '
'will\n'
'then be attached to the raised exception as the "__cause__" '
'attribute\n'
'(which is writable). If the raised exception is not handled, both\n'
'exceptions will be printed:\n'
'\n'
' >>> try:\n'
' ... print(1 / 0)\n'
' ... except Exception as exc:\n'
' ... raise RuntimeError("Something bad happened") from exc\n'
' ...\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 2, in <module>\n'
' ZeroDivisionError: division by zero\n'
'\n'
' The above exception was the direct cause of the following '
'exception:\n'
'\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 4, in <module>\n'
' RuntimeError: Something bad happened\n'
'\n'
'A similar mechanism works implicitly if an exception is raised '
'inside\n'
'an exception handler or a "finally" clause: the previous exception '
'is\n'
'then attached as the new exception’s "__context__" attribute:\n'
'\n'
' >>> try:\n'
' ... print(1 / 0)\n'
' ... except:\n'
' ... raise RuntimeError("Something bad happened")\n'
' ...\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 2, in <module>\n'
' ZeroDivisionError: division by zero\n'
'\n'
' During handling of the above exception, another exception '
'occurred:\n'
'\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 4, in <module>\n'
' RuntimeError: Something bad happened\n'
'\n'
'Exception chaining can be explicitly suppressed by specifying '
'"None"\n'
'in the "from" clause:\n'
'\n'
' >>> try:\n'
' ... print(1 / 0)\n'
' ... except:\n'
' ... raise RuntimeError("Something bad happened") from None\n'
' ...\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 4, in <module>\n'
' RuntimeError: Something bad happened\n'
'\n'
'Additional information on exceptions can be found in section\n'
'Exceptions, and information about handling exceptions is in '
'section\n'
'The try statement.\n'
'\n'
'Changed in version 3.3: "None" is now permitted as "Y" in "raise X\n'
'from Y".\n'
'\n'
'New in version 3.3: The "__suppress_context__" attribute to '
'suppress\n'
'automatic display of the exception context.\n',
'return': 'The "return" statement\n'
'**********************\n'
'\n'
' return_stmt ::= "return" [expression_list]\n'
'\n'
'"return" may only occur syntactically nested in a function '
'definition,\n'
'not within a nested class definition.\n'
'\n'
'If an expression list is present, it is evaluated, else "None" is\n'
'substituted.\n'
'\n'
'"return" leaves the current function call with the expression list '
'(or\n'
'"None") as return value.\n'
'\n'
'When "return" passes control out of a "try" statement with a '
'"finally"\n'
'clause, that "finally" clause is executed before really leaving '
'the\n'
'function.\n'
'\n'
'In a generator function, the "return" statement indicates that '
'the\n'
'generator is done and will cause "StopIteration" to be raised. '
'The\n'
'returned value (if any) is used as an argument to construct\n'
'"StopIteration" and becomes the "StopIteration.value" attribute.\n'
'\n'
'In an asynchronous generator function, an empty "return" '
'statement\n'
'indicates that the asynchronous generator is done and will cause\n'
'"StopAsyncIteration" to be raised. A non-empty "return" statement '
'is\n'
'a syntax error in an asynchronous generator function.\n',
'sequence-types': 'Emulating container types\n'
'*************************\n'
'\n'
'The following methods can be defined to implement '
'container objects.\n'
'Containers usually are sequences (such as lists or tuples) '
'or mappings\n'
'(like dictionaries), but can represent other containers as '
'well. The\n'
'first set of methods is used either to emulate a sequence '
'or to\n'
'emulate a mapping; the difference is that for a sequence, '
'the\n'
'allowable keys should be the integers *k* for which "0 <= '
'k < N" where\n'
'*N* is the length of the sequence, or slice objects, which '
'define a\n'
'range of items. It is also recommended that mappings '
'provide the\n'
'methods "keys()", "values()", "items()", "get()", '
'"clear()",\n'
'"setdefault()", "pop()", "popitem()", "copy()", and '
'"update()"\n'
'behaving similar to those for Python’s standard dictionary '
'objects.\n'
'The "collections.abc" module provides a "MutableMapping" '
'abstract base\n'
'class to help create those methods from a base set of '
'"__getitem__()",\n'
'"__setitem__()", "__delitem__()", and "keys()". Mutable '
'sequences\n'
'should provide methods "append()", "count()", "index()", '
'"extend()",\n'
'"insert()", "pop()", "remove()", "reverse()" and "sort()", '
'like Python\n'
'standard list objects. Finally, sequence types should '
'implement\n'
'addition (meaning concatenation) and multiplication '
'(meaning\n'
'repetition) by defining the methods "__add__()", '
'"__radd__()",\n'
'"__iadd__()", "__mul__()", "__rmul__()" and "__imul__()" '
'described\n'
'below; they should not define other numerical operators. '
'It is\n'
'recommended that both mappings and sequences implement '
'the\n'
'"__contains__()" method to allow efficient use of the "in" '
'operator;\n'
'for mappings, "in" should search the mapping’s keys; for '
'sequences, it\n'
'should search through the values. It is further '
'recommended that both\n'
'mappings and sequences implement the "__iter__()" method '
'to allow\n'
'efficient iteration through the container; for mappings, '
'"__iter__()"\n'
'should iterate through the object’s keys; for sequences, '
'it should\n'
'iterate through the values.\n'
'\n'
'object.__len__(self)\n'
'\n'
' Called to implement the built-in function "len()". '
'Should return\n'
' the length of the object, an integer ">=" 0. Also, an '
'object that\n'
' doesn’t define a "__bool__()" method and whose '
'"__len__()" method\n'
' returns zero is considered to be false in a Boolean '
'context.\n'
'\n'
' **CPython implementation detail:** In CPython, the '
'length is\n'
' required to be at most "sys.maxsize". If the length is '
'larger than\n'
' "sys.maxsize" some features (such as "len()") may '
'raise\n'
' "OverflowError". To prevent raising "OverflowError" by '
'truth value\n'
' testing, an object must define a "__bool__()" method.\n'
'\n'
'object.__length_hint__(self)\n'
'\n'
' Called to implement "operator.length_hint()". Should '
'return an\n'
' estimated length for the object (which may be greater '
'or less than\n'
' the actual length). The length must be an integer ">=" '
'0. The\n'
' return value may also be "NotImplemented", which is '
'treated the\n'
' same as if the "__length_hint__" method didn’t exist at '
'all. This\n'
' method is purely an optimization and is never required '
'for\n'
' correctness.\n'
'\n'
' New in version 3.4.\n'
'\n'
'Note: Slicing is done exclusively with the following three '
'methods.\n'
' A call like\n'
'\n'
' a[1:2] = b\n'
'\n'
' is translated to\n'
'\n'
' a[slice(1, 2, None)] = b\n'
'\n'
' and so forth. Missing slice items are always filled in '
'with "None".\n'
'\n'
'object.__getitem__(self, key)\n'
'\n'
' Called to implement evaluation of "self[key]". For '
'sequence types,\n'
' the accepted keys should be integers and slice '
'objects. Note that\n'
' the special interpretation of negative indexes (if the '
'class wishes\n'
' to emulate a sequence type) is up to the '
'"__getitem__()" method. If\n'
' *key* is of an inappropriate type, "TypeError" may be '
'raised; if of\n'
' a value outside the set of indexes for the sequence '
'(after any\n'
' special interpretation of negative values), '
'"IndexError" should be\n'
' raised. For mapping types, if *key* is missing (not in '
'the\n'
' container), "KeyError" should be raised.\n'
'\n'
' Note: "for" loops expect that an "IndexError" will be '
'raised for\n'
' illegal indexes to allow proper detection of the end '
'of the\n'
' sequence.\n'
'\n'
'object.__setitem__(self, key, value)\n'
'\n'
' Called to implement assignment to "self[key]". Same '
'note as for\n'
' "__getitem__()". This should only be implemented for '
'mappings if\n'
' the objects support changes to the values for keys, or '
'if new keys\n'
' can be added, or for sequences if elements can be '
'replaced. The\n'
' same exceptions should be raised for improper *key* '
'values as for\n'
' the "__getitem__()" method.\n'
'\n'
'object.__delitem__(self, key)\n'
'\n'
' Called to implement deletion of "self[key]". Same note '
'as for\n'
' "__getitem__()". This should only be implemented for '
'mappings if\n'
' the objects support removal of keys, or for sequences '
'if elements\n'
' can be removed from the sequence. The same exceptions '
'should be\n'
' raised for improper *key* values as for the '
'"__getitem__()" method.\n'
'\n'
'object.__missing__(self, key)\n'
'\n'
' Called by "dict"."__getitem__()" to implement '
'"self[key]" for dict\n'
' subclasses when key is not in the dictionary.\n'
'\n'
'object.__iter__(self)\n'
'\n'
' This method is called when an iterator is required for '
'a container.\n'
' This method should return a new iterator object that '
'can iterate\n'
' over all the objects in the container. For mappings, '
'it should\n'
' iterate over the keys of the container.\n'
'\n'
' Iterator objects also need to implement this method; '
'they are\n'
' required to return themselves. For more information on '
'iterator\n'
' objects, see Iterator Types.\n'
'\n'
'object.__reversed__(self)\n'
'\n'
' Called (if present) by the "reversed()" built-in to '
'implement\n'
' reverse iteration. It should return a new iterator '
'object that\n'
' iterates over all the objects in the container in '
'reverse order.\n'
'\n'
' If the "__reversed__()" method is not provided, the '
'"reversed()"\n'
' built-in will fall back to using the sequence protocol '
'("__len__()"\n'
' and "__getitem__()"). Objects that support the '
'sequence protocol\n'
' should only provide "__reversed__()" if they can '
'provide an\n'
' implementation that is more efficient than the one '
'provided by\n'
' "reversed()".\n'
'\n'
'The membership test operators ("in" and "not in") are '
'normally\n'
'implemented as an iteration through a container. However, '
'container\n'
'objects can supply the following special method with a '
'more efficient\n'
'implementation, which also does not require the object be '
'iterable.\n'
'\n'
'object.__contains__(self, item)\n'
'\n'
' Called to implement membership test operators. Should '
'return true\n'
' if *item* is in *self*, false otherwise. For mapping '
'objects, this\n'
' should consider the keys of the mapping rather than the '
'values or\n'
' the key-item pairs.\n'
'\n'
' For objects that don’t define "__contains__()", the '
'membership test\n'
' first tries iteration via "__iter__()", then the old '
'sequence\n'
' iteration protocol via "__getitem__()", see this '
'section in the\n'
' language reference.\n',
'shifting': 'Shifting operations\n'
'*******************\n'
'\n'
'The shifting operations have lower priority than the arithmetic\n'
'operations:\n'
'\n'
' shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr\n'
'\n'
'These operators accept integers as arguments. They shift the '
'first\n'
'argument to the left or right by the number of bits given by '
'the\n'
'second argument.\n'
'\n'
'A right shift by *n* bits is defined as floor division by '
'"pow(2,n)".\n'
'A left shift by *n* bits is defined as multiplication with '
'"pow(2,n)".\n',
'slicings': 'Slicings\n'
'********\n'
'\n'
'A slicing selects a range of items in a sequence object (e.g., '
'a\n'
'string, tuple or list). Slicings may be used as expressions or '
'as\n'
'targets in assignment or "del" statements. The syntax for a '
'slicing:\n'
'\n'
' slicing ::= primary "[" slice_list "]"\n'
' slice_list ::= slice_item ("," slice_item)* [","]\n'
' slice_item ::= expression | proper_slice\n'
' proper_slice ::= [lower_bound] ":" [upper_bound] [ ":" '
'[stride] ]\n'
' lower_bound ::= expression\n'
' upper_bound ::= expression\n'
' stride ::= expression\n'
'\n'
'There is ambiguity in the formal syntax here: anything that '
'looks like\n'
'an expression list also looks like a slice list, so any '
'subscription\n'
'can be interpreted as a slicing. Rather than further '
'complicating the\n'
'syntax, this is disambiguated by defining that in this case the\n'
'interpretation as a subscription takes priority over the\n'
'interpretation as a slicing (this is the case if the slice list\n'
'contains no proper slice).\n'
'\n'
'The semantics for a slicing are as follows. The primary is '
'indexed\n'
'(using the same "__getitem__()" method as normal subscription) '
'with a\n'
'key that is constructed from the slice list, as follows. If the '
'slice\n'
'list contains at least one comma, the key is a tuple containing '
'the\n'
'conversion of the slice items; otherwise, the conversion of the '
'lone\n'
'slice item is the key. The conversion of a slice item that is '
'an\n'
'expression is that expression. The conversion of a proper slice '
'is a\n'
'slice object (see section The standard type hierarchy) whose '
'"start",\n'
'"stop" and "step" attributes are the values of the expressions '
'given\n'
'as lower bound, upper bound and stride, respectively, '
'substituting\n'
'"None" for missing expressions.\n',
'specialattrs': 'Special Attributes\n'
'******************\n'
'\n'
'The implementation adds a few special read-only attributes '
'to several\n'
'object types, where they are relevant. Some of these are '
'not reported\n'
'by the "dir()" built-in function.\n'
'\n'
'object.__dict__\n'
'\n'
' A dictionary or other mapping object used to store an '
'object’s\n'
' (writable) attributes.\n'
'\n'
'instance.__class__\n'
'\n'
' The class to which a class instance belongs.\n'
'\n'
'class.__bases__\n'
'\n'
' The tuple of base classes of a class object.\n'
'\n'
'definition.__name__\n'
'\n'
' The name of the class, function, method, descriptor, or '
'generator\n'
' instance.\n'
'\n'
'definition.__qualname__\n'
'\n'
' The *qualified name* of the class, function, method, '
'descriptor, or\n'
' generator instance.\n'
'\n'
' New in version 3.3.\n'
'\n'
'class.__mro__\n'
'\n'
' This attribute is a tuple of classes that are considered '
'when\n'
' looking for base classes during method resolution.\n'
'\n'
'class.mro()\n'
'\n'
' This method can be overridden by a metaclass to customize '
'the\n'
' method resolution order for its instances. It is called '
'at class\n'
' instantiation, and its result is stored in "__mro__".\n'
'\n'
'class.__subclasses__()\n'
'\n'
' Each class keeps a list of weak references to its '
'immediate\n'
' subclasses. This method returns a list of all those '
'references\n'
' still alive. Example:\n'
'\n'
' >>> int.__subclasses__()\n'
" [<class 'bool'>]\n"
'\n'
'-[ Footnotes ]-\n'
'\n'
'[1] Additional information on these special methods may be '
'found\n'
' in the Python Reference Manual (Basic customization).\n'
'\n'
'[2] As a consequence, the list "[1, 2]" is considered equal '
'to\n'
' "[1.0, 2.0]", and similarly for tuples.\n'
'\n'
'[3] They must have since the parser can’t tell the type of '
'the\n'
' operands.\n'
'\n'
'[4] Cased characters are those with general category '
'property\n'
' being one of “Lu” (Letter, uppercase), “Ll” (Letter, '
'lowercase),\n'
' or “Lt” (Letter, titlecase).\n'
'\n'
'[5] To format only a tuple you should therefore provide a\n'
' singleton tuple whose only element is the tuple to be '
'formatted.\n',
'specialnames': 'Special method names\n'
'********************\n'
'\n'
'A class can implement certain operations that are invoked by '
'special\n'
'syntax (such as arithmetic operations or subscripting and '
'slicing) by\n'
'defining methods with special names. This is Python’s '
'approach to\n'
'*operator overloading*, allowing classes to define their own '
'behavior\n'
'with respect to language operators. For instance, if a '
'class defines\n'
'a method named "__getitem__()", and "x" is an instance of '
'this class,\n'
'then "x[i]" is roughly equivalent to "type(x).__getitem__(x, '
'i)".\n'
'Except where mentioned, attempts to execute an operation '
'raise an\n'
'exception when no appropriate method is defined (typically\n'
'"AttributeError" or "TypeError").\n'
'\n'
'Setting a special method to "None" indicates that the '
'corresponding\n'
'operation is not available. For example, if a class sets '
'"__iter__()"\n'
'to "None", the class is not iterable, so calling "iter()" on '
'its\n'
'instances will raise a "TypeError" (without falling back to\n'
'"__getitem__()"). [2]\n'
'\n'
'When implementing a class that emulates any built-in type, '
'it is\n'
'important that the emulation only be implemented to the '
'degree that it\n'
'makes sense for the object being modelled. For example, '
'some\n'
'sequences may work well with retrieval of individual '
'elements, but\n'
'extracting a slice may not make sense. (One example of this '
'is the\n'
'"NodeList" interface in the W3C’s Document Object Model.)\n'
'\n'
'\n'
'Basic customization\n'
'===================\n'
'\n'
'object.__new__(cls[, ...])\n'
'\n'
' Called to create a new instance of class *cls*. '
'"__new__()" is a\n'
' static method (special-cased so you need not declare it '
'as such)\n'
' that takes the class of which an instance was requested '
'as its\n'
' first argument. The remaining arguments are those passed '
'to the\n'
' object constructor expression (the call to the class). '
'The return\n'
' value of "__new__()" should be the new object instance '
'(usually an\n'
' instance of *cls*).\n'
'\n'
' Typical implementations create a new instance of the '
'class by\n'
' invoking the superclass’s "__new__()" method using\n'
' "super().__new__(cls[, ...])" with appropriate arguments '
'and then\n'
' modifying the newly-created instance as necessary before '
'returning\n'
' it.\n'
'\n'
' If "__new__()" is invoked during object construction and '
'it returns\n'
' an instance or subclass of *cls*, then the new '
'instance’s\n'
' "__init__()" method will be invoked like "__init__(self[, '
'...])",\n'
' where *self* is the new instance and the remaining '
'arguments are\n'
' the same as were passed to the object constructor.\n'
'\n'
' If "__new__()" does not return an instance of *cls*, then '
'the new\n'
' instance’s "__init__()" method will not be invoked.\n'
'\n'
' "__new__()" is intended mainly to allow subclasses of '
'immutable\n'
' types (like int, str, or tuple) to customize instance '
'creation. It\n'
' is also commonly overridden in custom metaclasses in '
'order to\n'
' customize class creation.\n'
'\n'
'object.__init__(self[, ...])\n'
'\n'
' Called after the instance has been created (by '
'"__new__()"), but\n'
' before it is returned to the caller. The arguments are '
'those\n'
' passed to the class constructor expression. If a base '
'class has an\n'
' "__init__()" method, the derived class’s "__init__()" '
'method, if\n'
' any, must explicitly call it to ensure proper '
'initialization of the\n'
' base class part of the instance; for example:\n'
' "super().__init__([args...])".\n'
'\n'
' Because "__new__()" and "__init__()" work together in '
'constructing\n'
' objects ("__new__()" to create it, and "__init__()" to '
'customize\n'
' it), no non-"None" value may be returned by "__init__()"; '
'doing so\n'
' will cause a "TypeError" to be raised at runtime.\n'
'\n'
'object.__del__(self)\n'
'\n'
' Called when the instance is about to be destroyed. This '
'is also\n'
' called a finalizer or (improperly) a destructor. If a '
'base class\n'
' has a "__del__()" method, the derived class’s "__del__()" '
'method,\n'
' if any, must explicitly call it to ensure proper deletion '
'of the\n'
' base class part of the instance.\n'
'\n'
' It is possible (though not recommended!) for the '
'"__del__()" method\n'
' to postpone destruction of the instance by creating a new '
'reference\n'
' to it. This is called object *resurrection*. It is\n'
' implementation-dependent whether "__del__()" is called a '
'second\n'
' time when a resurrected object is about to be destroyed; '
'the\n'
' current *CPython* implementation only calls it once.\n'
'\n'
' It is not guaranteed that "__del__()" methods are called '
'for\n'
' objects that still exist when the interpreter exits.\n'
'\n'
' Note: "del x" doesn’t directly call "x.__del__()" — the '
'former\n'
' decrements the reference count for "x" by one, and the '
'latter is\n'
' only called when "x"’s reference count reaches zero.\n'
'\n'
' **CPython implementation detail:** It is possible for a '
'reference\n'
' cycle to prevent the reference count of an object from '
'going to\n'
' zero. In this case, the cycle will be later detected and '
'deleted\n'
' by the *cyclic garbage collector*. A common cause of '
'reference\n'
' cycles is when an exception has been caught in a local '
'variable.\n'
' The frame’s locals then reference the exception, which '
'references\n'
' its own traceback, which references the locals of all '
'frames caught\n'
' in the traceback.\n'
'\n'
' See also: Documentation for the "gc" module.\n'
'\n'
' Warning: Due to the precarious circumstances under which\n'
' "__del__()" methods are invoked, exceptions that occur '
'during\n'
' their execution are ignored, and a warning is printed '
'to\n'
' "sys.stderr" instead. In particular:\n'
'\n'
' * "__del__()" can be invoked when arbitrary code is '
'being\n'
' executed, including from any arbitrary thread. If '
'"__del__()"\n'
' needs to take a lock or invoke any other blocking '
'resource, it\n'
' may deadlock as the resource may already be taken by '
'the code\n'
' that gets interrupted to execute "__del__()".\n'
'\n'
' * "__del__()" can be executed during interpreter '
'shutdown. As\n'
' a consequence, the global variables it needs to '
'access\n'
' (including other modules) may already have been '
'deleted or set\n'
' to "None". Python guarantees that globals whose name '
'begins\n'
' with a single underscore are deleted from their '
'module before\n'
' other globals are deleted; if no other references to '
'such\n'
' globals exist, this may help in assuring that '
'imported modules\n'
' are still available at the time when the "__del__()" '
'method is\n'
' called.\n'
'\n'
'object.__repr__(self)\n'
'\n'
' Called by the "repr()" built-in function to compute the '
'“official”\n'
' string representation of an object. If at all possible, '
'this\n'
' should look like a valid Python expression that could be '
'used to\n'
' recreate an object with the same value (given an '
'appropriate\n'
' environment). If this is not possible, a string of the '
'form\n'
' "<...some useful description...>" should be returned. The '
'return\n'
' value must be a string object. If a class defines '
'"__repr__()" but\n'
' not "__str__()", then "__repr__()" is also used when an '
'“informal”\n'
' string representation of instances of that class is '
'required.\n'
'\n'
' This is typically used for debugging, so it is important '
'that the\n'
' representation is information-rich and unambiguous.\n'
'\n'
'object.__str__(self)\n'
'\n'
' Called by "str(object)" and the built-in functions '
'"format()" and\n'
' "print()" to compute the “informal” or nicely printable '
'string\n'
' representation of an object. The return value must be a '
'string\n'
' object.\n'
'\n'
' This method differs from "object.__repr__()" in that '
'there is no\n'
' expectation that "__str__()" return a valid Python '
'expression: a\n'
' more convenient or concise representation can be used.\n'
'\n'
' The default implementation defined by the built-in type '
'"object"\n'
' calls "object.__repr__()".\n'
'\n'
'object.__bytes__(self)\n'
'\n'
' Called by bytes to compute a byte-string representation '
'of an\n'
' object. This should return a "bytes" object.\n'
'\n'
'object.__format__(self, format_spec)\n'
'\n'
' Called by the "format()" built-in function, and by '
'extension,\n'
' evaluation of formatted string literals and the '
'"str.format()"\n'
' method, to produce a “formatted” string representation of '
'an\n'
' object. The *format_spec* argument is a string that '
'contains a\n'
' description of the formatting options desired. The '
'interpretation\n'
' of the *format_spec* argument is up to the type '
'implementing\n'
' "__format__()", however most classes will either '
'delegate\n'
' formatting to one of the built-in types, or use a '
'similar\n'
' formatting option syntax.\n'
'\n'
' See Format Specification Mini-Language for a description '
'of the\n'
' standard formatting syntax.\n'
'\n'
' The return value must be a string object.\n'
'\n'
' Changed in version 3.4: The __format__ method of "object" '
'itself\n'
' raises a "TypeError" if passed any non-empty string.\n'
'\n'
' Changed in version 3.7: "object.__format__(x, \'\')" is '
'now\n'
' equivalent to "str(x)" rather than "format(str(self), '
'\'\')".\n'
'\n'
'object.__lt__(self, other)\n'
'object.__le__(self, other)\n'
'object.__eq__(self, other)\n'
'object.__ne__(self, other)\n'
'object.__gt__(self, other)\n'
'object.__ge__(self, other)\n'
'\n'
' These are the so-called “rich comparison” methods. The\n'
' correspondence between operator symbols and method names '
'is as\n'
' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
'"x.__le__(y)",\n'
' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
'"x>y" calls\n'
' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
'\n'
' A rich comparison method may return the singleton '
'"NotImplemented"\n'
' if it does not implement the operation for a given pair '
'of\n'
' arguments. By convention, "False" and "True" are returned '
'for a\n'
' successful comparison. However, these methods can return '
'any value,\n'
' so if the comparison operator is used in a Boolean '
'context (e.g.,\n'
' in the condition of an "if" statement), Python will call '
'"bool()"\n'
' on the value to determine if the result is true or '
'false.\n'
'\n'
' By default, "__ne__()" delegates to "__eq__()" and '
'inverts the\n'
' result unless it is "NotImplemented". There are no other '
'implied\n'
' relationships among the comparison operators, for '
'example, the\n'
' truth of "(x<y or x==y)" does not imply "x<=y". To '
'automatically\n'
' generate ordering operations from a single root '
'operation, see\n'
' "functools.total_ordering()".\n'
'\n'
' See the paragraph on "__hash__()" for some important '
'notes on\n'
' creating *hashable* objects which support custom '
'comparison\n'
' operations and are usable as dictionary keys.\n'
'\n'
' There are no swapped-argument versions of these methods '
'(to be used\n'
' when the left argument does not support the operation but '
'the right\n'
' argument does); rather, "__lt__()" and "__gt__()" are '
'each other’s\n'
' reflection, "__le__()" and "__ge__()" are each other’s '
'reflection,\n'
' and "__eq__()" and "__ne__()" are their own reflection. '
'If the\n'
' operands are of different types, and right operand’s type '
'is a\n'
' direct or indirect subclass of the left operand’s type, '
'the\n'
' reflected method of the right operand has priority, '
'otherwise the\n'
' left operand’s method has priority. Virtual subclassing '
'is not\n'
' considered.\n'
'\n'
'object.__hash__(self)\n'
'\n'
' Called by built-in function "hash()" and for operations '
'on members\n'
' of hashed collections including "set", "frozenset", and '
'"dict".\n'
' "__hash__()" should return an integer. The only required '
'property\n'
' is that objects which compare equal have the same hash '
'value; it is\n'
' advised to mix together the hash values of the components '
'of the\n'
' object that also play a part in comparison of objects by '
'packing\n'
' them into a tuple and hashing the tuple. Example:\n'
'\n'
' def __hash__(self):\n'
' return hash((self.name, self.nick, self.color))\n'
'\n'
' Note: "hash()" truncates the value returned from an '
'object’s\n'
' custom "__hash__()" method to the size of a '
'"Py_ssize_t". This\n'
' is typically 8 bytes on 64-bit builds and 4 bytes on '
'32-bit\n'
' builds. If an object’s "__hash__()" must interoperate '
'on builds\n'
' of different bit sizes, be sure to check the width on '
'all\n'
' supported builds. An easy way to do this is with '
'"python -c\n'
' "import sys; print(sys.hash_info.width)"".\n'
'\n'
' If a class does not define an "__eq__()" method it should '
'not\n'
' define a "__hash__()" operation either; if it defines '
'"__eq__()"\n'
' but not "__hash__()", its instances will not be usable as '
'items in\n'
' hashable collections. If a class defines mutable objects '
'and\n'
' implements an "__eq__()" method, it should not implement\n'
' "__hash__()", since the implementation of hashable '
'collections\n'
' requires that a key’s hash value is immutable (if the '
'object’s hash\n'
' value changes, it will be in the wrong hash bucket).\n'
'\n'
' User-defined classes have "__eq__()" and "__hash__()" '
'methods by\n'
' default; with them, all objects compare unequal (except '
'with\n'
' themselves) and "x.__hash__()" returns an appropriate '
'value such\n'
' that "x == y" implies both that "x is y" and "hash(x) == '
'hash(y)".\n'
'\n'
' A class that overrides "__eq__()" and does not define '
'"__hash__()"\n'
' will have its "__hash__()" implicitly set to "None". '
'When the\n'
' "__hash__()" method of a class is "None", instances of '
'the class\n'
' will raise an appropriate "TypeError" when a program '
'attempts to\n'
' retrieve their hash value, and will also be correctly '
'identified as\n'
' unhashable when checking "isinstance(obj,\n'
' collections.abc.Hashable)".\n'
'\n'
' If a class that overrides "__eq__()" needs to retain the\n'
' implementation of "__hash__()" from a parent class, the '
'interpreter\n'
' must be told this explicitly by setting "__hash__ =\n'
' <ParentClass>.__hash__".\n'
'\n'
' If a class that does not override "__eq__()" wishes to '
'suppress\n'
' hash support, it should include "__hash__ = None" in the '
'class\n'
' definition. A class which defines its own "__hash__()" '
'that\n'
' explicitly raises a "TypeError" would be incorrectly '
'identified as\n'
' hashable by an "isinstance(obj, '
'collections.abc.Hashable)" call.\n'
'\n'
' Note: By default, the "__hash__()" values of str and '
'bytes\n'
' objects are “salted” with an unpredictable random '
'value.\n'
' Although they remain constant within an individual '
'Python\n'
' process, they are not predictable between repeated '
'invocations of\n'
' Python.This is intended to provide protection against a '
'denial-\n'
' of-service caused by carefully-chosen inputs that '
'exploit the\n'
' worst case performance of a dict insertion, O(n^2) '
'complexity.\n'
' See http://www.ocert.org/advisories/ocert-2011-003.html '
'for\n'
' details.Changing hash values affects the iteration '
'order of sets.\n'
' Python has never made guarantees about this ordering '
'(and it\n'
' typically varies between 32-bit and 64-bit builds).See '
'also\n'
' "PYTHONHASHSEED".\n'
'\n'
' Changed in version 3.3: Hash randomization is enabled by '
'default.\n'
'\n'
'object.__bool__(self)\n'
'\n'
' Called to implement truth value testing and the built-in '
'operation\n'
' "bool()"; should return "False" or "True". When this '
'method is not\n'
' defined, "__len__()" is called, if it is defined, and the '
'object is\n'
' considered true if its result is nonzero. If a class '
'defines\n'
' neither "__len__()" nor "__bool__()", all its instances '
'are\n'
' considered true.\n'
'\n'
'\n'
'Customizing attribute access\n'
'============================\n'
'\n'
'The following methods can be defined to customize the '
'meaning of\n'
'attribute access (use of, assignment to, or deletion of '
'"x.name") for\n'
'class instances.\n'
'\n'
'object.__getattr__(self, name)\n'
'\n'
' Called when the default attribute access fails with an\n'
' "AttributeError" (either "__getattribute__()" raises an\n'
' "AttributeError" because *name* is not an instance '
'attribute or an\n'
' attribute in the class tree for "self"; or "__get__()" of '
'a *name*\n'
' property raises "AttributeError"). This method should '
'either\n'
' return the (computed) attribute value or raise an '
'"AttributeError"\n'
' exception.\n'
'\n'
' Note that if the attribute is found through the normal '
'mechanism,\n'
' "__getattr__()" is not called. (This is an intentional '
'asymmetry\n'
' between "__getattr__()" and "__setattr__()".) This is '
'done both for\n'
' efficiency reasons and because otherwise "__getattr__()" '
'would have\n'
' no way to access other attributes of the instance. Note '
'that at\n'
' least for instance variables, you can fake total control '
'by not\n'
' inserting any values in the instance attribute dictionary '
'(but\n'
' instead inserting them in another object). See the\n'
' "__getattribute__()" method below for a way to actually '
'get total\n'
' control over attribute access.\n'
'\n'
'object.__getattribute__(self, name)\n'
'\n'
' Called unconditionally to implement attribute accesses '
'for\n'
' instances of the class. If the class also defines '
'"__getattr__()",\n'
' the latter will not be called unless "__getattribute__()" '
'either\n'
' calls it explicitly or raises an "AttributeError". This '
'method\n'
' should return the (computed) attribute value or raise an\n'
' "AttributeError" exception. In order to avoid infinite '
'recursion in\n'
' this method, its implementation should always call the '
'base class\n'
' method with the same name to access any attributes it '
'needs, for\n'
' example, "object.__getattribute__(self, name)".\n'
'\n'
' Note: This method may still be bypassed when looking up '
'special\n'
' methods as the result of implicit invocation via '
'language syntax\n'
' or built-in functions. See Special method lookup.\n'
'\n'
'object.__setattr__(self, name, value)\n'
'\n'
' Called when an attribute assignment is attempted. This '
'is called\n'
' instead of the normal mechanism (i.e. store the value in '
'the\n'
' instance dictionary). *name* is the attribute name, '
'*value* is the\n'
' value to be assigned to it.\n'
'\n'
' If "__setattr__()" wants to assign to an instance '
'attribute, it\n'
' should call the base class method with the same name, for '
'example,\n'
' "object.__setattr__(self, name, value)".\n'
'\n'
'object.__delattr__(self, name)\n'
'\n'
' Like "__setattr__()" but for attribute deletion instead '
'of\n'
' assignment. This should only be implemented if "del '
'obj.name" is\n'
' meaningful for the object.\n'
'\n'
'object.__dir__(self)\n'
'\n'
' Called when "dir()" is called on the object. A sequence '
'must be\n'
' returned. "dir()" converts the returned sequence to a '
'list and\n'
' sorts it.\n'
'\n'
'\n'
'Customizing module attribute access\n'
'-----------------------------------\n'
'\n'
'Special names "__getattr__" and "__dir__" can be also used '
'to\n'
'customize access to module attributes. The "__getattr__" '
'function at\n'
'the module level should accept one argument which is the '
'name of an\n'
'attribute and return the computed value or raise an '
'"AttributeError".\n'
'If an attribute is not found on a module object through the '
'normal\n'
'lookup, i.e. "object.__getattribute__()", then "__getattr__" '
'is\n'
'searched in the module "__dict__" before raising an '
'"AttributeError".\n'
'If found, it is called with the attribute name and the '
'result is\n'
'returned.\n'
'\n'
'The "__dir__" function should accept no arguments, and '
'return a\n'
'sequence of strings that represents the names accessible on '
'module. If\n'
'present, this function overrides the standard "dir()" search '
'on a\n'
'module.\n'
'\n'
'For a more fine grained customization of the module behavior '
'(setting\n'
'attributes, properties, etc.), one can set the "__class__" '
'attribute\n'
'of a module object to a subclass of "types.ModuleType". For '
'example:\n'
'\n'
' import sys\n'
' from types import ModuleType\n'
'\n'
' class VerboseModule(ModuleType):\n'
' def __repr__(self):\n'
" return f'Verbose {self.__name__}'\n"
'\n'
' def __setattr__(self, attr, value):\n'
" print(f'Setting {attr}...')\n"
' super().__setattr__(attr, value)\n'
'\n'
' sys.modules[__name__].__class__ = VerboseModule\n'
'\n'
'Note: Defining module "__getattr__" and setting module '
'"__class__"\n'
' only affect lookups made using the attribute access syntax '
'–\n'
' directly accessing the module globals (whether by code '
'within the\n'
' module, or via a reference to the module’s globals '
'dictionary) is\n'
' unaffected.\n'
'\n'
'Changed in version 3.5: "__class__" module attribute is now '
'writable.\n'
'\n'
'New in version 3.7: "__getattr__" and "__dir__" module '
'attributes.\n'
'\n'
'See also:\n'
'\n'
' **PEP 562** - Module __getattr__ and __dir__\n'
' Describes the "__getattr__" and "__dir__" functions on '
'modules.\n'
'\n'
'\n'
'Implementing Descriptors\n'
'------------------------\n'
'\n'
'The following methods only apply when an instance of the '
'class\n'
'containing the method (a so-called *descriptor* class) '
'appears in an\n'
'*owner* class (the descriptor must be in either the owner’s '
'class\n'
'dictionary or in the class dictionary for one of its '
'parents). In the\n'
'examples below, “the attribute” refers to the attribute '
'whose name is\n'
'the key of the property in the owner class’ "__dict__".\n'
'\n'
'object.__get__(self, instance, owner=None)\n'
'\n'
' Called to get the attribute of the owner class (class '
'attribute\n'
' access) or of an instance of that class (instance '
'attribute\n'
' access). The optional *owner* argument is the owner '
'class, while\n'
' *instance* is the instance that the attribute was '
'accessed through,\n'
' or "None" when the attribute is accessed through the '
'*owner*.\n'
'\n'
' This method should return the computed attribute value or '
'raise an\n'
' "AttributeError" exception.\n'
'\n'
' **PEP 252** specifies that "__get__()" is callable with '
'one or two\n'
' arguments. Python’s own built-in descriptors support '
'this\n'
' specification; however, it is likely that some '
'third-party tools\n'
' have descriptors that require both arguments. Python’s '
'own\n'
' "__getattribute__()" implementation always passes in both '
'arguments\n'
' whether they are required or not.\n'
'\n'
'object.__set__(self, instance, value)\n'
'\n'
' Called to set the attribute on an instance *instance* of '
'the owner\n'
' class to a new value, *value*.\n'
'\n'
' Note, adding "__set__()" or "__delete__()" changes the '
'kind of\n'
' descriptor to a “data descriptor”. See Invoking '
'Descriptors for\n'
' more details.\n'
'\n'
'object.__delete__(self, instance)\n'
'\n'
' Called to delete the attribute on an instance *instance* '
'of the\n'
' owner class.\n'
'\n'
'object.__set_name__(self, owner, name)\n'
'\n'
' Called at the time the owning class *owner* is created. '
'The\n'
' descriptor has been assigned to *name*.\n'
'\n'
' New in version 3.6.\n'
'\n'
'The attribute "__objclass__" is interpreted by the "inspect" '
'module as\n'
'specifying the class where this object was defined (setting '
'this\n'
'appropriately can assist in runtime introspection of dynamic '
'class\n'
'attributes). For callables, it may indicate that an instance '
'of the\n'
'given type (or a subclass) is expected or required as the '
'first\n'
'positional argument (for example, CPython sets this '
'attribute for\n'
'unbound methods that are implemented in C).\n'
'\n'
'\n'
'Invoking Descriptors\n'
'--------------------\n'
'\n'
'In general, a descriptor is an object attribute with '
'“binding\n'
'behavior”, one whose attribute access has been overridden by '
'methods\n'
'in the descriptor protocol: "__get__()", "__set__()", and\n'
'"__delete__()". If any of those methods are defined for an '
'object, it\n'
'is said to be a descriptor.\n'
'\n'
'The default behavior for attribute access is to get, set, or '
'delete\n'
'the attribute from an object’s dictionary. For instance, '
'"a.x" has a\n'
'lookup chain starting with "a.__dict__[\'x\']", then\n'
'"type(a).__dict__[\'x\']", and continuing through the base '
'classes of\n'
'"type(a)" excluding metaclasses.\n'
'\n'
'However, if the looked-up value is an object defining one of '
'the\n'
'descriptor methods, then Python may override the default '
'behavior and\n'
'invoke the descriptor method instead. Where this occurs in '
'the\n'
'precedence chain depends on which descriptor methods were '
'defined and\n'
'how they were called.\n'
'\n'
'The starting point for descriptor invocation is a binding, '
'"a.x". How\n'
'the arguments are assembled depends on "a":\n'
'\n'
'Direct Call\n'
' The simplest and least common call is when user code '
'directly\n'
' invokes a descriptor method: "x.__get__(a)".\n'
'\n'
'Instance Binding\n'
' If binding to an object instance, "a.x" is transformed '
'into the\n'
' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
'\n'
'Class Binding\n'
' If binding to a class, "A.x" is transformed into the '
'call:\n'
' "A.__dict__[\'x\'].__get__(None, A)".\n'
'\n'
'Super Binding\n'
' If "a" is an instance of "super", then the binding '
'"super(B,\n'
' obj).m()" searches "obj.__class__.__mro__" for the base '
'class "A"\n'
' immediately preceding "B" and then invokes the descriptor '
'with the\n'
' call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n'
'\n'
'For instance bindings, the precedence of descriptor '
'invocation depends\n'
'on the which descriptor methods are defined. A descriptor '
'can define\n'
'any combination of "__get__()", "__set__()" and '
'"__delete__()". If it\n'
'does not define "__get__()", then accessing the attribute '
'will return\n'
'the descriptor object itself unless there is a value in the '
'object’s\n'
'instance dictionary. If the descriptor defines "__set__()" '
'and/or\n'
'"__delete__()", it is a data descriptor; if it defines '
'neither, it is\n'
'a non-data descriptor. Normally, data descriptors define '
'both\n'
'"__get__()" and "__set__()", while non-data descriptors have '
'just the\n'
'"__get__()" method. Data descriptors with "__get__()" and '
'"__set__()"\n'
'(and/or "__delete__()") defined always override a '
'redefinition in an\n'
'instance dictionary. In contrast, non-data descriptors can '
'be\n'
'overridden by instances.\n'
'\n'
'Python methods (including "staticmethod()" and '
'"classmethod()") are\n'
'implemented as non-data descriptors. Accordingly, instances '
'can\n'
'redefine and override methods. This allows individual '
'instances to\n'
'acquire behaviors that differ from other instances of the '
'same class.\n'
'\n'
'The "property()" function is implemented as a data '
'descriptor.\n'
'Accordingly, instances cannot override the behavior of a '
'property.\n'
'\n'
'\n'
'__slots__\n'
'---------\n'
'\n'
'*__slots__* allow us to explicitly declare data members '
'(like\n'
'properties) and deny the creation of *__dict__* and '
'*__weakref__*\n'
'(unless explicitly declared in *__slots__* or available in a '
'parent.)\n'
'\n'
'The space saved over using *__dict__* can be significant. '
'Attribute\n'
'lookup speed can be significantly improved as well.\n'
'\n'
'object.__slots__\n'
'\n'
' This class variable can be assigned a string, iterable, '
'or sequence\n'
' of strings with variable names used by instances. '
'*__slots__*\n'
' reserves space for the declared variables and prevents '
'the\n'
' automatic creation of *__dict__* and *__weakref__* for '
'each\n'
' instance.\n'
'\n'
'\n'
'Notes on using *__slots__*\n'
'~~~~~~~~~~~~~~~~~~~~~~~~~~\n'
'\n'
'* When inheriting from a class without *__slots__*, the '
'*__dict__*\n'
' and *__weakref__* attribute of the instances will always '
'be\n'
' accessible.\n'
'\n'
'* Without a *__dict__* variable, instances cannot be '
'assigned new\n'
' variables not listed in the *__slots__* definition. '
'Attempts to\n'
' assign to an unlisted variable name raises '
'"AttributeError". If\n'
' dynamic assignment of new variables is desired, then add\n'
' "\'__dict__\'" to the sequence of strings in the '
'*__slots__*\n'
' declaration.\n'
'\n'
'* Without a *__weakref__* variable for each instance, '
'classes\n'
' defining *__slots__* do not support weak references to '
'its\n'
' instances. If weak reference support is needed, then add\n'
' "\'__weakref__\'" to the sequence of strings in the '
'*__slots__*\n'
' declaration.\n'
'\n'
'* *__slots__* are implemented at the class level by '
'creating\n'
' descriptors (Implementing Descriptors) for each variable '
'name. As a\n'
' result, class attributes cannot be used to set default '
'values for\n'
' instance variables defined by *__slots__*; otherwise, the '
'class\n'
' attribute would overwrite the descriptor assignment.\n'
'\n'
'* The action of a *__slots__* declaration is not limited to '
'the\n'
' class where it is defined. *__slots__* declared in '
'parents are\n'
' available in child classes. However, child subclasses will '
'get a\n'
' *__dict__* and *__weakref__* unless they also define '
'*__slots__*\n'
' (which should only contain names of any *additional* '
'slots).\n'
'\n'
'* If a class defines a slot also defined in a base class, '
'the\n'
' instance variable defined by the base class slot is '
'inaccessible\n'
' (except by retrieving its descriptor directly from the '
'base class).\n'
' This renders the meaning of the program undefined. In the '
'future, a\n'
' check may be added to prevent this.\n'
'\n'
'* Nonempty *__slots__* does not work for classes derived '
'from\n'
' “variable-length” built-in types such as "int", "bytes" '
'and "tuple".\n'
'\n'
'* Any non-string iterable may be assigned to *__slots__*. '
'Mappings\n'
' may also be used; however, in the future, special meaning '
'may be\n'
' assigned to the values corresponding to each key.\n'
'\n'
'* *__class__* assignment works only if both classes have the '
'same\n'
' *__slots__*.\n'
'\n'
'* Multiple inheritance with multiple slotted parent classes '
'can be\n'
' used, but only one parent is allowed to have attributes '
'created by\n'
' slots (the other bases must have empty slot layouts) - '
'violations\n'
' raise "TypeError".\n'
'\n'
'* If an iterator is used for *__slots__* then a descriptor '
'is\n'
' created for each of the iterator’s values. However, the '
'*__slots__*\n'
' attribute will be an empty iterator.\n'
'\n'
'\n'
'Customizing class creation\n'
'==========================\n'
'\n'
'Whenever a class inherits from another class, '
'*__init_subclass__* is\n'
'called on that class. This way, it is possible to write '
'classes which\n'
'change the behavior of subclasses. This is closely related '
'to class\n'
'decorators, but where class decorators only affect the '
'specific class\n'
'they’re applied to, "__init_subclass__" solely applies to '
'future\n'
'subclasses of the class defining the method.\n'
'\n'
'classmethod object.__init_subclass__(cls)\n'
'\n'
' This method is called whenever the containing class is '
'subclassed.\n'
' *cls* is then the new subclass. If defined as a normal '
'instance\n'
' method, this method is implicitly converted to a class '
'method.\n'
'\n'
' Keyword arguments which are given to a new class are '
'passed to the\n'
' parent’s class "__init_subclass__". For compatibility '
'with other\n'
' classes using "__init_subclass__", one should take out '
'the needed\n'
' keyword arguments and pass the others over to the base '
'class, as\n'
' in:\n'
'\n'
' class Philosopher:\n'
' def __init_subclass__(cls, /, default_name, '
'**kwargs):\n'
' super().__init_subclass__(**kwargs)\n'
' cls.default_name = default_name\n'
'\n'
' class AustralianPhilosopher(Philosopher, '
'default_name="Bruce"):\n'
' pass\n'
'\n'
' The default implementation "object.__init_subclass__" '
'does nothing,\n'
' but raises an error if it is called with any arguments.\n'
'\n'
' Note: The metaclass hint "metaclass" is consumed by the '
'rest of\n'
' the type machinery, and is never passed to '
'"__init_subclass__"\n'
' implementations. The actual metaclass (rather than the '
'explicit\n'
' hint) can be accessed as "type(cls)".\n'
'\n'
' New in version 3.6.\n'
'\n'
'\n'
'Metaclasses\n'
'-----------\n'
'\n'
'By default, classes are constructed using "type()". The '
'class body is\n'
'executed in a new namespace and the class name is bound '
'locally to the\n'
'result of "type(name, bases, namespace)".\n'
'\n'
'The class creation process can be customized by passing the\n'
'"metaclass" keyword argument in the class definition line, '
'or by\n'
'inheriting from an existing class that included such an '
'argument. In\n'
'the following example, both "MyClass" and "MySubclass" are '
'instances\n'
'of "Meta":\n'
'\n'
' class Meta(type):\n'
' pass\n'
'\n'
' class MyClass(metaclass=Meta):\n'
' pass\n'
'\n'
' class MySubclass(MyClass):\n'
' pass\n'
'\n'
'Any other keyword arguments that are specified in the class '
'definition\n'
'are passed through to all metaclass operations described '
'below.\n'
'\n'
'When a class definition is executed, the following steps '
'occur:\n'
'\n'
'* MRO entries are resolved;\n'
'\n'
'* the appropriate metaclass is determined;\n'
'\n'
'* the class namespace is prepared;\n'
'\n'
'* the class body is executed;\n'
'\n'
'* the class object is created.\n'
'\n'
'\n'
'Resolving MRO entries\n'
'---------------------\n'
'\n'
'If a base that appears in class definition is not an '
'instance of\n'
'"type", then an "__mro_entries__" method is searched on it. '
'If found,\n'
'it is called with the original bases tuple. This method must '
'return a\n'
'tuple of classes that will be used instead of this base. The '
'tuple may\n'
'be empty, in such case the original base is ignored.\n'
'\n'
'See also: **PEP 560** - Core support for typing module and '
'generic\n'
' types\n'
'\n'
'\n'
'Determining the appropriate metaclass\n'
'-------------------------------------\n'
'\n'
'The appropriate metaclass for a class definition is '
'determined as\n'
'follows:\n'
'\n'
'* if no bases and no explicit metaclass are given, then '
'"type()" is\n'
' used;\n'
'\n'
'* if an explicit metaclass is given and it is *not* an '
'instance of\n'
' "type()", then it is used directly as the metaclass;\n'
'\n'
'* if an instance of "type()" is given as the explicit '
'metaclass, or\n'
' bases are defined, then the most derived metaclass is '
'used.\n'
'\n'
'The most derived metaclass is selected from the explicitly '
'specified\n'
'metaclass (if any) and the metaclasses (i.e. "type(cls)") of '
'all\n'
'specified base classes. The most derived metaclass is one '
'which is a\n'
'subtype of *all* of these candidate metaclasses. If none of '
'the\n'
'candidate metaclasses meets that criterion, then the class '
'definition\n'
'will fail with "TypeError".\n'
'\n'
'\n'
'Preparing the class namespace\n'
'-----------------------------\n'
'\n'
'Once the appropriate metaclass has been identified, then the '
'class\n'
'namespace is prepared. If the metaclass has a "__prepare__" '
'attribute,\n'
'it is called as "namespace = metaclass.__prepare__(name, '
'bases,\n'
'**kwds)" (where the additional keyword arguments, if any, '
'come from\n'
'the class definition).\n'
'\n'
'If the metaclass has no "__prepare__" attribute, then the '
'class\n'
'namespace is initialised as an empty ordered mapping.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3115** - Metaclasses in Python 3000\n'
' Introduced the "__prepare__" namespace hook\n'
'\n'
'\n'
'Executing the class body\n'
'------------------------\n'
'\n'
'The class body is executed (approximately) as "exec(body, '
'globals(),\n'
'namespace)". The key difference from a normal call to '
'"exec()" is that\n'
'lexical scoping allows the class body (including any '
'methods) to\n'
'reference names from the current and outer scopes when the '
'class\n'
'definition occurs inside a function.\n'
'\n'
'However, even when the class definition occurs inside the '
'function,\n'
'methods defined inside the class still cannot see names '
'defined at the\n'
'class scope. Class variables must be accessed through the '
'first\n'
'parameter of instance or class methods, or through the '
'implicit\n'
'lexically scoped "__class__" reference described in the next '
'section.\n'
'\n'
'\n'
'Creating the class object\n'
'-------------------------\n'
'\n'
'Once the class namespace has been populated by executing the '
'class\n'
'body, the class object is created by calling '
'"metaclass(name, bases,\n'
'namespace, **kwds)" (the additional keywords passed here are '
'the same\n'
'as those passed to "__prepare__").\n'
'\n'
'This class object is the one that will be referenced by the '
'zero-\n'
'argument form of "super()". "__class__" is an implicit '
'closure\n'
'reference created by the compiler if any methods in a class '
'body refer\n'
'to either "__class__" or "super". This allows the zero '
'argument form\n'
'of "super()" to correctly identify the class being defined '
'based on\n'
'lexical scoping, while the class or instance that was used '
'to make the\n'
'current call is identified based on the first argument '
'passed to the\n'
'method.\n'
'\n'
'**CPython implementation detail:** In CPython 3.6 and later, '
'the\n'
'"__class__" cell is passed to the metaclass as a '
'"__classcell__" entry\n'
'in the class namespace. If present, this must be propagated '
'up to the\n'
'"type.__new__" call in order for the class to be '
'initialised\n'
'correctly. Failing to do so will result in a "RuntimeError" '
'in Python\n'
'3.8.\n'
'\n'
'When using the default metaclass "type", or any metaclass '
'that\n'
'ultimately calls "type.__new__", the following additional\n'
'customisation steps are invoked after creating the class '
'object:\n'
'\n'
'* first, "type.__new__" collects all of the descriptors in '
'the class\n'
' namespace that define a "__set_name__()" method;\n'
'\n'
'* second, all of these "__set_name__" methods are called '
'with the\n'
' class being defined and the assigned name of that '
'particular\n'
' descriptor;\n'
'\n'
'* finally, the "__init_subclass__()" hook is called on the '
'immediate\n'
' parent of the new class in its method resolution order.\n'
'\n'
'After the class object is created, it is passed to the '
'class\n'
'decorators included in the class definition (if any) and the '
'resulting\n'
'object is bound in the local namespace as the defined '
'class.\n'
'\n'
'When a new class is created by "type.__new__", the object '
'provided as\n'
'the namespace parameter is copied to a new ordered mapping '
'and the\n'
'original object is discarded. The new copy is wrapped in a '
'read-only\n'
'proxy, which becomes the "__dict__" attribute of the class '
'object.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3135** - New super\n'
' Describes the implicit "__class__" closure reference\n'
'\n'
'\n'
'Uses for metaclasses\n'
'--------------------\n'
'\n'
'The potential uses for metaclasses are boundless. Some ideas '
'that have\n'
'been explored include enum, logging, interface checking, '
'automatic\n'
'delegation, automatic property creation, proxies, '
'frameworks, and\n'
'automatic resource locking/synchronization.\n'
'\n'
'\n'
'Customizing instance and subclass checks\n'
'========================================\n'
'\n'
'The following methods are used to override the default '
'behavior of the\n'
'"isinstance()" and "issubclass()" built-in functions.\n'
'\n'
'In particular, the metaclass "abc.ABCMeta" implements these '
'methods in\n'
'order to allow the addition of Abstract Base Classes (ABCs) '
'as\n'
'“virtual base classes” to any class or type (including '
'built-in\n'
'types), including other ABCs.\n'
'\n'
'class.__instancecheck__(self, instance)\n'
'\n'
' Return true if *instance* should be considered a (direct '
'or\n'
' indirect) instance of *class*. If defined, called to '
'implement\n'
' "isinstance(instance, class)".\n'
'\n'
'class.__subclasscheck__(self, subclass)\n'
'\n'
' Return true if *subclass* should be considered a (direct '
'or\n'
' indirect) subclass of *class*. If defined, called to '
'implement\n'
' "issubclass(subclass, class)".\n'
'\n'
'Note that these methods are looked up on the type '
'(metaclass) of a\n'
'class. They cannot be defined as class methods in the '
'actual class.\n'
'This is consistent with the lookup of special methods that '
'are called\n'
'on instances, only in this case the instance is itself a '
'class.\n'
'\n'
'See also:\n'
'\n'
' **PEP 3119** - Introducing Abstract Base Classes\n'
' Includes the specification for customizing '
'"isinstance()" and\n'
' "issubclass()" behavior through "__instancecheck__()" '
'and\n'
' "__subclasscheck__()", with motivation for this '
'functionality in\n'
' the context of adding Abstract Base Classes (see the '
'"abc"\n'
' module) to the language.\n'
'\n'
'\n'
'Emulating generic types\n'
'=======================\n'
'\n'
'One can implement the generic class syntax as specified by '
'**PEP 484**\n'
'(for example "List[int]") by defining a special method:\n'
'\n'
'classmethod object.__class_getitem__(cls, key)\n'
'\n'
' Return an object representing the specialization of a '
'generic class\n'
' by type arguments found in *key*.\n'
'\n'
'This method is looked up on the class object itself, and '
'when defined\n'
'in the class body, this method is implicitly a class '
'method. Note,\n'
'this mechanism is primarily reserved for use with static '
'type hints,\n'
'other usage is discouraged.\n'
'\n'
'See also: **PEP 560** - Core support for typing module and '
'generic\n'
' types\n'
'\n'
'\n'
'Emulating callable objects\n'
'==========================\n'
'\n'
'object.__call__(self[, args...])\n'
'\n'
' Called when the instance is “called” as a function; if '
'this method\n'
' is defined, "x(arg1, arg2, ...)" is a shorthand for\n'
' "x.__call__(arg1, arg2, ...)".\n'
'\n'
'\n'
'Emulating container types\n'
'=========================\n'
'\n'
'The following methods can be defined to implement container '
'objects.\n'
'Containers usually are sequences (such as lists or tuples) '
'or mappings\n'
'(like dictionaries), but can represent other containers as '
'well. The\n'
'first set of methods is used either to emulate a sequence or '
'to\n'
'emulate a mapping; the difference is that for a sequence, '
'the\n'
'allowable keys should be the integers *k* for which "0 <= k '
'< N" where\n'
'*N* is the length of the sequence, or slice objects, which '
'define a\n'
'range of items. It is also recommended that mappings '
'provide the\n'
'methods "keys()", "values()", "items()", "get()", '
'"clear()",\n'
'"setdefault()", "pop()", "popitem()", "copy()", and '
'"update()"\n'
'behaving similar to those for Python’s standard dictionary '
'objects.\n'
'The "collections.abc" module provides a "MutableMapping" '
'abstract base\n'
'class to help create those methods from a base set of '
'"__getitem__()",\n'
'"__setitem__()", "__delitem__()", and "keys()". Mutable '
'sequences\n'
'should provide methods "append()", "count()", "index()", '
'"extend()",\n'
'"insert()", "pop()", "remove()", "reverse()" and "sort()", '
'like Python\n'
'standard list objects. Finally, sequence types should '
'implement\n'
'addition (meaning concatenation) and multiplication '
'(meaning\n'
'repetition) by defining the methods "__add__()", '
'"__radd__()",\n'
'"__iadd__()", "__mul__()", "__rmul__()" and "__imul__()" '
'described\n'
'below; they should not define other numerical operators. It '
'is\n'
'recommended that both mappings and sequences implement the\n'
'"__contains__()" method to allow efficient use of the "in" '
'operator;\n'
'for mappings, "in" should search the mapping’s keys; for '
'sequences, it\n'
'should search through the values. It is further recommended '
'that both\n'
'mappings and sequences implement the "__iter__()" method to '
'allow\n'
'efficient iteration through the container; for mappings, '
'"__iter__()"\n'
'should iterate through the object’s keys; for sequences, it '
'should\n'
'iterate through the values.\n'
'\n'
'object.__len__(self)\n'
'\n'
' Called to implement the built-in function "len()". '
'Should return\n'
' the length of the object, an integer ">=" 0. Also, an '
'object that\n'
' doesn’t define a "__bool__()" method and whose '
'"__len__()" method\n'
' returns zero is considered to be false in a Boolean '
'context.\n'
'\n'
' **CPython implementation detail:** In CPython, the length '
'is\n'
' required to be at most "sys.maxsize". If the length is '
'larger than\n'
' "sys.maxsize" some features (such as "len()") may raise\n'
' "OverflowError". To prevent raising "OverflowError" by '
'truth value\n'
' testing, an object must define a "__bool__()" method.\n'
'\n'
'object.__length_hint__(self)\n'
'\n'
' Called to implement "operator.length_hint()". Should '
'return an\n'
' estimated length for the object (which may be greater or '
'less than\n'
' the actual length). The length must be an integer ">=" 0. '
'The\n'
' return value may also be "NotImplemented", which is '
'treated the\n'
' same as if the "__length_hint__" method didn’t exist at '
'all. This\n'
' method is purely an optimization and is never required '
'for\n'
' correctness.\n'
'\n'
' New in version 3.4.\n'
'\n'
'Note: Slicing is done exclusively with the following three '
'methods.\n'
' A call like\n'
'\n'
' a[1:2] = b\n'
'\n'
' is translated to\n'
'\n'
' a[slice(1, 2, None)] = b\n'
'\n'
' and so forth. Missing slice items are always filled in '
'with "None".\n'
'\n'
'object.__getitem__(self, key)\n'
'\n'
' Called to implement evaluation of "self[key]". For '
'sequence types,\n'
' the accepted keys should be integers and slice objects. '
'Note that\n'
' the special interpretation of negative indexes (if the '
'class wishes\n'
' to emulate a sequence type) is up to the "__getitem__()" '
'method. If\n'
' *key* is of an inappropriate type, "TypeError" may be '
'raised; if of\n'
' a value outside the set of indexes for the sequence '
'(after any\n'
' special interpretation of negative values), "IndexError" '
'should be\n'
' raised. For mapping types, if *key* is missing (not in '
'the\n'
' container), "KeyError" should be raised.\n'
'\n'
' Note: "for" loops expect that an "IndexError" will be '
'raised for\n'
' illegal indexes to allow proper detection of the end of '
'the\n'
' sequence.\n'
'\n'
'object.__setitem__(self, key, value)\n'
'\n'
' Called to implement assignment to "self[key]". Same note '
'as for\n'
' "__getitem__()". This should only be implemented for '
'mappings if\n'
' the objects support changes to the values for keys, or if '
'new keys\n'
' can be added, or for sequences if elements can be '
'replaced. The\n'
' same exceptions should be raised for improper *key* '
'values as for\n'
' the "__getitem__()" method.\n'
'\n'
'object.__delitem__(self, key)\n'
'\n'
' Called to implement deletion of "self[key]". Same note '
'as for\n'
' "__getitem__()". This should only be implemented for '
'mappings if\n'
' the objects support removal of keys, or for sequences if '
'elements\n'
' can be removed from the sequence. The same exceptions '
'should be\n'
' raised for improper *key* values as for the '
'"__getitem__()" method.\n'
'\n'
'object.__missing__(self, key)\n'
'\n'
' Called by "dict"."__getitem__()" to implement "self[key]" '
'for dict\n'
' subclasses when key is not in the dictionary.\n'
'\n'
'object.__iter__(self)\n'
'\n'
' This method is called when an iterator is required for a '
'container.\n'
' This method should return a new iterator object that can '
'iterate\n'
' over all the objects in the container. For mappings, it '
'should\n'
' iterate over the keys of the container.\n'
'\n'
' Iterator objects also need to implement this method; they '
'are\n'
' required to return themselves. For more information on '
'iterator\n'
' objects, see Iterator Types.\n'
'\n'
'object.__reversed__(self)\n'
'\n'
' Called (if present) by the "reversed()" built-in to '
'implement\n'
' reverse iteration. It should return a new iterator '
'object that\n'
' iterates over all the objects in the container in reverse '
'order.\n'
'\n'
' If the "__reversed__()" method is not provided, the '
'"reversed()"\n'
' built-in will fall back to using the sequence protocol '
'("__len__()"\n'
' and "__getitem__()"). Objects that support the sequence '
'protocol\n'
' should only provide "__reversed__()" if they can provide '
'an\n'
' implementation that is more efficient than the one '
'provided by\n'
' "reversed()".\n'
'\n'
'The membership test operators ("in" and "not in") are '
'normally\n'
'implemented as an iteration through a container. However, '
'container\n'
'objects can supply the following special method with a more '
'efficient\n'
'implementation, which also does not require the object be '
'iterable.\n'
'\n'
'object.__contains__(self, item)\n'
'\n'
' Called to implement membership test operators. Should '
'return true\n'
' if *item* is in *self*, false otherwise. For mapping '
'objects, this\n'
' should consider the keys of the mapping rather than the '
'values or\n'
' the key-item pairs.\n'
'\n'
' For objects that don’t define "__contains__()", the '
'membership test\n'
' first tries iteration via "__iter__()", then the old '
'sequence\n'
' iteration protocol via "__getitem__()", see this section '
'in the\n'
' language reference.\n'
'\n'
'\n'
'Emulating numeric types\n'
'=======================\n'
'\n'
'The following methods can be defined to emulate numeric '
'objects.\n'
'Methods corresponding to operations that are not supported '
'by the\n'
'particular kind of number implemented (e.g., bitwise '
'operations for\n'
'non-integral numbers) should be left undefined.\n'
'\n'
'object.__add__(self, other)\n'
'object.__sub__(self, other)\n'
'object.__mul__(self, other)\n'
'object.__matmul__(self, other)\n'
'object.__truediv__(self, other)\n'
'object.__floordiv__(self, other)\n'
'object.__mod__(self, other)\n'
'object.__divmod__(self, other)\n'
'object.__pow__(self, other[, modulo])\n'
'object.__lshift__(self, other)\n'
'object.__rshift__(self, other)\n'
'object.__and__(self, other)\n'
'object.__xor__(self, other)\n'
'object.__or__(self, other)\n'
'\n'
' These methods are called to implement the binary '
'arithmetic\n'
' operations ("+", "-", "*", "@", "/", "//", "%", '
'"divmod()",\n'
' "pow()", "**", "<<", ">>", "&", "^", "|"). For instance, '
'to\n'
' evaluate the expression "x + y", where *x* is an instance '
'of a\n'
' class that has an "__add__()" method, "x.__add__(y)" is '
'called.\n'
' The "__divmod__()" method should be the equivalent to '
'using\n'
' "__floordiv__()" and "__mod__()"; it should not be '
'related to\n'
' "__truediv__()". Note that "__pow__()" should be defined '
'to accept\n'
' an optional third argument if the ternary version of the '
'built-in\n'
' "pow()" function is to be supported.\n'
'\n'
' If one of those methods does not support the operation '
'with the\n'
' supplied arguments, it should return "NotImplemented".\n'
'\n'
'object.__radd__(self, other)\n'
'object.__rsub__(self, other)\n'
'object.__rmul__(self, other)\n'
'object.__rmatmul__(self, other)\n'
'object.__rtruediv__(self, other)\n'
'object.__rfloordiv__(self, other)\n'
'object.__rmod__(self, other)\n'
'object.__rdivmod__(self, other)\n'
'object.__rpow__(self, other)\n'
'object.__rlshift__(self, other)\n'
'object.__rrshift__(self, other)\n'
'object.__rand__(self, other)\n'
'object.__rxor__(self, other)\n'
'object.__ror__(self, other)\n'
'\n'
' These methods are called to implement the binary '
'arithmetic\n'
' operations ("+", "-", "*", "@", "/", "//", "%", '
'"divmod()",\n'
' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
'(swapped)\n'
' operands. These functions are only called if the left '
'operand does\n'
' not support the corresponding operation [3] and the '
'operands are of\n'
' different types. [4] For instance, to evaluate the '
'expression "x -\n'
' y", where *y* is an instance of a class that has an '
'"__rsub__()"\n'
' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
'returns\n'
' *NotImplemented*.\n'
'\n'
' Note that ternary "pow()" will not try calling '
'"__rpow__()" (the\n'
' coercion rules would become too complicated).\n'
'\n'
' Note: If the right operand’s type is a subclass of the '
'left\n'
' operand’s type and that subclass provides the reflected '
'method\n'
' for the operation, this method will be called before '
'the left\n'
' operand’s non-reflected method. This behavior allows '
'subclasses\n'
' to override their ancestors’ operations.\n'
'\n'
'object.__iadd__(self, other)\n'
'object.__isub__(self, other)\n'
'object.__imul__(self, other)\n'
'object.__imatmul__(self, other)\n'
'object.__itruediv__(self, other)\n'
'object.__ifloordiv__(self, other)\n'
'object.__imod__(self, other)\n'
'object.__ipow__(self, other[, modulo])\n'
'object.__ilshift__(self, other)\n'
'object.__irshift__(self, other)\n'
'object.__iand__(self, other)\n'
'object.__ixor__(self, other)\n'
'object.__ior__(self, other)\n'
'\n'
' These methods are called to implement the augmented '
'arithmetic\n'
' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
'"**=",\n'
' "<<=", ">>=", "&=", "^=", "|="). These methods should '
'attempt to\n'
' do the operation in-place (modifying *self*) and return '
'the result\n'
' (which could be, but does not have to be, *self*). If a '
'specific\n'
' method is not defined, the augmented assignment falls '
'back to the\n'
' normal methods. For instance, if *x* is an instance of a '
'class\n'
' with an "__iadd__()" method, "x += y" is equivalent to "x '
'=\n'
' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
'"y.__radd__(x)" are\n'
' considered, as with the evaluation of "x + y". In '
'certain\n'
' situations, augmented assignment can result in unexpected '
'errors\n'
' (see Why does a_tuple[i] += [‘item’] raise an exception '
'when the\n'
' addition works?), but this behavior is in fact part of '
'the data\n'
' model.\n'
'\n'
'object.__neg__(self)\n'
'object.__pos__(self)\n'
'object.__abs__(self)\n'
'object.__invert__(self)\n'
'\n'
' Called to implement the unary arithmetic operations ("-", '
'"+",\n'
' "abs()" and "~").\n'
'\n'
'object.__complex__(self)\n'
'object.__int__(self)\n'
'object.__float__(self)\n'
'\n'
' Called to implement the built-in functions "complex()", '
'"int()" and\n'
' "float()". Should return a value of the appropriate '
'type.\n'
'\n'
'object.__index__(self)\n'
'\n'
' Called to implement "operator.index()", and whenever '
'Python needs\n'
' to losslessly convert the numeric object to an integer '
'object (such\n'
' as in slicing, or in the built-in "bin()", "hex()" and '
'"oct()"\n'
' functions). Presence of this method indicates that the '
'numeric\n'
' object is an integer type. Must return an integer.\n'
'\n'
' If "__int__()", "__float__()" and "__complex__()" are not '
'defined\n'
' then corresponding built-in functions "int()", "float()" '
'and\n'
' "complex()" fall back to "__index__()".\n'
'\n'
'object.__round__(self[, ndigits])\n'
'object.__trunc__(self)\n'
'object.__floor__(self)\n'
'object.__ceil__(self)\n'
'\n'
' Called to implement the built-in function "round()" and '
'"math"\n'
' functions "trunc()", "floor()" and "ceil()". Unless '
'*ndigits* is\n'
' passed to "__round__()" all these methods should return '
'the value\n'
' of the object truncated to an "Integral" (typically an '
'"int").\n'
'\n'
' If "__int__()" is not defined then the built-in function '
'"int()"\n'
' falls back to "__trunc__()".\n'
'\n'
'\n'
'With Statement Context Managers\n'
'===============================\n'
'\n'
'A *context manager* is an object that defines the runtime '
'context to\n'
'be established when executing a "with" statement. The '
'context manager\n'
'handles the entry into, and the exit from, the desired '
'runtime context\n'
'for the execution of the block of code. Context managers '
'are normally\n'
'invoked using the "with" statement (described in section The '
'with\n'
'statement), but can also be used by directly invoking their '
'methods.\n'
'\n'
'Typical uses of context managers include saving and '
'restoring various\n'
'kinds of global state, locking and unlocking resources, '
'closing opened\n'
'files, etc.\n'
'\n'
'For more information on context managers, see Context '
'Manager Types.\n'
'\n'
'object.__enter__(self)\n'
'\n'
' Enter the runtime context related to this object. The '
'"with"\n'
' statement will bind this method’s return value to the '
'target(s)\n'
' specified in the "as" clause of the statement, if any.\n'
'\n'
'object.__exit__(self, exc_type, exc_value, traceback)\n'
'\n'
' Exit the runtime context related to this object. The '
'parameters\n'
' describe the exception that caused the context to be '
'exited. If the\n'
' context was exited without an exception, all three '
'arguments will\n'
' be "None".\n'
'\n'
' If an exception is supplied, and the method wishes to '
'suppress the\n'
' exception (i.e., prevent it from being propagated), it '
'should\n'
' return a true value. Otherwise, the exception will be '
'processed\n'
' normally upon exit from this method.\n'
'\n'
' Note that "__exit__()" methods should not reraise the '
'passed-in\n'
' exception; this is the caller’s responsibility.\n'
'\n'
'See also:\n'
'\n'
' **PEP 343** - The “with” statement\n'
' The specification, background, and examples for the '
'Python "with"\n'
' statement.\n'
'\n'
'\n'
'Special method lookup\n'
'=====================\n'
'\n'
'For custom classes, implicit invocations of special methods '
'are only\n'
'guaranteed to work correctly if defined on an object’s type, '
'not in\n'
'the object’s instance dictionary. That behaviour is the '
'reason why\n'
'the following code raises an exception:\n'
'\n'
' >>> class C:\n'
' ... pass\n'
' ...\n'
' >>> c = C()\n'
' >>> c.__len__ = lambda: 5\n'
' >>> len(c)\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 1, in <module>\n'
" TypeError: object of type 'C' has no len()\n"
'\n'
'The rationale behind this behaviour lies with a number of '
'special\n'
'methods such as "__hash__()" and "__repr__()" that are '
'implemented by\n'
'all objects, including type objects. If the implicit lookup '
'of these\n'
'methods used the conventional lookup process, they would '
'fail when\n'
'invoked on the type object itself:\n'
'\n'
' >>> 1 .__hash__() == hash(1)\n'
' True\n'
' >>> int.__hash__() == hash(int)\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 1, in <module>\n'
" TypeError: descriptor '__hash__' of 'int' object needs an "
'argument\n'
'\n'
'Incorrectly attempting to invoke an unbound method of a '
'class in this\n'
'way is sometimes referred to as ‘metaclass confusion’, and '
'is avoided\n'
'by bypassing the instance when looking up special methods:\n'
'\n'
' >>> type(1).__hash__(1) == hash(1)\n'
' True\n'
' >>> type(int).__hash__(int) == hash(int)\n'
' True\n'
'\n'
'In addition to bypassing any instance attributes in the '
'interest of\n'
'correctness, implicit special method lookup generally also '
'bypasses\n'
'the "__getattribute__()" method even of the object’s '
'metaclass:\n'
'\n'
' >>> class Meta(type):\n'
' ... def __getattribute__(*args):\n'
' ... print("Metaclass getattribute invoked")\n'
' ... return type.__getattribute__(*args)\n'
' ...\n'
' >>> class C(object, metaclass=Meta):\n'
' ... def __len__(self):\n'
' ... return 10\n'
' ... def __getattribute__(*args):\n'
' ... print("Class getattribute invoked")\n'
' ... return object.__getattribute__(*args)\n'
' ...\n'
' >>> c = C()\n'
' >>> c.__len__() # Explicit lookup via '
'instance\n'
' Class getattribute invoked\n'
' 10\n'
' >>> type(c).__len__(c) # Explicit lookup via '
'type\n'
' Metaclass getattribute invoked\n'
' 10\n'
' >>> len(c) # Implicit lookup\n'
' 10\n'
'\n'
'Bypassing the "__getattribute__()" machinery in this fashion '
'provides\n'
'significant scope for speed optimisations within the '
'interpreter, at\n'
'the cost of some flexibility in the handling of special '
'methods (the\n'
'special method *must* be set on the class object itself in '
'order to be\n'
'consistently invoked by the interpreter).\n',
'string-methods': 'String Methods\n'
'**************\n'
'\n'
'Strings implement all of the common sequence operations, '
'along with\n'
'the additional methods described below.\n'
'\n'
'Strings also support two styles of string formatting, one '
'providing a\n'
'large degree of flexibility and customization (see '
'"str.format()",\n'
'Format String Syntax and Custom String Formatting) and the '
'other based\n'
'on C "printf" style formatting that handles a narrower '
'range of types\n'
'and is slightly harder to use correctly, but is often '
'faster for the\n'
'cases it can handle (printf-style String Formatting).\n'
'\n'
'The Text Processing Services section of the standard '
'library covers a\n'
'number of other modules that provide various text related '
'utilities\n'
'(including regular expression support in the "re" '
'module).\n'
'\n'
'str.capitalize()\n'
'\n'
' Return a copy of the string with its first character '
'capitalized\n'
' and the rest lowercased.\n'
'\n'
' Changed in version 3.8: The first character is now put '
'into\n'
' titlecase rather than uppercase. This means that '
'characters like\n'
' digraphs will only have their first letter capitalized, '
'instead of\n'
' the full character.\n'
'\n'
'str.casefold()\n'
'\n'
' Return a casefolded copy of the string. Casefolded '
'strings may be\n'
' used for caseless matching.\n'
'\n'
' Casefolding is similar to lowercasing but more '
'aggressive because\n'
' it is intended to remove all case distinctions in a '
'string. For\n'
' example, the German lowercase letter "\'ß\'" is '
'equivalent to ""ss"".\n'
' Since it is already lowercase, "lower()" would do '
'nothing to "\'ß\'";\n'
' "casefold()" converts it to ""ss"".\n'
'\n'
' The casefolding algorithm is described in section 3.13 '
'of the\n'
' Unicode Standard.\n'
'\n'
' New in version 3.3.\n'
'\n'
'str.center(width[, fillchar])\n'
'\n'
' Return centered in a string of length *width*. Padding '
'is done\n'
' using the specified *fillchar* (default is an ASCII '
'space). The\n'
' original string is returned if *width* is less than or '
'equal to\n'
' "len(s)".\n'
'\n'
'str.count(sub[, start[, end]])\n'
'\n'
' Return the number of non-overlapping occurrences of '
'substring *sub*\n'
' in the range [*start*, *end*]. Optional arguments '
'*start* and\n'
' *end* are interpreted as in slice notation.\n'
'\n'
'str.encode(encoding="utf-8", errors="strict")\n'
'\n'
' Return an encoded version of the string as a bytes '
'object. Default\n'
' encoding is "\'utf-8\'". *errors* may be given to set a '
'different\n'
' error handling scheme. The default for *errors* is '
'"\'strict\'",\n'
' meaning that encoding errors raise a "UnicodeError". '
'Other possible\n'
' values are "\'ignore\'", "\'replace\'", '
'"\'xmlcharrefreplace\'",\n'
' "\'backslashreplace\'" and any other name registered '
'via\n'
' "codecs.register_error()", see section Error Handlers. '
'For a list\n'
' of possible encodings, see section Standard Encodings.\n'
'\n'
' By default, the *errors* argument is not checked for '
'best\n'
' performances, but only used at the first encoding '
'error. Enable the\n'
' development mode ("-X" "dev" option), or use a debug '
'build, to\n'
' check *errors*.\n'
'\n'
' Changed in version 3.1: Support for keyword arguments '
'added.\n'
'\n'
' Changed in version 3.9: The *errors* is now checked in '
'development\n'
' mode and in debug mode.\n'
'\n'
'str.endswith(suffix[, start[, end]])\n'
'\n'
' Return "True" if the string ends with the specified '
'*suffix*,\n'
' otherwise return "False". *suffix* can also be a tuple '
'of suffixes\n'
' to look for. With optional *start*, test beginning at '
'that\n'
' position. With optional *end*, stop comparing at that '
'position.\n'
'\n'
'str.expandtabs(tabsize=8)\n'
'\n'
' Return a copy of the string where all tab characters '
'are replaced\n'
' by one or more spaces, depending on the current column '
'and the\n'
' given tab size. Tab positions occur every *tabsize* '
'characters\n'
' (default is 8, giving tab positions at columns 0, 8, 16 '
'and so on).\n'
' To expand the string, the current column is set to zero '
'and the\n'
' string is examined character by character. If the '
'character is a\n'
' tab ("\\t"), one or more space characters are inserted '
'in the result\n'
' until the current column is equal to the next tab '
'position. (The\n'
' tab character itself is not copied.) If the character '
'is a newline\n'
' ("\\n") or return ("\\r"), it is copied and the current '
'column is\n'
' reset to zero. Any other character is copied unchanged '
'and the\n'
' current column is incremented by one regardless of how '
'the\n'
' character is represented when printed.\n'
'\n'
" >>> '01\\t012\\t0123\\t01234'.expandtabs()\n"
" '01 012 0123 01234'\n"
" >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n"
" '01 012 0123 01234'\n"
'\n'
'str.find(sub[, start[, end]])\n'
'\n'
' Return the lowest index in the string where substring '
'*sub* is\n'
' found within the slice "s[start:end]". Optional '
'arguments *start*\n'
' and *end* are interpreted as in slice notation. Return '
'"-1" if\n'
' *sub* is not found.\n'
'\n'
' Note: The "find()" method should be used only if you '
'need to know\n'
' the position of *sub*. To check if *sub* is a '
'substring or not,\n'
' use the "in" operator:\n'
'\n'
" >>> 'Py' in 'Python'\n"
' True\n'
'\n'
'str.format(*args, **kwargs)\n'
'\n'
' Perform a string formatting operation. The string on '
'which this\n'
' method is called can contain literal text or '
'replacement fields\n'
' delimited by braces "{}". Each replacement field '
'contains either\n'
' the numeric index of a positional argument, or the name '
'of a\n'
' keyword argument. Returns a copy of the string where '
'each\n'
' replacement field is replaced with the string value of '
'the\n'
' corresponding argument.\n'
'\n'
' >>> "The sum of 1 + 2 is {0}".format(1+2)\n'
" 'The sum of 1 + 2 is 3'\n"
'\n'
' See Format String Syntax for a description of the '
'various\n'
' formatting options that can be specified in format '
'strings.\n'
'\n'
' Note: When formatting a number ("int", "float", '
'"complex",\n'
' "decimal.Decimal" and subclasses) with the "n" type '
'(ex:\n'
' "\'{:n}\'.format(1234)"), the function temporarily '
'sets the\n'
' "LC_CTYPE" locale to the "LC_NUMERIC" locale to '
'decode\n'
' "decimal_point" and "thousands_sep" fields of '
'"localeconv()" if\n'
' they are non-ASCII or longer than 1 byte, and the '
'"LC_NUMERIC"\n'
' locale is different than the "LC_CTYPE" locale. This '
'temporary\n'
' change affects other threads.\n'
'\n'
' Changed in version 3.7: When formatting a number with '
'the "n" type,\n'
' the function sets temporarily the "LC_CTYPE" locale to '
'the\n'
' "LC_NUMERIC" locale in some cases.\n'
'\n'
'str.format_map(mapping)\n'
'\n'
' Similar to "str.format(**mapping)", except that '
'"mapping" is used\n'
' directly and not copied to a "dict". This is useful if '
'for example\n'
' "mapping" is a dict subclass:\n'
'\n'
' >>> class Default(dict):\n'
' ... def __missing__(self, key):\n'
' ... return key\n'
' ...\n'
" >>> '{name} was born in "
"{country}'.format_map(Default(name='Guido'))\n"
" 'Guido was born in country'\n"
'\n'
' New in version 3.2.\n'
'\n'
'str.index(sub[, start[, end]])\n'
'\n'
' Like "find()", but raise "ValueError" when the '
'substring is not\n'
' found.\n'
'\n'
'str.isalnum()\n'
'\n'
' Return "True" if all characters in the string are '
'alphanumeric and\n'
' there is at least one character, "False" otherwise. A '
'character\n'
' "c" is alphanumeric if one of the following returns '
'"True":\n'
' "c.isalpha()", "c.isdecimal()", "c.isdigit()", or '
'"c.isnumeric()".\n'
'\n'
'str.isalpha()\n'
'\n'
' Return "True" if all characters in the string are '
'alphabetic and\n'
' there is at least one character, "False" otherwise. '
'Alphabetic\n'
' characters are those characters defined in the Unicode '
'character\n'
' database as “Letter”, i.e., those with general category '
'property\n'
' being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note '
'that this is\n'
' different from the “Alphabetic” property defined in the '
'Unicode\n'
' Standard.\n'
'\n'
'str.isascii()\n'
'\n'
' Return "True" if the string is empty or all characters '
'in the\n'
' string are ASCII, "False" otherwise. ASCII characters '
'have code\n'
' points in the range U+0000-U+007F.\n'
'\n'
' New in version 3.7.\n'
'\n'
'str.isdecimal()\n'
'\n'
' Return "True" if all characters in the string are '
'decimal\n'
' characters and there is at least one character, "False" '
'otherwise.\n'
' Decimal characters are those that can be used to form '
'numbers in\n'
' base 10, e.g. U+0660, ARABIC-INDIC DIGIT ZERO. '
'Formally a decimal\n'
' character is a character in the Unicode General '
'Category “Nd”.\n'
'\n'
'str.isdigit()\n'
'\n'
' Return "True" if all characters in the string are '
'digits and there\n'
' is at least one character, "False" otherwise. Digits '
'include\n'
' decimal characters and digits that need special '
'handling, such as\n'
' the compatibility superscript digits. This covers '
'digits which\n'
' cannot be used to form numbers in base 10, like the '
'Kharosthi\n'
' numbers. Formally, a digit is a character that has the '
'property\n'
' value Numeric_Type=Digit or Numeric_Type=Decimal.\n'
'\n'
'str.isidentifier()\n'
'\n'
' Return "True" if the string is a valid identifier '
'according to the\n'
' language definition, section Identifiers and keywords.\n'
'\n'
' Call "keyword.iskeyword()" to test whether string "s" '
'is a reserved\n'
' identifier, such as "def" and "class".\n'
'\n'
' Example:\n'
'\n'
' >>> from keyword import iskeyword\n'
'\n'
" >>> 'hello'.isidentifier(), iskeyword('hello')\n"
' True, False\n'
" >>> 'def'.isidentifier(), iskeyword('def')\n"
' True, True\n'
'\n'
'str.islower()\n'
'\n'
' Return "True" if all cased characters [4] in the string '
'are\n'
' lowercase and there is at least one cased character, '
'"False"\n'
' otherwise.\n'
'\n'
'str.isnumeric()\n'
'\n'
' Return "True" if all characters in the string are '
'numeric\n'
' characters, and there is at least one character, '
'"False" otherwise.\n'
' Numeric characters include digit characters, and all '
'characters\n'
' that have the Unicode numeric value property, e.g. '
'U+2155, VULGAR\n'
' FRACTION ONE FIFTH. Formally, numeric characters are '
'those with\n'
' the property value Numeric_Type=Digit, '
'Numeric_Type=Decimal or\n'
' Numeric_Type=Numeric.\n'
'\n'
'str.isprintable()\n'
'\n'
' Return "True" if all characters in the string are '
'printable or the\n'
' string is empty, "False" otherwise. Nonprintable '
'characters are\n'
' those characters defined in the Unicode character '
'database as\n'
' “Other” or “Separator”, excepting the ASCII space '
'(0x20) which is\n'
' considered printable. (Note that printable characters '
'in this\n'
' context are those which should not be escaped when '
'"repr()" is\n'
' invoked on a string. It has no bearing on the handling '
'of strings\n'
' written to "sys.stdout" or "sys.stderr".)\n'
'\n'
'str.isspace()\n'
'\n'
' Return "True" if there are only whitespace characters '
'in the string\n'
' and there is at least one character, "False" '
'otherwise.\n'
'\n'
' A character is *whitespace* if in the Unicode character '
'database\n'
' (see "unicodedata"), either its general category is '
'"Zs"\n'
' (“Separator, space”), or its bidirectional class is one '
'of "WS",\n'
' "B", or "S".\n'
'\n'
'str.istitle()\n'
'\n'
' Return "True" if the string is a titlecased string and '
'there is at\n'
' least one character, for example uppercase characters '
'may only\n'
' follow uncased characters and lowercase characters only '
'cased ones.\n'
' Return "False" otherwise.\n'
'\n'
'str.isupper()\n'
'\n'
' Return "True" if all cased characters [4] in the string '
'are\n'
' uppercase and there is at least one cased character, '
'"False"\n'
' otherwise.\n'
'\n'
" >>> 'BANANA'.isupper()\n"
' True\n'
" >>> 'banana'.isupper()\n"
' False\n'
" >>> 'baNana'.isupper()\n"
' False\n'
" >>> ' '.isupper()\n"
' False\n'
'\n'
'str.join(iterable)\n'
'\n'
' Return a string which is the concatenation of the '
'strings in\n'
' *iterable*. A "TypeError" will be raised if there are '
'any non-\n'
' string values in *iterable*, including "bytes" '
'objects. The\n'
' separator between elements is the string providing this '
'method.\n'
'\n'
'str.ljust(width[, fillchar])\n'
'\n'
' Return the string left justified in a string of length '
'*width*.\n'
' Padding is done using the specified *fillchar* (default '
'is an ASCII\n'
' space). The original string is returned if *width* is '
'less than or\n'
' equal to "len(s)".\n'
'\n'
'str.lower()\n'
'\n'
' Return a copy of the string with all the cased '
'characters [4]\n'
' converted to lowercase.\n'
'\n'
' The lowercasing algorithm used is described in section '
'3.13 of the\n'
' Unicode Standard.\n'
'\n'
'str.lstrip([chars])\n'
'\n'
' Return a copy of the string with leading characters '
'removed. The\n'
' *chars* argument is a string specifying the set of '
'characters to be\n'
' removed. If omitted or "None", the *chars* argument '
'defaults to\n'
' removing whitespace. The *chars* argument is not a '
'prefix; rather,\n'
' all combinations of its values are stripped:\n'
'\n'
" >>> ' spacious '.lstrip()\n"
" 'spacious '\n"
" >>> 'www.example.com'.lstrip('cmowz.')\n"
" 'example.com'\n"
'\n'
'static str.maketrans(x[, y[, z]])\n'
'\n'
' This static method returns a translation table usable '
'for\n'
' "str.translate()".\n'
'\n'
' If there is only one argument, it must be a dictionary '
'mapping\n'
' Unicode ordinals (integers) or characters (strings of '
'length 1) to\n'
' Unicode ordinals, strings (of arbitrary lengths) or '
'"None".\n'
' Character keys will then be converted to ordinals.\n'
'\n'
' If there are two arguments, they must be strings of '
'equal length,\n'
' and in the resulting dictionary, each character in x '
'will be mapped\n'
' to the character at the same position in y. If there '
'is a third\n'
' argument, it must be a string, whose characters will be '
'mapped to\n'
' "None" in the result.\n'
'\n'
'str.partition(sep)\n'
'\n'
' Split the string at the first occurrence of *sep*, and '
'return a\n'
' 3-tuple containing the part before the separator, the '
'separator\n'
' itself, and the part after the separator. If the '
'separator is not\n'
' found, return a 3-tuple containing the string itself, '
'followed by\n'
' two empty strings.\n'
'\n'
'str.replace(old, new[, count])\n'
'\n'
' Return a copy of the string with all occurrences of '
'substring *old*\n'
' replaced by *new*. If the optional argument *count* is '
'given, only\n'
' the first *count* occurrences are replaced.\n'
'\n'
'str.rfind(sub[, start[, end]])\n'
'\n'
' Return the highest index in the string where substring '
'*sub* is\n'
' found, such that *sub* is contained within '
'"s[start:end]".\n'
' Optional arguments *start* and *end* are interpreted as '
'in slice\n'
' notation. Return "-1" on failure.\n'
'\n'
'str.rindex(sub[, start[, end]])\n'
'\n'
' Like "rfind()" but raises "ValueError" when the '
'substring *sub* is\n'
' not found.\n'
'\n'
'str.rjust(width[, fillchar])\n'
'\n'
' Return the string right justified in a string of length '
'*width*.\n'
' Padding is done using the specified *fillchar* (default '
'is an ASCII\n'
' space). The original string is returned if *width* is '
'less than or\n'
' equal to "len(s)".\n'
'\n'
'str.rpartition(sep)\n'
'\n'
' Split the string at the last occurrence of *sep*, and '
'return a\n'
' 3-tuple containing the part before the separator, the '
'separator\n'
' itself, and the part after the separator. If the '
'separator is not\n'
' found, return a 3-tuple containing two empty strings, '
'followed by\n'
' the string itself.\n'
'\n'
'str.rsplit(sep=None, maxsplit=-1)\n'
'\n'
' Return a list of the words in the string, using *sep* '
'as the\n'
' delimiter string. If *maxsplit* is given, at most '
'*maxsplit* splits\n'
' are done, the *rightmost* ones. If *sep* is not '
'specified or\n'
' "None", any whitespace string is a separator. Except '
'for splitting\n'
' from the right, "rsplit()" behaves like "split()" which '
'is\n'
' described in detail below.\n'
'\n'
'str.rstrip([chars])\n'
'\n'
' Return a copy of the string with trailing characters '
'removed. The\n'
' *chars* argument is a string specifying the set of '
'characters to be\n'
' removed. If omitted or "None", the *chars* argument '
'defaults to\n'
' removing whitespace. The *chars* argument is not a '
'suffix; rather,\n'
' all combinations of its values are stripped:\n'
'\n'
" >>> ' spacious '.rstrip()\n"
" ' spacious'\n"
" >>> 'mississippi'.rstrip('ipz')\n"
" 'mississ'\n"
'\n'
'str.split(sep=None, maxsplit=-1)\n'
'\n'
' Return a list of the words in the string, using *sep* '
'as the\n'
' delimiter string. If *maxsplit* is given, at most '
'*maxsplit*\n'
' splits are done (thus, the list will have at most '
'"maxsplit+1"\n'
' elements). If *maxsplit* is not specified or "-1", '
'then there is\n'
' no limit on the number of splits (all possible splits '
'are made).\n'
'\n'
' If *sep* is given, consecutive delimiters are not '
'grouped together\n'
' and are deemed to delimit empty strings (for example,\n'
' "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', '
'\'2\']"). The *sep* argument\n'
' may consist of multiple characters (for example,\n'
' "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', '
'\'3\']"). Splitting an\n'
' empty string with a specified separator returns '
'"[\'\']".\n'
'\n'
' For example:\n'
'\n'
" >>> '1,2,3'.split(',')\n"
" ['1', '2', '3']\n"
" >>> '1,2,3'.split(',', maxsplit=1)\n"
" ['1', '2,3']\n"
" >>> '1,2,,3,'.split(',')\n"
" ['1', '2', '', '3', '']\n"
'\n'
' If *sep* is not specified or is "None", a different '
'splitting\n'
' algorithm is applied: runs of consecutive whitespace '
'are regarded\n'
' as a single separator, and the result will contain no '
'empty strings\n'
' at the start or end if the string has leading or '
'trailing\n'
' whitespace. Consequently, splitting an empty string or '
'a string\n'
' consisting of just whitespace with a "None" separator '
'returns "[]".\n'
'\n'
' For example:\n'
'\n'
" >>> '1 2 3'.split()\n"
" ['1', '2', '3']\n"
" >>> '1 2 3'.split(maxsplit=1)\n"
" ['1', '2 3']\n"
" >>> ' 1 2 3 '.split()\n"
" ['1', '2', '3']\n"
'\n'
'str.splitlines([keepends])\n'
'\n'
' Return a list of the lines in the string, breaking at '
'line\n'
' boundaries. Line breaks are not included in the '
'resulting list\n'
' unless *keepends* is given and true.\n'
'\n'
' This method splits on the following line boundaries. '
'In\n'
' particular, the boundaries are a superset of *universal '
'newlines*.\n'
'\n'
' '
'+-------------------------+-------------------------------+\n'
' | Representation | '
'Description |\n'
' '
'|=========================|===============================|\n'
' | "\\n" | Line '
'Feed |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\r" | Carriage '
'Return |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\r\\n" | Carriage Return + Line '
'Feed |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\v" or "\\x0b" | Line '
'Tabulation |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\f" or "\\x0c" | Form '
'Feed |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\x1c" | File '
'Separator |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\x1d" | Group '
'Separator |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\x1e" | Record '
'Separator |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\x85" | Next Line (C1 Control '
'Code) |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\u2028" | Line '
'Separator |\n'
' '
'+-------------------------+-------------------------------+\n'
' | "\\u2029" | Paragraph '
'Separator |\n'
' '
'+-------------------------+-------------------------------+\n'
'\n'
' Changed in version 3.2: "\\v" and "\\f" added to list '
'of line\n'
' boundaries.\n'
'\n'
' For example:\n'
'\n'
" >>> 'ab c\\n\\nde fg\\rkl\\r\\n'.splitlines()\n"
" ['ab c', '', 'de fg', 'kl']\n"
" >>> 'ab c\\n\\nde "
"fg\\rkl\\r\\n'.splitlines(keepends=True)\n"
" ['ab c\\n', '\\n', 'de fg\\r', 'kl\\r\\n']\n"
'\n'
' Unlike "split()" when a delimiter string *sep* is '
'given, this\n'
' method returns an empty list for the empty string, and '
'a terminal\n'
' line break does not result in an extra line:\n'
'\n'
' >>> "".splitlines()\n'
' []\n'
' >>> "One line\\n".splitlines()\n'
" ['One line']\n"
'\n'
' For comparison, "split(\'\\n\')" gives:\n'
'\n'
" >>> ''.split('\\n')\n"
" ['']\n"
" >>> 'Two lines\\n'.split('\\n')\n"
" ['Two lines', '']\n"
'\n'
'str.startswith(prefix[, start[, end]])\n'
'\n'
' Return "True" if string starts with the *prefix*, '
'otherwise return\n'
' "False". *prefix* can also be a tuple of prefixes to '
'look for.\n'
' With optional *start*, test string beginning at that '
'position.\n'
' With optional *end*, stop comparing string at that '
'position.\n'
'\n'
'str.strip([chars])\n'
'\n'
' Return a copy of the string with the leading and '
'trailing\n'
' characters removed. The *chars* argument is a string '
'specifying the\n'
' set of characters to be removed. If omitted or "None", '
'the *chars*\n'
' argument defaults to removing whitespace. The *chars* '
'argument is\n'
' not a prefix or suffix; rather, all combinations of its '
'values are\n'
' stripped:\n'
'\n'
" >>> ' spacious '.strip()\n"
" 'spacious'\n"
" >>> 'www.example.com'.strip('cmowz.')\n"
" 'example'\n"
'\n'
' The outermost leading and trailing *chars* argument '
'values are\n'
' stripped from the string. Characters are removed from '
'the leading\n'
' end until reaching a string character that is not '
'contained in the\n'
' set of characters in *chars*. A similar action takes '
'place on the\n'
' trailing end. For example:\n'
'\n'
" >>> comment_string = '#....... Section 3.2.1 Issue "
"#32 .......'\n"
" >>> comment_string.strip('.#! ')\n"
" 'Section 3.2.1 Issue #32'\n"
'\n'
'str.swapcase()\n'
'\n'
' Return a copy of the string with uppercase characters '
'converted to\n'
' lowercase and vice versa. Note that it is not '
'necessarily true that\n'
' "s.swapcase().swapcase() == s".\n'
'\n'
'str.title()\n'
'\n'
' Return a titlecased version of the string where words '
'start with an\n'
' uppercase character and the remaining characters are '
'lowercase.\n'
'\n'
' For example:\n'
'\n'
" >>> 'Hello world'.title()\n"
" 'Hello World'\n"
'\n'
' The algorithm uses a simple language-independent '
'definition of a\n'
' word as groups of consecutive letters. The definition '
'works in\n'
' many contexts but it means that apostrophes in '
'contractions and\n'
' possessives form word boundaries, which may not be the '
'desired\n'
' result:\n'
'\n'
' >>> "they\'re bill\'s friends from the UK".title()\n'
' "They\'Re Bill\'S Friends From The Uk"\n'
'\n'
' A workaround for apostrophes can be constructed using '
'regular\n'
' expressions:\n'
'\n'
' >>> import re\n'
' >>> def titlecase(s):\n'
' ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n'
' ... lambda mo: '
'mo.group(0).capitalize(),\n'
' ... s)\n'
' ...\n'
' >>> titlecase("they\'re bill\'s friends.")\n'
' "They\'re Bill\'s Friends."\n'
'\n'
'str.translate(table)\n'
'\n'
' Return a copy of the string in which each character has '
'been mapped\n'
' through the given translation table. The table must be '
'an object\n'
' that implements indexing via "__getitem__()", typically '
'a *mapping*\n'
' or *sequence*. When indexed by a Unicode ordinal (an '
'integer), the\n'
' table object can do any of the following: return a '
'Unicode ordinal\n'
' or a string, to map the character to one or more other '
'characters;\n'
' return "None", to delete the character from the return '
'string; or\n'
' raise a "LookupError" exception, to map the character '
'to itself.\n'
'\n'
' You can use "str.maketrans()" to create a translation '
'map from\n'
' character-to-character mappings in different formats.\n'
'\n'
' See also the "codecs" module for a more flexible '
'approach to custom\n'
' character mappings.\n'
'\n'
'str.upper()\n'
'\n'
' Return a copy of the string with all the cased '
'characters [4]\n'
' converted to uppercase. Note that '
'"s.upper().isupper()" might be\n'
' "False" if "s" contains uncased characters or if the '
'Unicode\n'
' category of the resulting character(s) is not “Lu” '
'(Letter,\n'
' uppercase), but e.g. “Lt” (Letter, titlecase).\n'
'\n'
' The uppercasing algorithm used is described in section '
'3.13 of the\n'
' Unicode Standard.\n'
'\n'
'str.zfill(width)\n'
'\n'
' Return a copy of the string left filled with ASCII '
'"\'0\'" digits to\n'
' make a string of length *width*. A leading sign prefix\n'
' ("\'+\'"/"\'-\'") is handled by inserting the padding '
'*after* the sign\n'
' character rather than before. The original string is '
'returned if\n'
' *width* is less than or equal to "len(s)".\n'
'\n'
' For example:\n'
'\n'
' >>> "42".zfill(5)\n'
" '00042'\n"
' >>> "-42".zfill(5)\n'
" '-0042'\n",
'strings': 'String and Bytes literals\n'
'*************************\n'
'\n'
'String literals are described by the following lexical '
'definitions:\n'
'\n'
' stringliteral ::= [stringprefix](shortstring | longstring)\n'
' stringprefix ::= "r" | "u" | "R" | "U" | "f" | "F"\n'
' | "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | '
'"Rf" | "RF"\n'
' shortstring ::= "\'" shortstringitem* "\'" | \'"\' '
'shortstringitem* \'"\'\n'
' longstring ::= "\'\'\'" longstringitem* "\'\'\'" | '
'\'"""\' longstringitem* \'"""\'\n'
' shortstringitem ::= shortstringchar | stringescapeseq\n'
' longstringitem ::= longstringchar | stringescapeseq\n'
' shortstringchar ::= <any source character except "\\" or '
'newline or the quote>\n'
' longstringchar ::= <any source character except "\\">\n'
' stringescapeseq ::= "\\" <any source character>\n'
'\n'
' bytesliteral ::= bytesprefix(shortbytes | longbytes)\n'
' bytesprefix ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | '
'"rb" | "rB" | "Rb" | "RB"\n'
' shortbytes ::= "\'" shortbytesitem* "\'" | \'"\' '
'shortbytesitem* \'"\'\n'
' longbytes ::= "\'\'\'" longbytesitem* "\'\'\'" | \'"""\' '
'longbytesitem* \'"""\'\n'
' shortbytesitem ::= shortbyteschar | bytesescapeseq\n'
' longbytesitem ::= longbyteschar | bytesescapeseq\n'
' shortbyteschar ::= <any ASCII character except "\\" or newline '
'or the quote>\n'
' longbyteschar ::= <any ASCII character except "\\">\n'
' bytesescapeseq ::= "\\" <any ASCII character>\n'
'\n'
'One syntactic restriction not indicated by these productions is '
'that\n'
'whitespace is not allowed between the "stringprefix" or '
'"bytesprefix"\n'
'and the rest of the literal. The source character set is defined '
'by\n'
'the encoding declaration; it is UTF-8 if no encoding declaration '
'is\n'
'given in the source file; see section Encoding declarations.\n'
'\n'
'In plain English: Both types of literals can be enclosed in '
'matching\n'
'single quotes ("\'") or double quotes ("""). They can also be '
'enclosed\n'
'in matching groups of three single or double quotes (these are\n'
'generally referred to as *triple-quoted strings*). The '
'backslash\n'
'("\\") character is used to escape characters that otherwise have '
'a\n'
'special meaning, such as newline, backslash itself, or the quote\n'
'character.\n'
'\n'
'Bytes literals are always prefixed with "\'b\'" or "\'B\'"; they '
'produce\n'
'an instance of the "bytes" type instead of the "str" type. They '
'may\n'
'only contain ASCII characters; bytes with a numeric value of 128 '
'or\n'
'greater must be expressed with escapes.\n'
'\n'
'Both string and bytes literals may optionally be prefixed with a\n'
'letter "\'r\'" or "\'R\'"; such strings are called *raw strings* '
'and treat\n'
'backslashes as literal characters. As a result, in string '
'literals,\n'
'"\'\\U\'" and "\'\\u\'" escapes in raw strings are not treated '
'specially.\n'
'Given that Python 2.x’s raw unicode literals behave differently '
'than\n'
'Python 3.x’s the "\'ur\'" syntax is not supported.\n'
'\n'
'New in version 3.3: The "\'rb\'" prefix of raw bytes literals has '
'been\n'
'added as a synonym of "\'br\'".\n'
'\n'
'New in version 3.3: Support for the unicode legacy literal\n'
'("u\'value\'") was reintroduced to simplify the maintenance of '
'dual\n'
'Python 2.x and 3.x codebases. See **PEP 414** for more '
'information.\n'
'\n'
'A string literal with "\'f\'" or "\'F\'" in its prefix is a '
'*formatted\n'
'string literal*; see Formatted string literals. The "\'f\'" may '
'be\n'
'combined with "\'r\'", but not with "\'b\'" or "\'u\'", therefore '
'raw\n'
'formatted strings are possible, but formatted bytes literals are '
'not.\n'
'\n'
'In triple-quoted literals, unescaped newlines and quotes are '
'allowed\n'
'(and are retained), except that three unescaped quotes in a row\n'
'terminate the literal. (A “quote” is the character used to open '
'the\n'
'literal, i.e. either "\'" or """.)\n'
'\n'
'Unless an "\'r\'" or "\'R\'" prefix is present, escape sequences '
'in string\n'
'and bytes literals are interpreted according to rules similar to '
'those\n'
'used by Standard C. The recognized escape sequences are:\n'
'\n'
'+-------------------+-----------------------------------+---------+\n'
'| Escape Sequence | Meaning | Notes '
'|\n'
'|===================|===================================|=========|\n'
'| "\\newline" | Backslash and newline ignored '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\\\" | Backslash ("\\") '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\\'" | Single quote ("\'") '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\"" | Double quote (""") '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\a" | ASCII Bell (BEL) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\b" | ASCII Backspace (BS) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\f" | ASCII Formfeed (FF) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\n" | ASCII Linefeed (LF) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\r" | ASCII Carriage Return (CR) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\t" | ASCII Horizontal Tab (TAB) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\v" | ASCII Vertical Tab (VT) '
'| |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\ooo" | Character with octal value *ooo* | '
'(1,3) |\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\xhh" | Character with hex value *hh* | '
'(2,3) |\n'
'+-------------------+-----------------------------------+---------+\n'
'\n'
'Escape sequences only recognized in string literals are:\n'
'\n'
'+-------------------+-----------------------------------+---------+\n'
'| Escape Sequence | Meaning | Notes '
'|\n'
'|===================|===================================|=========|\n'
'| "\\N{name}" | Character named *name* in the | '
'(4) |\n'
'| | Unicode database | '
'|\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\uxxxx" | Character with 16-bit hex value | '
'(5) |\n'
'| | *xxxx* | '
'|\n'
'+-------------------+-----------------------------------+---------+\n'
'| "\\Uxxxxxxxx" | Character with 32-bit hex value | '
'(6) |\n'
'| | *xxxxxxxx* | '
'|\n'
'+-------------------+-----------------------------------+---------+\n'
'\n'
'Notes:\n'
'\n'
'1. As in Standard C, up to three octal digits are accepted.\n'
'\n'
'2. Unlike in Standard C, exactly two hex digits are required.\n'
'\n'
'3. In a bytes literal, hexadecimal and octal escapes denote the\n'
' byte with the given value. In a string literal, these escapes\n'
' denote a Unicode character with the given value.\n'
'\n'
'4. Changed in version 3.3: Support for name aliases [1] has been\n'
' added.\n'
'\n'
'5. Exactly four hex digits are required.\n'
'\n'
'6. Any Unicode character can be encoded this way. Exactly eight\n'
' hex digits are required.\n'
'\n'
'Unlike Standard C, all unrecognized escape sequences are left in '
'the\n'
'string unchanged, i.e., *the backslash is left in the result*. '
'(This\n'
'behavior is useful when debugging: if an escape sequence is '
'mistyped,\n'
'the resulting output is more easily recognized as broken.) It is '
'also\n'
'important to note that the escape sequences only recognized in '
'string\n'
'literals fall into the category of unrecognized escapes for '
'bytes\n'
'literals.\n'
'\n'
' Changed in version 3.6: Unrecognized escape sequences produce '
'a\n'
' "DeprecationWarning". In a future Python version they will be '
'a\n'
' "SyntaxWarning" and eventually a "SyntaxError".\n'
'\n'
'Even in a raw literal, quotes can be escaped with a backslash, '
'but the\n'
'backslash remains in the result; for example, "r"\\""" is a '
'valid\n'
'string literal consisting of two characters: a backslash and a '
'double\n'
'quote; "r"\\"" is not a valid string literal (even a raw string '
'cannot\n'
'end in an odd number of backslashes). Specifically, *a raw '
'literal\n'
'cannot end in a single backslash* (since the backslash would '
'escape\n'
'the following quote character). Note also that a single '
'backslash\n'
'followed by a newline is interpreted as those two characters as '
'part\n'
'of the literal, *not* as a line continuation.\n',
'subscriptions': 'Subscriptions\n'
'*************\n'
'\n'
'A subscription selects an item of a sequence (string, tuple '
'or list)\n'
'or mapping (dictionary) object:\n'
'\n'
' subscription ::= primary "[" expression_list "]"\n'
'\n'
'The primary must evaluate to an object that supports '
'subscription\n'
'(lists or dictionaries for example). User-defined objects '
'can support\n'
'subscription by defining a "__getitem__()" method.\n'
'\n'
'For built-in objects, there are two types of objects that '
'support\n'
'subscription:\n'
'\n'
'If the primary is a mapping, the expression list must '
'evaluate to an\n'
'object whose value is one of the keys of the mapping, and '
'the\n'
'subscription selects the value in the mapping that '
'corresponds to that\n'
'key. (The expression list is a tuple except if it has '
'exactly one\n'
'item.)\n'
'\n'
'If the primary is a sequence, the expression list must '
'evaluate to an\n'
'integer or a slice (as discussed in the following '
'section).\n'
'\n'
'The formal syntax makes no special provision for negative '
'indices in\n'
'sequences; however, built-in sequences all provide a '
'"__getitem__()"\n'
'method that interprets negative indices by adding the '
'length of the\n'
'sequence to the index (so that "x[-1]" selects the last '
'item of "x").\n'
'The resulting value must be a nonnegative integer less than '
'the number\n'
'of items in the sequence, and the subscription selects the '
'item whose\n'
'index is that value (counting from zero). Since the support '
'for\n'
'negative indices and slicing occurs in the object’s '
'"__getitem__()"\n'
'method, subclasses overriding this method will need to '
'explicitly add\n'
'that support.\n'
'\n'
'A string’s items are characters. A character is not a '
'separate data\n'
'type but a string of exactly one character.\n',
'truth': 'Truth Value Testing\n'
'*******************\n'
'\n'
'Any object can be tested for truth value, for use in an "if" or\n'
'"while" condition or as operand of the Boolean operations below.\n'
'\n'
'By default, an object is considered true unless its class defines\n'
'either a "__bool__()" method that returns "False" or a "__len__()"\n'
'method that returns zero, when called with the object. [1] Here '
'are\n'
'most of the built-in objects considered false:\n'
'\n'
'* constants defined to be false: "None" and "False".\n'
'\n'
'* zero of any numeric type: "0", "0.0", "0j", "Decimal(0)",\n'
' "Fraction(0, 1)"\n'
'\n'
'* empty sequences and collections: "\'\'", "()", "[]", "{}", '
'"set()",\n'
' "range(0)"\n'
'\n'
'Operations and built-in functions that have a Boolean result '
'always\n'
'return "0" or "False" for false and "1" or "True" for true, unless\n'
'otherwise stated. (Important exception: the Boolean operations '
'"or"\n'
'and "and" always return one of their operands.)\n',
'try': 'The "try" statement\n'
'*******************\n'
'\n'
'The "try" statement specifies exception handlers and/or cleanup code\n'
'for a group of statements:\n'
'\n'
' try_stmt ::= try1_stmt | try2_stmt\n'
' try1_stmt ::= "try" ":" suite\n'
' ("except" [expression ["as" identifier]] ":" '
'suite)+\n'
' ["else" ":" suite]\n'
' ["finally" ":" suite]\n'
' try2_stmt ::= "try" ":" suite\n'
' "finally" ":" suite\n'
'\n'
'The "except" clause(s) specify one or more exception handlers. When '
'no\n'
'exception occurs in the "try" clause, no exception handler is\n'
'executed. When an exception occurs in the "try" suite, a search for '
'an\n'
'exception handler is started. This search inspects the except '
'clauses\n'
'in turn until one is found that matches the exception. An '
'expression-\n'
'less except clause, if present, must be last; it matches any\n'
'exception. For an except clause with an expression, that expression\n'
'is evaluated, and the clause matches the exception if the resulting\n'
'object is “compatible” with the exception. An object is compatible\n'
'with an exception if it is the class or a base class of the '
'exception\n'
'object or a tuple containing an item compatible with the exception.\n'
'\n'
'If no except clause matches the exception, the search for an '
'exception\n'
'handler continues in the surrounding code and on the invocation '
'stack.\n'
'[1]\n'
'\n'
'If the evaluation of an expression in the header of an except clause\n'
'raises an exception, the original search for a handler is canceled '
'and\n'
'a search starts for the new exception in the surrounding code and on\n'
'the call stack (it is treated as if the entire "try" statement '
'raised\n'
'the exception).\n'
'\n'
'When a matching except clause is found, the exception is assigned to\n'
'the target specified after the "as" keyword in that except clause, '
'if\n'
'present, and the except clause’s suite is executed. All except\n'
'clauses must have an executable block. When the end of this block '
'is\n'
'reached, execution continues normally after the entire try '
'statement.\n'
'(This means that if two nested handlers exist for the same '
'exception,\n'
'and the exception occurs in the try clause of the inner handler, the\n'
'outer handler will not handle the exception.)\n'
'\n'
'When an exception has been assigned using "as target", it is cleared\n'
'at the end of the except clause. This is as if\n'
'\n'
' except E as N:\n'
' foo\n'
'\n'
'was translated to\n'
'\n'
' except E as N:\n'
' try:\n'
' foo\n'
' finally:\n'
' del N\n'
'\n'
'This means the exception must be assigned to a different name to be\n'
'able to refer to it after the except clause. Exceptions are cleared\n'
'because with the traceback attached to them, they form a reference\n'
'cycle with the stack frame, keeping all locals in that frame alive\n'
'until the next garbage collection occurs.\n'
'\n'
'Before an except clause’s suite is executed, details about the\n'
'exception are stored in the "sys" module and can be accessed via\n'
'"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting of '
'the\n'
'exception class, the exception instance and a traceback object (see\n'
'section The standard type hierarchy) identifying the point in the\n'
'program where the exception occurred. "sys.exc_info()" values are\n'
'restored to their previous values (before the call) when returning\n'
'from a function that handled an exception.\n'
'\n'
'The optional "else" clause is executed if the control flow leaves '
'the\n'
'"try" suite, no exception was raised, and no "return", "continue", '
'or\n'
'"break" statement was executed. Exceptions in the "else" clause are\n'
'not handled by the preceding "except" clauses.\n'
'\n'
'If "finally" is present, it specifies a ‘cleanup’ handler. The '
'"try"\n'
'clause is executed, including any "except" and "else" clauses. If '
'an\n'
'exception occurs in any of the clauses and is not handled, the\n'
'exception is temporarily saved. The "finally" clause is executed. '
'If\n'
'there is a saved exception it is re-raised at the end of the '
'"finally"\n'
'clause. If the "finally" clause raises another exception, the saved\n'
'exception is set as the context of the new exception. If the '
'"finally"\n'
'clause executes a "return", "break" or "continue" statement, the '
'saved\n'
'exception is discarded:\n'
'\n'
' >>> def f():\n'
' ... try:\n'
' ... 1/0\n'
' ... finally:\n'
' ... return 42\n'
' ...\n'
' >>> f()\n'
' 42\n'
'\n'
'The exception information is not available to the program during\n'
'execution of the "finally" clause.\n'
'\n'
'When a "return", "break" or "continue" statement is executed in the\n'
'"try" suite of a "try"…"finally" statement, the "finally" clause is\n'
'also executed ‘on the way out.’\n'
'\n'
'The return value of a function is determined by the last "return"\n'
'statement executed. Since the "finally" clause always executes, a\n'
'"return" statement executed in the "finally" clause will always be '
'the\n'
'last one executed:\n'
'\n'
' >>> def foo():\n'
' ... try:\n'
" ... return 'try'\n"
' ... finally:\n'
" ... return 'finally'\n"
' ...\n'
' >>> foo()\n'
" 'finally'\n"
'\n'
'Additional information on exceptions can be found in section\n'
'Exceptions, and information on using the "raise" statement to '
'generate\n'
'exceptions may be found in section The raise statement.\n'
'\n'
'Changed in version 3.8: Prior to Python 3.8, a "continue" statement\n'
'was illegal in the "finally" clause due to a problem with the\n'
'implementation.\n',
'types': 'The standard type hierarchy\n'
'***************************\n'
'\n'
'Below is a list of the types that are built into Python. '
'Extension\n'
'modules (written in C, Java, or other languages, depending on the\n'
'implementation) can define additional types. Future versions of\n'
'Python may add types to the type hierarchy (e.g., rational '
'numbers,\n'
'efficiently stored arrays of integers, etc.), although such '
'additions\n'
'will often be provided via the standard library instead.\n'
'\n'
'Some of the type descriptions below contain a paragraph listing\n'
'‘special attributes.’ These are attributes that provide access to '
'the\n'
'implementation and are not intended for general use. Their '
'definition\n'
'may change in the future.\n'
'\n'
'None\n'
' This type has a single value. There is a single object with '
'this\n'
' value. This object is accessed through the built-in name "None". '
'It\n'
' is used to signify the absence of a value in many situations, '
'e.g.,\n'
' it is returned from functions that don’t explicitly return\n'
' anything. Its truth value is false.\n'
'\n'
'NotImplemented\n'
' This type has a single value. There is a single object with '
'this\n'
' value. This object is accessed through the built-in name\n'
' "NotImplemented". Numeric methods and rich comparison methods\n'
' should return this value if they do not implement the operation '
'for\n'
' the operands provided. (The interpreter will then try the\n'
' reflected operation, or some other fallback, depending on the\n'
' operator.) Its truth value is true.\n'
'\n'
' See Implementing the arithmetic operations for more details.\n'
'\n'
'Ellipsis\n'
' This type has a single value. There is a single object with '
'this\n'
' value. This object is accessed through the literal "..." or the\n'
' built-in name "Ellipsis". Its truth value is true.\n'
'\n'
'"numbers.Number"\n'
' These are created by numeric literals and returned as results '
'by\n'
' arithmetic operators and arithmetic built-in functions. '
'Numeric\n'
' objects are immutable; once created their value never changes.\n'
' Python numbers are of course strongly related to mathematical\n'
' numbers, but subject to the limitations of numerical '
'representation\n'
' in computers.\n'
'\n'
' Python distinguishes between integers, floating point numbers, '
'and\n'
' complex numbers:\n'
'\n'
' "numbers.Integral"\n'
' These represent elements from the mathematical set of '
'integers\n'
' (positive and negative).\n'
'\n'
' There are two types of integers:\n'
'\n'
' Integers ("int")\n'
'\n'
' These represent numbers in an unlimited range, subject to\n'
' available (virtual) memory only. For the purpose of '
'shift\n'
' and mask operations, a binary representation is assumed, '
'and\n'
' negative numbers are represented in a variant of 2’s\n'
' complement which gives the illusion of an infinite string '
'of\n'
' sign bits extending to the left.\n'
'\n'
' Booleans ("bool")\n'
' These represent the truth values False and True. The two\n'
' objects representing the values "False" and "True" are '
'the\n'
' only Boolean objects. The Boolean type is a subtype of '
'the\n'
' integer type, and Boolean values behave like the values 0 '
'and\n'
' 1, respectively, in almost all contexts, the exception '
'being\n'
' that when converted to a string, the strings ""False"" or\n'
' ""True"" are returned, respectively.\n'
'\n'
' The rules for integer representation are intended to give '
'the\n'
' most meaningful interpretation of shift and mask operations\n'
' involving negative integers.\n'
'\n'
' "numbers.Real" ("float")\n'
' These represent machine-level double precision floating '
'point\n'
' numbers. You are at the mercy of the underlying machine\n'
' architecture (and C or Java implementation) for the accepted\n'
' range and handling of overflow. Python does not support '
'single-\n'
' precision floating point numbers; the savings in processor '
'and\n'
' memory usage that are usually the reason for using these are\n'
' dwarfed by the overhead of using objects in Python, so there '
'is\n'
' no reason to complicate the language with two kinds of '
'floating\n'
' point numbers.\n'
'\n'
' "numbers.Complex" ("complex")\n'
' These represent complex numbers as a pair of machine-level\n'
' double precision floating point numbers. The same caveats '
'apply\n'
' as for floating point numbers. The real and imaginary parts '
'of a\n'
' complex number "z" can be retrieved through the read-only\n'
' attributes "z.real" and "z.imag".\n'
'\n'
'Sequences\n'
' These represent finite ordered sets indexed by non-negative\n'
' numbers. The built-in function "len()" returns the number of '
'items\n'
' of a sequence. When the length of a sequence is *n*, the index '
'set\n'
' contains the numbers 0, 1, …, *n*-1. Item *i* of sequence *a* '
'is\n'
' selected by "a[i]".\n'
'\n'
' Sequences also support slicing: "a[i:j]" selects all items with\n'
' index *k* such that *i* "<=" *k* "<" *j*. When used as an\n'
' expression, a slice is a sequence of the same type. This '
'implies\n'
' that the index set is renumbered so that it starts at 0.\n'
'\n'
' Some sequences also support “extended slicing” with a third '
'“step”\n'
' parameter: "a[i:j:k]" selects all items of *a* with index *x* '
'where\n'
' "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n'
'\n'
' Sequences are distinguished according to their mutability:\n'
'\n'
' Immutable sequences\n'
' An object of an immutable sequence type cannot change once it '
'is\n'
' created. (If the object contains references to other '
'objects,\n'
' these other objects may be mutable and may be changed; '
'however,\n'
' the collection of objects directly referenced by an '
'immutable\n'
' object cannot change.)\n'
'\n'
' The following types are immutable sequences:\n'
'\n'
' Strings\n'
' A string is a sequence of values that represent Unicode '
'code\n'
' points. All the code points in the range "U+0000 - '
'U+10FFFF"\n'
' can be represented in a string. Python doesn’t have a '
'"char"\n'
' type; instead, every code point in the string is '
'represented\n'
' as a string object with length "1". The built-in '
'function\n'
' "ord()" converts a code point from its string form to an\n'
' integer in the range "0 - 10FFFF"; "chr()" converts an\n'
' integer in the range "0 - 10FFFF" to the corresponding '
'length\n'
' "1" string object. "str.encode()" can be used to convert '
'a\n'
' "str" to "bytes" using the given text encoding, and\n'
' "bytes.decode()" can be used to achieve the opposite.\n'
'\n'
' Tuples\n'
' The items of a tuple are arbitrary Python objects. Tuples '
'of\n'
' two or more items are formed by comma-separated lists of\n'
' expressions. A tuple of one item (a ‘singleton’) can be\n'
' formed by affixing a comma to an expression (an expression '
'by\n'
' itself does not create a tuple, since parentheses must be\n'
' usable for grouping of expressions). An empty tuple can '
'be\n'
' formed by an empty pair of parentheses.\n'
'\n'
' Bytes\n'
' A bytes object is an immutable array. The items are '
'8-bit\n'
' bytes, represented by integers in the range 0 <= x < 256.\n'
' Bytes literals (like "b\'abc\'") and the built-in '
'"bytes()"\n'
' constructor can be used to create bytes objects. Also, '
'bytes\n'
' objects can be decoded to strings via the "decode()" '
'method.\n'
'\n'
' Mutable sequences\n'
' Mutable sequences can be changed after they are created. '
'The\n'
' subscription and slicing notations can be used as the target '
'of\n'
' assignment and "del" (delete) statements.\n'
'\n'
' There are currently two intrinsic mutable sequence types:\n'
'\n'
' Lists\n'
' The items of a list are arbitrary Python objects. Lists '
'are\n'
' formed by placing a comma-separated list of expressions '
'in\n'
' square brackets. (Note that there are no special cases '
'needed\n'
' to form lists of length 0 or 1.)\n'
'\n'
' Byte Arrays\n'
' A bytearray object is a mutable array. They are created '
'by\n'
' the built-in "bytearray()" constructor. Aside from being\n'
' mutable (and hence unhashable), byte arrays otherwise '
'provide\n'
' the same interface and functionality as immutable "bytes"\n'
' objects.\n'
'\n'
' The extension module "array" provides an additional example '
'of a\n'
' mutable sequence type, as does the "collections" module.\n'
'\n'
'Set types\n'
' These represent unordered, finite sets of unique, immutable\n'
' objects. As such, they cannot be indexed by any subscript. '
'However,\n'
' they can be iterated over, and the built-in function "len()"\n'
' returns the number of items in a set. Common uses for sets are '
'fast\n'
' membership testing, removing duplicates from a sequence, and\n'
' computing mathematical operations such as intersection, union,\n'
' difference, and symmetric difference.\n'
'\n'
' For set elements, the same immutability rules apply as for\n'
' dictionary keys. Note that numeric types obey the normal rules '
'for\n'
' numeric comparison: if two numbers compare equal (e.g., "1" and\n'
' "1.0"), only one of them can be contained in a set.\n'
'\n'
' There are currently two intrinsic set types:\n'
'\n'
' Sets\n'
' These represent a mutable set. They are created by the '
'built-in\n'
' "set()" constructor and can be modified afterwards by '
'several\n'
' methods, such as "add()".\n'
'\n'
' Frozen sets\n'
' These represent an immutable set. They are created by the\n'
' built-in "frozenset()" constructor. As a frozenset is '
'immutable\n'
' and *hashable*, it can be used again as an element of '
'another\n'
' set, or as a dictionary key.\n'
'\n'
'Mappings\n'
' These represent finite sets of objects indexed by arbitrary '
'index\n'
' sets. The subscript notation "a[k]" selects the item indexed by '
'"k"\n'
' from the mapping "a"; this can be used in expressions and as '
'the\n'
' target of assignments or "del" statements. The built-in '
'function\n'
' "len()" returns the number of items in a mapping.\n'
'\n'
' There is currently a single intrinsic mapping type:\n'
'\n'
' Dictionaries\n'
' These represent finite sets of objects indexed by nearly\n'
' arbitrary values. The only types of values not acceptable '
'as\n'
' keys are values containing lists or dictionaries or other\n'
' mutable types that are compared by value rather than by '
'object\n'
' identity, the reason being that the efficient implementation '
'of\n'
' dictionaries requires a key’s hash value to remain constant.\n'
' Numeric types used for keys obey the normal rules for '
'numeric\n'
' comparison: if two numbers compare equal (e.g., "1" and '
'"1.0")\n'
' then they can be used interchangeably to index the same\n'
' dictionary entry.\n'
'\n'
' Dictionaries are mutable; they can be created by the "{...}"\n'
' notation (see section Dictionary displays).\n'
'\n'
' The extension modules "dbm.ndbm" and "dbm.gnu" provide\n'
' additional examples of mapping types, as does the '
'"collections"\n'
' module.\n'
'\n'
'Callable types\n'
' These are the types to which the function call operation (see\n'
' section Calls) can be applied:\n'
'\n'
' User-defined functions\n'
' A user-defined function object is created by a function\n'
' definition (see section Function definitions). It should be\n'
' called with an argument list containing the same number of '
'items\n'
' as the function’s formal parameter list.\n'
'\n'
' Special attributes:\n'
'\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | Attribute | Meaning '
'| |\n'
' '
'|===========================|=================================|=============|\n'
' | "__doc__" | The function’s documentation '
'| Writable |\n'
' | | string, or "None" if '
'| |\n'
' | | unavailable; not inherited by '
'| |\n'
' | | subclasses. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__name__" | The function’s name. '
'| Writable |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__qualname__" | The function’s *qualified '
'| Writable |\n'
' | | name*. New in version 3.3. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__module__" | The name of the module the '
'| Writable |\n'
' | | function was defined in, or '
'| |\n'
' | | "None" if unavailable. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__defaults__" | A tuple containing default '
'| Writable |\n'
' | | argument values for those '
'| |\n'
' | | arguments that have defaults, '
'| |\n'
' | | or "None" if no arguments have '
'| |\n'
' | | a default value. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__code__" | The code object representing '
'| Writable |\n'
' | | the compiled function body. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__globals__" | A reference to the dictionary '
'| Read-only |\n'
' | | that holds the function’s '
'| |\n'
' | | global variables — the global '
'| |\n'
' | | namespace of the module in '
'| |\n'
' | | which the function was defined. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__dict__" | The namespace supporting '
'| Writable |\n'
' | | arbitrary function attributes. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__closure__" | "None" or a tuple of cells that '
'| Read-only |\n'
' | | contain bindings for the '
'| |\n'
' | | function’s free variables. See '
'| |\n'
' | | below for information on the '
'| |\n'
' | | "cell_contents" attribute. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__annotations__" | A dict containing annotations '
'| Writable |\n'
' | | of parameters. The keys of the '
'| |\n'
' | | dict are the parameter names, '
'| |\n'
' | | and "\'return\'" for the '
'return | |\n'
' | | annotation, if provided. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
' | "__kwdefaults__" | A dict containing defaults for '
'| Writable |\n'
' | | keyword-only parameters. '
'| |\n'
' '
'+---------------------------+---------------------------------+-------------+\n'
'\n'
' Most of the attributes labelled “Writable” check the type of '
'the\n'
' assigned value.\n'
'\n'
' Function objects also support getting and setting arbitrary\n'
' attributes, which can be used, for example, to attach '
'metadata\n'
' to functions. Regular attribute dot-notation is used to get '
'and\n'
' set such attributes. *Note that the current implementation '
'only\n'
' supports function attributes on user-defined functions. '
'Function\n'
' attributes on built-in functions may be supported in the\n'
' future.*\n'
'\n'
' A cell object has the attribute "cell_contents". This can be\n'
' used to get the value of the cell, as well as set the value.\n'
'\n'
' Additional information about a function’s definition can be\n'
' retrieved from its code object; see the description of '
'internal\n'
' types below. The "cell" type can be accessed in the "types"\n'
' module.\n'
'\n'
' Instance methods\n'
' An instance method object combines a class, a class instance '
'and\n'
' any callable object (normally a user-defined function).\n'
'\n'
' Special read-only attributes: "__self__" is the class '
'instance\n'
' object, "__func__" is the function object; "__doc__" is the\n'
' method’s documentation (same as "__func__.__doc__"); '
'"__name__"\n'
' is the method name (same as "__func__.__name__"); '
'"__module__"\n'
' is the name of the module the method was defined in, or '
'"None"\n'
' if unavailable.\n'
'\n'
' Methods also support accessing (but not setting) the '
'arbitrary\n'
' function attributes on the underlying function object.\n'
'\n'
' User-defined method objects may be created when getting an\n'
' attribute of a class (perhaps via an instance of that class), '
'if\n'
' that attribute is a user-defined function object or a class\n'
' method object.\n'
'\n'
' When an instance method object is created by retrieving a '
'user-\n'
' defined function object from a class via one of its '
'instances,\n'
' its "__self__" attribute is the instance, and the method '
'object\n'
' is said to be bound. The new method’s "__func__" attribute '
'is\n'
' the original function object.\n'
'\n'
' When an instance method object is created by retrieving a '
'class\n'
' method object from a class or instance, its "__self__" '
'attribute\n'
' is the class itself, and its "__func__" attribute is the\n'
' function object underlying the class method.\n'
'\n'
' When an instance method object is called, the underlying\n'
' function ("__func__") is called, inserting the class '
'instance\n'
' ("__self__") in front of the argument list. For instance, '
'when\n'
' "C" is a class which contains a definition for a function '
'"f()",\n'
' and "x" is an instance of "C", calling "x.f(1)" is equivalent '
'to\n'
' calling "C.f(x, 1)".\n'
'\n'
' When an instance method object is derived from a class '
'method\n'
' object, the “class instance” stored in "__self__" will '
'actually\n'
' be the class itself, so that calling either "x.f(1)" or '
'"C.f(1)"\n'
' is equivalent to calling "f(C,1)" where "f" is the '
'underlying\n'
' function.\n'
'\n'
' Note that the transformation from function object to '
'instance\n'
' method object happens each time the attribute is retrieved '
'from\n'
' the instance. In some cases, a fruitful optimization is to\n'
' assign the attribute to a local variable and call that local\n'
' variable. Also notice that this transformation only happens '
'for\n'
' user-defined functions; other callable objects (and all non-\n'
' callable objects) are retrieved without transformation. It '
'is\n'
' also important to note that user-defined functions which are\n'
' attributes of a class instance are not converted to bound\n'
' methods; this *only* happens when the function is an '
'attribute\n'
' of the class.\n'
'\n'
' Generator functions\n'
' A function or method which uses the "yield" statement (see\n'
' section The yield statement) is called a *generator '
'function*.\n'
' Such a function, when called, always returns an iterator '
'object\n'
' which can be used to execute the body of the function: '
'calling\n'
' the iterator’s "iterator.__next__()" method will cause the\n'
' function to execute until it provides a value using the '
'"yield"\n'
' statement. When the function executes a "return" statement '
'or\n'
' falls off the end, a "StopIteration" exception is raised and '
'the\n'
' iterator will have reached the end of the set of values to '
'be\n'
' returned.\n'
'\n'
' Coroutine functions\n'
' A function or method which is defined using "async def" is\n'
' called a *coroutine function*. Such a function, when '
'called,\n'
' returns a *coroutine* object. It may contain "await"\n'
' expressions, as well as "async with" and "async for" '
'statements.\n'
' See also the Coroutine Objects section.\n'
'\n'
' Asynchronous generator functions\n'
' A function or method which is defined using "async def" and\n'
' which uses the "yield" statement is called a *asynchronous\n'
' generator function*. Such a function, when called, returns '
'an\n'
' asynchronous iterator object which can be used in an "async '
'for"\n'
' statement to execute the body of the function.\n'
'\n'
' Calling the asynchronous iterator’s "aiterator.__anext__()"\n'
' method will return an *awaitable* which when awaited will\n'
' execute until it provides a value using the "yield" '
'expression.\n'
' When the function executes an empty "return" statement or '
'falls\n'
' off the end, a "StopAsyncIteration" exception is raised and '
'the\n'
' asynchronous iterator will have reached the end of the set '
'of\n'
' values to be yielded.\n'
'\n'
' Built-in functions\n'
' A built-in function object is a wrapper around a C function.\n'
' Examples of built-in functions are "len()" and "math.sin()"\n'
' ("math" is a standard built-in module). The number and type '
'of\n'
' the arguments are determined by the C function. Special '
'read-\n'
' only attributes: "__doc__" is the function’s documentation\n'
' string, or "None" if unavailable; "__name__" is the '
'function’s\n'
' name; "__self__" is set to "None" (but see the next item);\n'
' "__module__" is the name of the module the function was '
'defined\n'
' in or "None" if unavailable.\n'
'\n'
' Built-in methods\n'
' This is really a different disguise of a built-in function, '
'this\n'
' time containing an object passed to the C function as an\n'
' implicit extra argument. An example of a built-in method is\n'
' "alist.append()", assuming *alist* is a list object. In this\n'
' case, the special read-only attribute "__self__" is set to '
'the\n'
' object denoted by *alist*.\n'
'\n'
' Classes\n'
' Classes are callable. These objects normally act as '
'factories\n'
' for new instances of themselves, but variations are possible '
'for\n'
' class types that override "__new__()". The arguments of the\n'
' call are passed to "__new__()" and, in the typical case, to\n'
' "__init__()" to initialize the new instance.\n'
'\n'
' Class Instances\n'
' Instances of arbitrary classes can be made callable by '
'defining\n'
' a "__call__()" method in their class.\n'
'\n'
'Modules\n'
' Modules are a basic organizational unit of Python code, and are\n'
' created by the import system as invoked either by the "import"\n'
' statement, or by calling functions such as\n'
' "importlib.import_module()" and built-in "__import__()". A '
'module\n'
' object has a namespace implemented by a dictionary object (this '
'is\n'
' the dictionary referenced by the "__globals__" attribute of\n'
' functions defined in the module). Attribute references are\n'
' translated to lookups in this dictionary, e.g., "m.x" is '
'equivalent\n'
' to "m.__dict__["x"]". A module object does not contain the code\n'
' object used to initialize the module (since it isn’t needed '
'once\n'
' the initialization is done).\n'
'\n'
' Attribute assignment updates the module’s namespace dictionary,\n'
' e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n'
'\n'
' Predefined (writable) attributes: "__name__" is the module’s '
'name;\n'
' "__doc__" is the module’s documentation string, or "None" if\n'
' unavailable; "__annotations__" (optional) is a dictionary\n'
' containing *variable annotations* collected during module body\n'
' execution; "__file__" is the pathname of the file from which '
'the\n'
' module was loaded, if it was loaded from a file. The "__file__"\n'
' attribute may be missing for certain types of modules, such as '
'C\n'
' modules that are statically linked into the interpreter; for\n'
' extension modules loaded dynamically from a shared library, it '
'is\n'
' the pathname of the shared library file.\n'
'\n'
' Special read-only attribute: "__dict__" is the module’s '
'namespace\n'
' as a dictionary object.\n'
'\n'
' **CPython implementation detail:** Because of the way CPython\n'
' clears module dictionaries, the module dictionary will be '
'cleared\n'
' when the module falls out of scope even if the dictionary still '
'has\n'
' live references. To avoid this, copy the dictionary or keep '
'the\n'
' module around while using its dictionary directly.\n'
'\n'
'Custom classes\n'
' Custom class types are typically created by class definitions '
'(see\n'
' section Class definitions). A class has a namespace implemented '
'by\n'
' a dictionary object. Class attribute references are translated '
'to\n'
' lookups in this dictionary, e.g., "C.x" is translated to\n'
' "C.__dict__["x"]" (although there are a number of hooks which '
'allow\n'
' for other means of locating attributes). When the attribute name '
'is\n'
' not found there, the attribute search continues in the base\n'
' classes. This search of the base classes uses the C3 method\n'
' resolution order which behaves correctly even in the presence '
'of\n'
' ‘diamond’ inheritance structures where there are multiple\n'
' inheritance paths leading back to a common ancestor. Additional\n'
' details on the C3 MRO used by Python can be found in the\n'
' documentation accompanying the 2.3 release at\n'
' https://www.python.org/download/releases/2.3/mro/.\n'
'\n'
' When a class attribute reference (for class "C", say) would '
'yield a\n'
' class method object, it is transformed into an instance method\n'
' object whose "__self__" attribute is "C". When it would yield '
'a\n'
' static method object, it is transformed into the object wrapped '
'by\n'
' the static method object. See section Implementing Descriptors '
'for\n'
' another way in which attributes retrieved from a class may '
'differ\n'
' from those actually contained in its "__dict__".\n'
'\n'
' Class attribute assignments update the class’s dictionary, '
'never\n'
' the dictionary of a base class.\n'
'\n'
' A class object can be called (see above) to yield a class '
'instance\n'
' (see below).\n'
'\n'
' Special attributes: "__name__" is the class name; "__module__" '
'is\n'
' the module name in which the class was defined; "__dict__" is '
'the\n'
' dictionary containing the class’s namespace; "__bases__" is a '
'tuple\n'
' containing the base classes, in the order of their occurrence '
'in\n'
' the base class list; "__doc__" is the class’s documentation '
'string,\n'
' or "None" if undefined; "__annotations__" (optional) is a\n'
' dictionary containing *variable annotations* collected during '
'class\n'
' body execution.\n'
'\n'
'Class instances\n'
' A class instance is created by calling a class object (see '
'above).\n'
' A class instance has a namespace implemented as a dictionary '
'which\n'
' is the first place in which attribute references are searched.\n'
' When an attribute is not found there, and the instance’s class '
'has\n'
' an attribute by that name, the search continues with the class\n'
' attributes. If a class attribute is found that is a '
'user-defined\n'
' function object, it is transformed into an instance method '
'object\n'
' whose "__self__" attribute is the instance. Static method and\n'
' class method objects are also transformed; see above under\n'
' “Classes”. See section Implementing Descriptors for another way '
'in\n'
' which attributes of a class retrieved via its instances may '
'differ\n'
' from the objects actually stored in the class’s "__dict__". If '
'no\n'
' class attribute is found, and the object’s class has a\n'
' "__getattr__()" method, that is called to satisfy the lookup.\n'
'\n'
' Attribute assignments and deletions update the instance’s\n'
' dictionary, never a class’s dictionary. If the class has a\n'
' "__setattr__()" or "__delattr__()" method, this is called '
'instead\n'
' of updating the instance dictionary directly.\n'
'\n'
' Class instances can pretend to be numbers, sequences, or '
'mappings\n'
' if they have methods with certain special names. See section\n'
' Special method names.\n'
'\n'
' Special attributes: "__dict__" is the attribute dictionary;\n'
' "__class__" is the instance’s class.\n'
'\n'
'I/O objects (also known as file objects)\n'
' A *file object* represents an open file. Various shortcuts are\n'
' available to create file objects: the "open()" built-in '
'function,\n'
' and also "os.popen()", "os.fdopen()", and the "makefile()" '
'method\n'
' of socket objects (and perhaps by other functions or methods\n'
' provided by extension modules).\n'
'\n'
' The objects "sys.stdin", "sys.stdout" and "sys.stderr" are\n'
' initialized to file objects corresponding to the interpreter’s\n'
' standard input, output and error streams; they are all open in '
'text\n'
' mode and therefore follow the interface defined by the\n'
' "io.TextIOBase" abstract class.\n'
'\n'
'Internal types\n'
' A few types used internally by the interpreter are exposed to '
'the\n'
' user. Their definitions may change with future versions of the\n'
' interpreter, but they are mentioned here for completeness.\n'
'\n'
' Code objects\n'
' Code objects represent *byte-compiled* executable Python '
'code,\n'
' or *bytecode*. The difference between a code object and a\n'
' function object is that the function object contains an '
'explicit\n'
' reference to the function’s globals (the module in which it '
'was\n'
' defined), while a code object contains no context; also the\n'
' default argument values are stored in the function object, '
'not\n'
' in the code object (because they represent values calculated '
'at\n'
' run-time). Unlike function objects, code objects are '
'immutable\n'
' and contain no references (directly or indirectly) to '
'mutable\n'
' objects.\n'
'\n'
' Special read-only attributes: "co_name" gives the function '
'name;\n'
' "co_argcount" is the total number of positional arguments\n'
' (including positional-only arguments and arguments with '
'default\n'
' values); "co_posonlyargcount" is the number of '
'positional-only\n'
' arguments (including arguments with default values);\n'
' "co_kwonlyargcount" is the number of keyword-only arguments\n'
' (including arguments with default values); "co_nlocals" is '
'the\n'
' number of local variables used by the function (including\n'
' arguments); "co_varnames" is a tuple containing the names of '
'the\n'
' local variables (starting with the argument names);\n'
' "co_cellvars" is a tuple containing the names of local '
'variables\n'
' that are referenced by nested functions; "co_freevars" is a\n'
' tuple containing the names of free variables; "co_code" is a\n'
' string representing the sequence of bytecode instructions;\n'
' "co_consts" is a tuple containing the literals used by the\n'
' bytecode; "co_names" is a tuple containing the names used by '
'the\n'
' bytecode; "co_filename" is the filename from which the code '
'was\n'
' compiled; "co_firstlineno" is the first line number of the\n'
' function; "co_lnotab" is a string encoding the mapping from\n'
' bytecode offsets to line numbers (for details see the source\n'
' code of the interpreter); "co_stacksize" is the required '
'stack\n'
' size (including local variables); "co_flags" is an integer\n'
' encoding a number of flags for the interpreter.\n'
'\n'
' The following flag bits are defined for "co_flags": bit '
'"0x04"\n'
' is set if the function uses the "*arguments" syntax to accept '
'an\n'
' arbitrary number of positional arguments; bit "0x08" is set '
'if\n'
' the function uses the "**keywords" syntax to accept '
'arbitrary\n'
' keyword arguments; bit "0x20" is set if the function is a\n'
' generator.\n'
'\n'
' Future feature declarations ("from __future__ import '
'division")\n'
' also use bits in "co_flags" to indicate whether a code '
'object\n'
' was compiled with a particular feature enabled: bit "0x2000" '
'is\n'
' set if the function was compiled with future division '
'enabled;\n'
' bits "0x10" and "0x1000" were used in earlier versions of\n'
' Python.\n'
'\n'
' Other bits in "co_flags" are reserved for internal use.\n'
'\n'
' If a code object represents a function, the first item in\n'
' "co_consts" is the documentation string of the function, or\n'
' "None" if undefined.\n'
'\n'
' Frame objects\n'
' Frame objects represent execution frames. They may occur in\n'
' traceback objects (see below), and are also passed to '
'registered\n'
' trace functions.\n'
'\n'
' Special read-only attributes: "f_back" is to the previous '
'stack\n'
' frame (towards the caller), or "None" if this is the bottom\n'
' stack frame; "f_code" is the code object being executed in '
'this\n'
' frame; "f_locals" is the dictionary used to look up local\n'
' variables; "f_globals" is used for global variables;\n'
' "f_builtins" is used for built-in (intrinsic) names; '
'"f_lasti"\n'
' gives the precise instruction (this is an index into the\n'
' bytecode string of the code object).\n'
'\n'
' Special writable attributes: "f_trace", if not "None", is a\n'
' function called for various events during code execution '
'(this\n'
' is used by the debugger). Normally an event is triggered for\n'
' each new source line - this can be disabled by setting\n'
' "f_trace_lines" to "False".\n'
'\n'
' Implementations *may* allow per-opcode events to be requested '
'by\n'
' setting "f_trace_opcodes" to "True". Note that this may lead '
'to\n'
' undefined interpreter behaviour if exceptions raised by the\n'
' trace function escape to the function being traced.\n'
'\n'
' "f_lineno" is the current line number of the frame — writing '
'to\n'
' this from within a trace function jumps to the given line '
'(only\n'
' for the bottom-most frame). A debugger can implement a Jump\n'
' command (aka Set Next Statement) by writing to f_lineno.\n'
'\n'
' Frame objects support one method:\n'
'\n'
' frame.clear()\n'
'\n'
' This method clears all references to local variables held '
'by\n'
' the frame. Also, if the frame belonged to a generator, '
'the\n'
' generator is finalized. This helps break reference '
'cycles\n'
' involving frame objects (for example when catching an\n'
' exception and storing its traceback for later use).\n'
'\n'
' "RuntimeError" is raised if the frame is currently '
'executing.\n'
'\n'
' New in version 3.4.\n'
'\n'
' Traceback objects\n'
' Traceback objects represent a stack trace of an exception. '
'A\n'
' traceback object is implicitly created when an exception '
'occurs,\n'
' and may also be explicitly created by calling\n'
' "types.TracebackType".\n'
'\n'
' For implicitly created tracebacks, when the search for an\n'
' exception handler unwinds the execution stack, at each '
'unwound\n'
' level a traceback object is inserted in front of the current\n'
' traceback. When an exception handler is entered, the stack\n'
' trace is made available to the program. (See section The try\n'
' statement.) It is accessible as the third item of the tuple\n'
' returned by "sys.exc_info()", and as the "__traceback__"\n'
' attribute of the caught exception.\n'
'\n'
' When the program contains no suitable handler, the stack '
'trace\n'
' is written (nicely formatted) to the standard error stream; '
'if\n'
' the interpreter is interactive, it is also made available to '
'the\n'
' user as "sys.last_traceback".\n'
'\n'
' For explicitly created tracebacks, it is up to the creator '
'of\n'
' the traceback to determine how the "tb_next" attributes '
'should\n'
' be linked to form a full stack trace.\n'
'\n'
' Special read-only attributes: "tb_frame" points to the '
'execution\n'
' frame of the current level; "tb_lineno" gives the line '
'number\n'
' where the exception occurred; "tb_lasti" indicates the '
'precise\n'
' instruction. The line number and last instruction in the\n'
' traceback may differ from the line number of its frame object '
'if\n'
' the exception occurred in a "try" statement with no matching\n'
' except clause or with a finally clause.\n'
'\n'
' Special writable attribute: "tb_next" is the next level in '
'the\n'
' stack trace (towards the frame where the exception occurred), '
'or\n'
' "None" if there is no next level.\n'
'\n'
' Changed in version 3.7: Traceback objects can now be '
'explicitly\n'
' instantiated from Python code, and the "tb_next" attribute '
'of\n'
' existing instances can be updated.\n'
'\n'
' Slice objects\n'
' Slice objects are used to represent slices for '
'"__getitem__()"\n'
' methods. They are also created by the built-in "slice()"\n'
' function.\n'
'\n'
' Special read-only attributes: "start" is the lower bound; '
'"stop"\n'
' is the upper bound; "step" is the step value; each is "None" '
'if\n'
' omitted. These attributes can have any type.\n'
'\n'
' Slice objects support one method:\n'
'\n'
' slice.indices(self, length)\n'
'\n'
' This method takes a single integer argument *length* and\n'
' computes information about the slice that the slice '
'object\n'
' would describe if applied to a sequence of *length* '
'items.\n'
' It returns a tuple of three integers; respectively these '
'are\n'
' the *start* and *stop* indices and the *step* or stride\n'
' length of the slice. Missing or out-of-bounds indices are\n'
' handled in a manner consistent with regular slices.\n'
'\n'
' Static method objects\n'
' Static method objects provide a way of defeating the\n'
' transformation of function objects to method objects '
'described\n'
' above. A static method object is a wrapper around any other\n'
' object, usually a user-defined method object. When a static\n'
' method object is retrieved from a class or a class instance, '
'the\n'
' object actually returned is the wrapped object, which is not\n'
' subject to any further transformation. Static method objects '
'are\n'
' not themselves callable, although the objects they wrap '
'usually\n'
' are. Static method objects are created by the built-in\n'
' "staticmethod()" constructor.\n'
'\n'
' Class method objects\n'
' A class method object, like a static method object, is a '
'wrapper\n'
' around another object that alters the way in which that '
'object\n'
' is retrieved from classes and class instances. The behaviour '
'of\n'
' class method objects upon such retrieval is described above,\n'
' under “User-defined methods”. Class method objects are '
'created\n'
' by the built-in "classmethod()" constructor.\n',
'typesfunctions': 'Functions\n'
'*********\n'
'\n'
'Function objects are created by function definitions. The '
'only\n'
'operation on a function object is to call it: '
'"func(argument-list)".\n'
'\n'
'There are really two flavors of function objects: built-in '
'functions\n'
'and user-defined functions. Both support the same '
'operation (to call\n'
'the function), but the implementation is different, hence '
'the\n'
'different object types.\n'
'\n'
'See Function definitions for more information.\n',
'typesmapping': 'Mapping Types — "dict"\n'
'**********************\n'
'\n'
'A *mapping* object maps *hashable* values to arbitrary '
'objects.\n'
'Mappings are mutable objects. There is currently only one '
'standard\n'
'mapping type, the *dictionary*. (For other containers see '
'the built-\n'
'in "list", "set", and "tuple" classes, and the "collections" '
'module.)\n'
'\n'
'A dictionary’s keys are *almost* arbitrary values. Values '
'that are\n'
'not *hashable*, that is, values containing lists, '
'dictionaries or\n'
'other mutable types (that are compared by value rather than '
'by object\n'
'identity) may not be used as keys. Numeric types used for '
'keys obey\n'
'the normal rules for numeric comparison: if two numbers '
'compare equal\n'
'(such as "1" and "1.0") then they can be used '
'interchangeably to index\n'
'the same dictionary entry. (Note however, that since '
'computers store\n'
'floating-point numbers as approximations it is usually '
'unwise to use\n'
'them as dictionary keys.)\n'
'\n'
'Dictionaries can be created by placing a comma-separated '
'list of "key:\n'
'value" pairs within braces, for example: "{\'jack\': 4098, '
"'sjoerd':\n"
'4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the '
'"dict"\n'
'constructor.\n'
'\n'
'class dict(**kwarg)\n'
'class dict(mapping, **kwarg)\n'
'class dict(iterable, **kwarg)\n'
'\n'
' Return a new dictionary initialized from an optional '
'positional\n'
' argument and a possibly empty set of keyword arguments.\n'
'\n'
' If no positional argument is given, an empty dictionary '
'is created.\n'
' If a positional argument is given and it is a mapping '
'object, a\n'
' dictionary is created with the same key-value pairs as '
'the mapping\n'
' object. Otherwise, the positional argument must be an '
'*iterable*\n'
' object. Each item in the iterable must itself be an '
'iterable with\n'
' exactly two objects. The first object of each item '
'becomes a key\n'
' in the new dictionary, and the second object the '
'corresponding\n'
' value. If a key occurs more than once, the last value '
'for that key\n'
' becomes the corresponding value in the new dictionary.\n'
'\n'
' If keyword arguments are given, the keyword arguments and '
'their\n'
' values are added to the dictionary created from the '
'positional\n'
' argument. If a key being added is already present, the '
'value from\n'
' the keyword argument replaces the value from the '
'positional\n'
' argument.\n'
'\n'
' To illustrate, the following examples all return a '
'dictionary equal\n'
' to "{"one": 1, "two": 2, "three": 3}":\n'
'\n'
' >>> a = dict(one=1, two=2, three=3)\n'
" >>> b = {'one': 1, 'two': 2, 'three': 3}\n"
" >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))\n"
" >>> d = dict([('two', 2), ('one', 1), ('three', 3)])\n"
" >>> e = dict({'three': 3, 'one': 1, 'two': 2})\n"
" >>> f = dict({'one': 1, 'three': 3}, two=2)\n"
' >>> a == b == c == d == e == f\n'
' True\n'
'\n'
' Providing keyword arguments as in the first example only '
'works for\n'
' keys that are valid Python identifiers. Otherwise, any '
'valid keys\n'
' can be used.\n'
'\n'
' These are the operations that dictionaries support (and '
'therefore,\n'
' custom mapping types should support too):\n'
'\n'
' list(d)\n'
'\n'
' Return a list of all the keys used in the dictionary '
'*d*.\n'
'\n'
' len(d)\n'
'\n'
' Return the number of items in the dictionary *d*.\n'
'\n'
' d[key]\n'
'\n'
' Return the item of *d* with key *key*. Raises a '
'"KeyError" if\n'
' *key* is not in the map.\n'
'\n'
' If a subclass of dict defines a method "__missing__()" '
'and *key*\n'
' is not present, the "d[key]" operation calls that '
'method with\n'
' the key *key* as argument. The "d[key]" operation '
'then returns\n'
' or raises whatever is returned or raised by the\n'
' "__missing__(key)" call. No other operations or '
'methods invoke\n'
' "__missing__()". If "__missing__()" is not defined, '
'"KeyError"\n'
' is raised. "__missing__()" must be a method; it cannot '
'be an\n'
' instance variable:\n'
'\n'
' >>> class Counter(dict):\n'
' ... def __missing__(self, key):\n'
' ... return 0\n'
' >>> c = Counter()\n'
" >>> c['red']\n"
' 0\n'
" >>> c['red'] += 1\n"
" >>> c['red']\n"
' 1\n'
'\n'
' The example above shows part of the implementation of\n'
' "collections.Counter". A different "__missing__" '
'method is used\n'
' by "collections.defaultdict".\n'
'\n'
' d[key] = value\n'
'\n'
' Set "d[key]" to *value*.\n'
'\n'
' del d[key]\n'
'\n'
' Remove "d[key]" from *d*. Raises a "KeyError" if '
'*key* is not\n'
' in the map.\n'
'\n'
' key in d\n'
'\n'
' Return "True" if *d* has a key *key*, else "False".\n'
'\n'
' key not in d\n'
'\n'
' Equivalent to "not key in d".\n'
'\n'
' iter(d)\n'
'\n'
' Return an iterator over the keys of the dictionary. '
'This is a\n'
' shortcut for "iter(d.keys())".\n'
'\n'
' clear()\n'
'\n'
' Remove all items from the dictionary.\n'
'\n'
' copy()\n'
'\n'
' Return a shallow copy of the dictionary.\n'
'\n'
' classmethod fromkeys(iterable[, value])\n'
'\n'
' Create a new dictionary with keys from *iterable* and '
'values set\n'
' to *value*.\n'
'\n'
' "fromkeys()" is a class method that returns a new '
'dictionary.\n'
' *value* defaults to "None". All of the values refer '
'to just a\n'
' single instance, so it generally doesn’t make sense '
'for *value*\n'
' to be a mutable object such as an empty list. To get '
'distinct\n'
' values, use a dict comprehension instead.\n'
'\n'
' get(key[, default])\n'
'\n'
' Return the value for *key* if *key* is in the '
'dictionary, else\n'
' *default*. If *default* is not given, it defaults to '
'"None", so\n'
' that this method never raises a "KeyError".\n'
'\n'
' items()\n'
'\n'
' Return a new view of the dictionary’s items ("(key, '
'value)"\n'
' pairs). See the documentation of view objects.\n'
'\n'
' keys()\n'
'\n'
' Return a new view of the dictionary’s keys. See the\n'
' documentation of view objects.\n'
'\n'
' pop(key[, default])\n'
'\n'
' If *key* is in the dictionary, remove it and return '
'its value,\n'
' else return *default*. If *default* is not given and '
'*key* is\n'
' not in the dictionary, a "KeyError" is raised.\n'
'\n'
' popitem()\n'
'\n'
' Remove and return a "(key, value)" pair from the '
'dictionary.\n'
' Pairs are returned in LIFO (last-in, first-out) '
'order.\n'
'\n'
' "popitem()" is useful to destructively iterate over a\n'
' dictionary, as often used in set algorithms. If the '
'dictionary\n'
' is empty, calling "popitem()" raises a "KeyError".\n'
'\n'
' Changed in version 3.7: LIFO order is now guaranteed. '
'In prior\n'
' versions, "popitem()" would return an arbitrary '
'key/value pair.\n'
'\n'
' reversed(d)\n'
'\n'
' Return a reverse iterator over the keys of the '
'dictionary. This\n'
' is a shortcut for "reversed(d.keys())".\n'
'\n'
' setdefault(key[, default])\n'
'\n'
' If *key* is in the dictionary, return its value. If '
'not, insert\n'
' *key* with a value of *default* and return *default*. '
'*default*\n'
' defaults to "None".\n'
'\n'
' update([other])\n'
'\n'
' Update the dictionary with the key/value pairs from '
'*other*,\n'
' overwriting existing keys. Return "None".\n'
'\n'
' "update()" accepts either another dictionary object or '
'an\n'
' iterable of key/value pairs (as tuples or other '
'iterables of\n'
' length two). If keyword arguments are specified, the '
'dictionary\n'
' is then updated with those key/value pairs: '
'"d.update(red=1,\n'
' blue=2)".\n'
'\n'
' values()\n'
'\n'
' Return a new view of the dictionary’s values. See '
'the\n'
' documentation of view objects.\n'
'\n'
' An equality comparison between one "dict.values()" '
'view and\n'
' another will always return "False". This also applies '
'when\n'
' comparing "dict.values()" to itself:\n'
'\n'
" >>> d = {'a': 1}\n"
' >>> d.values() == d.values()\n'
' False\n'
'\n'
' Dictionaries compare equal if and only if they have the '
'same "(key,\n'
' value)" pairs (regardless of ordering). Order comparisons '
'(‘<’,\n'
' ‘<=’, ‘>=’, ‘>’) raise "TypeError".\n'
'\n'
' Dictionaries preserve insertion order. Note that '
'updating a key\n'
' does not affect the order. Keys added after deletion are '
'inserted\n'
' at the end.\n'
'\n'
' >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}\n'
' >>> d\n'
" {'one': 1, 'two': 2, 'three': 3, 'four': 4}\n"
' >>> list(d)\n'
" ['one', 'two', 'three', 'four']\n"
' >>> list(d.values())\n'
' [1, 2, 3, 4]\n'
' >>> d["one"] = 42\n'
' >>> d\n'
" {'one': 42, 'two': 2, 'three': 3, 'four': 4}\n"
' >>> del d["two"]\n'
' >>> d["two"] = None\n'
' >>> d\n'
" {'one': 42, 'three': 3, 'four': 4, 'two': None}\n"
'\n'
' Changed in version 3.7: Dictionary order is guaranteed to '
'be\n'
' insertion order. This behavior was an implementation '
'detail of\n'
' CPython from 3.6.\n'
'\n'
' Dictionaries and dictionary views are reversible.\n'
'\n'
' >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}\n'
' >>> d\n'
" {'one': 1, 'two': 2, 'three': 3, 'four': 4}\n"
' >>> list(reversed(d))\n'
" ['four', 'three', 'two', 'one']\n"
' >>> list(reversed(d.values()))\n'
' [4, 3, 2, 1]\n'
' >>> list(reversed(d.items()))\n'
" [('four', 4), ('three', 3), ('two', 2), ('one', 1)]\n"
'\n'
' Changed in version 3.8: Dictionaries are now reversible.\n'
'\n'
'See also: "types.MappingProxyType" can be used to create a '
'read-only\n'
' view of a "dict".\n'
'\n'
'\n'
'Dictionary view objects\n'
'=======================\n'
'\n'
'The objects returned by "dict.keys()", "dict.values()" and\n'
'"dict.items()" are *view objects*. They provide a dynamic '
'view on the\n'
'dictionary’s entries, which means that when the dictionary '
'changes,\n'
'the view reflects these changes.\n'
'\n'
'Dictionary views can be iterated over to yield their '
'respective data,\n'
'and support membership tests:\n'
'\n'
'len(dictview)\n'
'\n'
' Return the number of entries in the dictionary.\n'
'\n'
'iter(dictview)\n'
'\n'
' Return an iterator over the keys, values or items '
'(represented as\n'
' tuples of "(key, value)") in the dictionary.\n'
'\n'
' Keys and values are iterated over in insertion order. '
'This allows\n'
' the creation of "(value, key)" pairs using "zip()": '
'"pairs =\n'
' zip(d.values(), d.keys())". Another way to create the '
'same list is\n'
' "pairs = [(v, k) for (k, v) in d.items()]".\n'
'\n'
' Iterating views while adding or deleting entries in the '
'dictionary\n'
' may raise a "RuntimeError" or fail to iterate over all '
'entries.\n'
'\n'
' Changed in version 3.7: Dictionary order is guaranteed to '
'be\n'
' insertion order.\n'
'\n'
'x in dictview\n'
'\n'
' Return "True" if *x* is in the underlying dictionary’s '
'keys, values\n'
' or items (in the latter case, *x* should be a "(key, '
'value)"\n'
' tuple).\n'
'\n'
'reversed(dictview)\n'
'\n'
' Return a reverse iterator over the keys, values or items '
'of the\n'
' dictionary. The view will be iterated in reverse order of '
'the\n'
' insertion.\n'
'\n'
' Changed in version 3.8: Dictionary views are now '
'reversible.\n'
'\n'
'Keys views are set-like since their entries are unique and '
'hashable.\n'
'If all values are hashable, so that "(key, value)" pairs are '
'unique\n'
'and hashable, then the items view is also set-like. (Values '
'views are\n'
'not treated as set-like since the entries are generally not '
'unique.)\n'
'For set-like views, all of the operations defined for the '
'abstract\n'
'base class "collections.abc.Set" are available (for example, '
'"==",\n'
'"<", or "^").\n'
'\n'
'An example of dictionary view usage:\n'
'\n'
" >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, "
"'spam': 500}\n"
' >>> keys = dishes.keys()\n'
' >>> values = dishes.values()\n'
'\n'
' >>> # iteration\n'
' >>> n = 0\n'
' >>> for val in values:\n'
' ... n += val\n'
' >>> print(n)\n'
' 504\n'
'\n'
' >>> # keys and values are iterated over in the same order '
'(insertion order)\n'
' >>> list(keys)\n'
" ['eggs', 'sausage', 'bacon', 'spam']\n"
' >>> list(values)\n'
' [2, 1, 1, 500]\n'
'\n'
' >>> # view objects are dynamic and reflect dict changes\n'
" >>> del dishes['eggs']\n"
" >>> del dishes['sausage']\n"
' >>> list(keys)\n'
" ['bacon', 'spam']\n"
'\n'
' >>> # set operations\n'
" >>> keys & {'eggs', 'bacon', 'salad'}\n"
" {'bacon'}\n"
" >>> keys ^ {'sausage', 'juice'}\n"
" {'juice', 'sausage', 'bacon', 'spam'}\n",
'typesmethods': 'Methods\n'
'*******\n'
'\n'
'Methods are functions that are called using the attribute '
'notation.\n'
'There are two flavors: built-in methods (such as "append()" '
'on lists)\n'
'and class instance methods. Built-in methods are described '
'with the\n'
'types that support them.\n'
'\n'
'If you access a method (a function defined in a class '
'namespace)\n'
'through an instance, you get a special object: a *bound '
'method* (also\n'
'called *instance method*) object. When called, it will add '
'the "self"\n'
'argument to the argument list. Bound methods have two '
'special read-\n'
'only attributes: "m.__self__" is the object on which the '
'method\n'
'operates, and "m.__func__" is the function implementing the '
'method.\n'
'Calling "m(arg-1, arg-2, ..., arg-n)" is completely '
'equivalent to\n'
'calling "m.__func__(m.__self__, arg-1, arg-2, ..., arg-n)".\n'
'\n'
'Like function objects, bound method objects support getting '
'arbitrary\n'
'attributes. However, since method attributes are actually '
'stored on\n'
'the underlying function object ("meth.__func__"), setting '
'method\n'
'attributes on bound methods is disallowed. Attempting to '
'set an\n'
'attribute on a method results in an "AttributeError" being '
'raised. In\n'
'order to set a method attribute, you need to explicitly set '
'it on the\n'
'underlying function object:\n'
'\n'
' >>> class C:\n'
' ... def method(self):\n'
' ... pass\n'
' ...\n'
' >>> c = C()\n'
" >>> c.method.whoami = 'my name is method' # can't set on "
'the method\n'
' Traceback (most recent call last):\n'
' File "<stdin>", line 1, in <module>\n'
" AttributeError: 'method' object has no attribute "
"'whoami'\n"
" >>> c.method.__func__.whoami = 'my name is method'\n"
' >>> c.method.whoami\n'
" 'my name is method'\n"
'\n'
'See The standard type hierarchy for more information.\n',
'typesmodules': 'Modules\n'
'*******\n'
'\n'
'The only special operation on a module is attribute access: '
'"m.name",\n'
'where *m* is a module and *name* accesses a name defined in '
'*m*’s\n'
'symbol table. Module attributes can be assigned to. (Note '
'that the\n'
'"import" statement is not, strictly speaking, an operation '
'on a module\n'
'object; "import foo" does not require a module object named '
'*foo* to\n'
'exist, rather it requires an (external) *definition* for a '
'module\n'
'named *foo* somewhere.)\n'
'\n'
'A special attribute of every module is "__dict__". This is '
'the\n'
'dictionary containing the module’s symbol table. Modifying '
'this\n'
'dictionary will actually change the module’s symbol table, '
'but direct\n'
'assignment to the "__dict__" attribute is not possible (you '
'can write\n'
'"m.__dict__[\'a\'] = 1", which defines "m.a" to be "1", but '
'you can’t\n'
'write "m.__dict__ = {}"). Modifying "__dict__" directly is '
'not\n'
'recommended.\n'
'\n'
'Modules built into the interpreter are written like this: '
'"<module\n'
'\'sys\' (built-in)>". If loaded from a file, they are '
'written as\n'
'"<module \'os\' from '
'\'/usr/local/lib/pythonX.Y/os.pyc\'>".\n',
'typesseq': 'Sequence Types — "list", "tuple", "range"\n'
'*****************************************\n'
'\n'
'There are three basic sequence types: lists, tuples, and range\n'
'objects. Additional sequence types tailored for processing of '
'binary\n'
'data and text strings are described in dedicated sections.\n'
'\n'
'\n'
'Common Sequence Operations\n'
'==========================\n'
'\n'
'The operations in the following table are supported by most '
'sequence\n'
'types, both mutable and immutable. The '
'"collections.abc.Sequence" ABC\n'
'is provided to make it easier to correctly implement these '
'operations\n'
'on custom sequence types.\n'
'\n'
'This table lists the sequence operations sorted in ascending '
'priority.\n'
'In the table, *s* and *t* are sequences of the same type, *n*, '
'*i*,\n'
'*j* and *k* are integers and *x* is an arbitrary object that '
'meets any\n'
'type and value restrictions imposed by *s*.\n'
'\n'
'The "in" and "not in" operations have the same priorities as '
'the\n'
'comparison operations. The "+" (concatenation) and "*" '
'(repetition)\n'
'operations have the same priority as the corresponding numeric\n'
'operations. [3]\n'
'\n'
'+----------------------------+----------------------------------+------------+\n'
'| Operation | Result '
'| Notes |\n'
'|============================|==================================|============|\n'
'| "x in s" | "True" if an item of *s* is '
'| (1) |\n'
'| | equal to *x*, else "False" '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "x not in s" | "False" if an item of *s* is '
'| (1) |\n'
'| | equal to *x*, else "True" '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s + t" | the concatenation of *s* and *t* '
'| (6)(7) |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s * n" or "n * s" | equivalent to adding *s* to '
'| (2)(7) |\n'
'| | itself *n* times '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s[i]" | *i*th item of *s*, origin 0 '
'| (3) |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s[i:j]" | slice of *s* from *i* to *j* '
'| (3)(4) |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s[i:j:k]" | slice of *s* from *i* to *j* '
'| (3)(5) |\n'
'| | with step *k* '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "len(s)" | length of *s* '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "min(s)" | smallest item of *s* '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "max(s)" | largest item of *s* '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s.index(x[, i[, j]])" | index of the first occurrence of '
'| (8) |\n'
'| | *x* in *s* (at or after index '
'| |\n'
'| | *i* and before index *j*) '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'| "s.count(x)" | total number of occurrences of '
'| |\n'
'| | *x* in *s* '
'| |\n'
'+----------------------------+----------------------------------+------------+\n'
'\n'
'Sequences of the same type also support comparisons. In '
'particular,\n'
'tuples and lists are compared lexicographically by comparing\n'
'corresponding elements. This means that to compare equal, every\n'
'element must compare equal and the two sequences must be of the '
'same\n'
'type and have the same length. (For full details see '
'Comparisons in\n'
'the language reference.)\n'
'\n'
'Notes:\n'
'\n'
'1. While the "in" and "not in" operations are used only for '
'simple\n'
' containment testing in the general case, some specialised '
'sequences\n'
' (such as "str", "bytes" and "bytearray") also use them for\n'
' subsequence testing:\n'
'\n'
' >>> "gg" in "eggs"\n'
' True\n'
'\n'
'2. Values of *n* less than "0" are treated as "0" (which yields '
'an\n'
' empty sequence of the same type as *s*). Note that items in '
'the\n'
' sequence *s* are not copied; they are referenced multiple '
'times.\n'
' This often haunts new Python programmers; consider:\n'
'\n'
' >>> lists = [[]] * 3\n'
' >>> lists\n'
' [[], [], []]\n'
' >>> lists[0].append(3)\n'
' >>> lists\n'
' [[3], [3], [3]]\n'
'\n'
' What has happened is that "[[]]" is a one-element list '
'containing\n'
' an empty list, so all three elements of "[[]] * 3" are '
'references\n'
' to this single empty list. Modifying any of the elements of\n'
' "lists" modifies this single list. You can create a list of\n'
' different lists this way:\n'
'\n'
' >>> lists = [[] for i in range(3)]\n'
' >>> lists[0].append(3)\n'
' >>> lists[1].append(5)\n'
' >>> lists[2].append(7)\n'
' >>> lists\n'
' [[3], [5], [7]]\n'
'\n'
' Further explanation is available in the FAQ entry How do I '
'create a\n'
' multidimensional list?.\n'
'\n'
'3. If *i* or *j* is negative, the index is relative to the end '
'of\n'
' sequence *s*: "len(s) + i" or "len(s) + j" is substituted. '
'But\n'
' note that "-0" is still "0".\n'
'\n'
'4. The slice of *s* from *i* to *j* is defined as the sequence '
'of\n'
' items with index *k* such that "i <= k < j". If *i* or *j* '
'is\n'
' greater than "len(s)", use "len(s)". If *i* is omitted or '
'"None",\n'
' use "0". If *j* is omitted or "None", use "len(s)". If *i* '
'is\n'
' greater than or equal to *j*, the slice is empty.\n'
'\n'
'5. The slice of *s* from *i* to *j* with step *k* is defined as '
'the\n'
' sequence of items with index "x = i + n*k" such that "0 <= n '
'<\n'
' (j-i)/k". In other words, the indices are "i", "i+k", '
'"i+2*k",\n'
' "i+3*k" and so on, stopping when *j* is reached (but never\n'
' including *j*). When *k* is positive, *i* and *j* are '
'reduced to\n'
' "len(s)" if they are greater. When *k* is negative, *i* and '
'*j* are\n'
' reduced to "len(s) - 1" if they are greater. If *i* or *j* '
'are\n'
' omitted or "None", they become “end” values (which end '
'depends on\n'
' the sign of *k*). Note, *k* cannot be zero. If *k* is '
'"None", it\n'
' is treated like "1".\n'
'\n'
'6. Concatenating immutable sequences always results in a new\n'
' object. This means that building up a sequence by repeated\n'
' concatenation will have a quadratic runtime cost in the '
'total\n'
' sequence length. To get a linear runtime cost, you must '
'switch to\n'
' one of the alternatives below:\n'
'\n'
' * if concatenating "str" objects, you can build a list and '
'use\n'
' "str.join()" at the end or else write to an "io.StringIO"\n'
' instance and retrieve its value when complete\n'
'\n'
' * if concatenating "bytes" objects, you can similarly use\n'
' "bytes.join()" or "io.BytesIO", or you can do in-place\n'
' concatenation with a "bytearray" object. "bytearray" '
'objects are\n'
' mutable and have an efficient overallocation mechanism\n'
'\n'
' * if concatenating "tuple" objects, extend a "list" instead\n'
'\n'
' * for other types, investigate the relevant class '
'documentation\n'
'\n'
'7. Some sequence types (such as "range") only support item\n'
' sequences that follow specific patterns, and hence don’t '
'support\n'
' sequence concatenation or repetition.\n'
'\n'
'8. "index" raises "ValueError" when *x* is not found in *s*. '
'Not\n'
' all implementations support passing the additional arguments '
'*i*\n'
' and *j*. These arguments allow efficient searching of '
'subsections\n'
' of the sequence. Passing the extra arguments is roughly '
'equivalent\n'
' to using "s[i:j].index(x)", only without copying any data and '
'with\n'
' the returned index being relative to the start of the '
'sequence\n'
' rather than the start of the slice.\n'
'\n'
'\n'
'Immutable Sequence Types\n'
'========================\n'
'\n'
'The only operation that immutable sequence types generally '
'implement\n'
'that is not also implemented by mutable sequence types is '
'support for\n'
'the "hash()" built-in.\n'
'\n'
'This support allows immutable sequences, such as "tuple" '
'instances, to\n'
'be used as "dict" keys and stored in "set" and "frozenset" '
'instances.\n'
'\n'
'Attempting to hash an immutable sequence that contains '
'unhashable\n'
'values will result in "TypeError".\n'
'\n'
'\n'
'Mutable Sequence Types\n'
'======================\n'
'\n'
'The operations in the following table are defined on mutable '
'sequence\n'
'types. The "collections.abc.MutableSequence" ABC is provided to '
'make\n'
'it easier to correctly implement these operations on custom '
'sequence\n'
'types.\n'
'\n'
'In the table *s* is an instance of a mutable sequence type, *t* '
'is any\n'
'iterable object and *x* is an arbitrary object that meets any '
'type and\n'
'value restrictions imposed by *s* (for example, "bytearray" '
'only\n'
'accepts integers that meet the value restriction "0 <= x <= '
'255").\n'
'\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| Operation | '
'Result | Notes |\n'
'|================================|==================================|=======================|\n'
'| "s[i] = x" | item *i* of *s* is replaced '
'by | |\n'
'| | '
'*x* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s[i:j] = t" | slice of *s* from *i* to *j* '
'is | |\n'
'| | replaced by the contents of '
'the | |\n'
'| | iterable '
'*t* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "del s[i:j]" | same as "s[i:j] = '
'[]" | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s[i:j:k] = t" | the elements of "s[i:j:k]" '
'are | (1) |\n'
'| | replaced by those of '
'*t* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "del s[i:j:k]" | removes the elements '
'of | |\n'
'| | "s[i:j:k]" from the '
'list | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.append(x)" | appends *x* to the end of '
'the | |\n'
'| | sequence (same '
'as | |\n'
'| | "s[len(s):len(s)] = '
'[x]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.clear()" | removes all items from *s* '
'(same | (5) |\n'
'| | as "del '
's[:]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.copy()" | creates a shallow copy of '
'*s* | (5) |\n'
'| | (same as '
'"s[:]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.extend(t)" or "s += t" | extends *s* with the contents '
'of | |\n'
'| | *t* (for the most part the '
'same | |\n'
'| | as "s[len(s):len(s)] = '
't") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s *= n" | updates *s* with its '
'contents | (6) |\n'
'| | repeated *n* '
'times | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.insert(i, x)" | inserts *x* into *s* at '
'the | |\n'
'| | index given by *i* (same '
'as | |\n'
'| | "s[i:i] = '
'[x]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.pop([i])" | retrieves the item at *i* '
'and | (2) |\n'
'| | also removes it from '
'*s* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.remove(x)" | remove the first item from '
'*s* | (3) |\n'
'| | where "s[i]" is equal to '
'*x* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.reverse()" | reverses the items of *s* '
'in | (4) |\n'
'| | '
'place | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'\n'
'Notes:\n'
'\n'
'1. *t* must have the same length as the slice it is replacing.\n'
'\n'
'2. The optional argument *i* defaults to "-1", so that by '
'default\n'
' the last item is removed and returned.\n'
'\n'
'3. "remove()" raises "ValueError" when *x* is not found in *s*.\n'
'\n'
'4. The "reverse()" method modifies the sequence in place for\n'
' economy of space when reversing a large sequence. To remind '
'users\n'
' that it operates by side effect, it does not return the '
'reversed\n'
' sequence.\n'
'\n'
'5. "clear()" and "copy()" are included for consistency with the\n'
' interfaces of mutable containers that don’t support slicing\n'
' operations (such as "dict" and "set"). "copy()" is not part '
'of the\n'
' "collections.abc.MutableSequence" ABC, but most concrete '
'mutable\n'
' sequence classes provide it.\n'
'\n'
' New in version 3.3: "clear()" and "copy()" methods.\n'
'\n'
'6. The value *n* is an integer, or an object implementing\n'
' "__index__()". Zero and negative values of *n* clear the '
'sequence.\n'
' Items in the sequence are not copied; they are referenced '
'multiple\n'
' times, as explained for "s * n" under Common Sequence '
'Operations.\n'
'\n'
'\n'
'Lists\n'
'=====\n'
'\n'
'Lists are mutable sequences, typically used to store collections '
'of\n'
'homogeneous items (where the precise degree of similarity will '
'vary by\n'
'application).\n'
'\n'
'class list([iterable])\n'
'\n'
' Lists may be constructed in several ways:\n'
'\n'
' * Using a pair of square brackets to denote the empty list: '
'"[]"\n'
'\n'
' * Using square brackets, separating items with commas: '
'"[a]",\n'
' "[a, b, c]"\n'
'\n'
' * Using a list comprehension: "[x for x in iterable]"\n'
'\n'
' * Using the type constructor: "list()" or "list(iterable)"\n'
'\n'
' The constructor builds a list whose items are the same and in '
'the\n'
' same order as *iterable*’s items. *iterable* may be either '
'a\n'
' sequence, a container that supports iteration, or an '
'iterator\n'
' object. If *iterable* is already a list, a copy is made and\n'
' returned, similar to "iterable[:]". For example, '
'"list(\'abc\')"\n'
' returns "[\'a\', \'b\', \'c\']" and "list( (1, 2, 3) )" '
'returns "[1, 2,\n'
' 3]". If no argument is given, the constructor creates a new '
'empty\n'
' list, "[]".\n'
'\n'
' Many other operations also produce lists, including the '
'"sorted()"\n'
' built-in.\n'
'\n'
' Lists implement all of the common and mutable sequence '
'operations.\n'
' Lists also provide the following additional method:\n'
'\n'
' sort(*, key=None, reverse=False)\n'
'\n'
' This method sorts the list in place, using only "<" '
'comparisons\n'
' between items. Exceptions are not suppressed - if any '
'comparison\n'
' operations fail, the entire sort operation will fail (and '
'the\n'
' list will likely be left in a partially modified state).\n'
'\n'
' "sort()" accepts two arguments that can only be passed by\n'
' keyword (keyword-only arguments):\n'
'\n'
' *key* specifies a function of one argument that is used '
'to\n'
' extract a comparison key from each list element (for '
'example,\n'
' "key=str.lower"). The key corresponding to each item in '
'the list\n'
' is calculated once and then used for the entire sorting '
'process.\n'
' The default value of "None" means that list items are '
'sorted\n'
' directly without calculating a separate key value.\n'
'\n'
' The "functools.cmp_to_key()" utility is available to '
'convert a\n'
' 2.x style *cmp* function to a *key* function.\n'
'\n'
' *reverse* is a boolean value. If set to "True", then the '
'list\n'
' elements are sorted as if each comparison were reversed.\n'
'\n'
' This method modifies the sequence in place for economy of '
'space\n'
' when sorting a large sequence. To remind users that it '
'operates\n'
' by side effect, it does not return the sorted sequence '
'(use\n'
' "sorted()" to explicitly request a new sorted list '
'instance).\n'
'\n'
' The "sort()" method is guaranteed to be stable. A sort '
'is\n'
' stable if it guarantees not to change the relative order '
'of\n'
' elements that compare equal — this is helpful for sorting '
'in\n'
' multiple passes (for example, sort by department, then by '
'salary\n'
' grade).\n'
'\n'
' For sorting examples and a brief sorting tutorial, see '
'Sorting\n'
' HOW TO.\n'
'\n'
' **CPython implementation detail:** While a list is being '
'sorted,\n'
' the effect of attempting to mutate, or even inspect, the '
'list is\n'
' undefined. The C implementation of Python makes the list '
'appear\n'
' empty for the duration, and raises "ValueError" if it can '
'detect\n'
' that the list has been mutated during a sort.\n'
'\n'
'\n'
'Tuples\n'
'======\n'
'\n'
'Tuples are immutable sequences, typically used to store '
'collections of\n'
'heterogeneous data (such as the 2-tuples produced by the '
'"enumerate()"\n'
'built-in). Tuples are also used for cases where an immutable '
'sequence\n'
'of homogeneous data is needed (such as allowing storage in a '
'"set" or\n'
'"dict" instance).\n'
'\n'
'class tuple([iterable])\n'
'\n'
' Tuples may be constructed in a number of ways:\n'
'\n'
' * Using a pair of parentheses to denote the empty tuple: '
'"()"\n'
'\n'
' * Using a trailing comma for a singleton tuple: "a," or '
'"(a,)"\n'
'\n'
' * Separating items with commas: "a, b, c" or "(a, b, c)"\n'
'\n'
' * Using the "tuple()" built-in: "tuple()" or '
'"tuple(iterable)"\n'
'\n'
' The constructor builds a tuple whose items are the same and '
'in the\n'
' same order as *iterable*’s items. *iterable* may be either '
'a\n'
' sequence, a container that supports iteration, or an '
'iterator\n'
' object. If *iterable* is already a tuple, it is returned\n'
' unchanged. For example, "tuple(\'abc\')" returns "(\'a\', '
'\'b\', \'c\')"\n'
' and "tuple( [1, 2, 3] )" returns "(1, 2, 3)". If no argument '
'is\n'
' given, the constructor creates a new empty tuple, "()".\n'
'\n'
' Note that it is actually the comma which makes a tuple, not '
'the\n'
' parentheses. The parentheses are optional, except in the '
'empty\n'
' tuple case, or when they are needed to avoid syntactic '
'ambiguity.\n'
' For example, "f(a, b, c)" is a function call with three '
'arguments,\n'
' while "f((a, b, c))" is a function call with a 3-tuple as the '
'sole\n'
' argument.\n'
'\n'
' Tuples implement all of the common sequence operations.\n'
'\n'
'For heterogeneous collections of data where access by name is '
'clearer\n'
'than access by index, "collections.namedtuple()" may be a more\n'
'appropriate choice than a simple tuple object.\n'
'\n'
'\n'
'Ranges\n'
'======\n'
'\n'
'The "range" type represents an immutable sequence of numbers and '
'is\n'
'commonly used for looping a specific number of times in "for" '
'loops.\n'
'\n'
'class range(stop)\n'
'class range(start, stop[, step])\n'
'\n'
' The arguments to the range constructor must be integers '
'(either\n'
' built-in "int" or any object that implements the "__index__"\n'
' special method). If the *step* argument is omitted, it '
'defaults to\n'
' "1". If the *start* argument is omitted, it defaults to "0". '
'If\n'
' *step* is zero, "ValueError" is raised.\n'
'\n'
' For a positive *step*, the contents of a range "r" are '
'determined\n'
' by the formula "r[i] = start + step*i" where "i >= 0" and '
'"r[i] <\n'
' stop".\n'
'\n'
' For a negative *step*, the contents of the range are still\n'
' determined by the formula "r[i] = start + step*i", but the\n'
' constraints are "i >= 0" and "r[i] > stop".\n'
'\n'
' A range object will be empty if "r[0]" does not meet the '
'value\n'
' constraint. Ranges do support negative indices, but these '
'are\n'
' interpreted as indexing from the end of the sequence '
'determined by\n'
' the positive indices.\n'
'\n'
' Ranges containing absolute values larger than "sys.maxsize" '
'are\n'
' permitted but some features (such as "len()") may raise\n'
' "OverflowError".\n'
'\n'
' Range examples:\n'
'\n'
' >>> list(range(10))\n'
' [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n'
' >>> list(range(1, 11))\n'
' [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n'
' >>> list(range(0, 30, 5))\n'
' [0, 5, 10, 15, 20, 25]\n'
' >>> list(range(0, 10, 3))\n'
' [0, 3, 6, 9]\n'
' >>> list(range(0, -10, -1))\n'
' [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]\n'
' >>> list(range(0))\n'
' []\n'
' >>> list(range(1, 0))\n'
' []\n'
'\n'
' Ranges implement all of the common sequence operations '
'except\n'
' concatenation and repetition (due to the fact that range '
'objects\n'
' can only represent sequences that follow a strict pattern '
'and\n'
' repetition and concatenation will usually violate that '
'pattern).\n'
'\n'
' start\n'
'\n'
' The value of the *start* parameter (or "0" if the '
'parameter was\n'
' not supplied)\n'
'\n'
' stop\n'
'\n'
' The value of the *stop* parameter\n'
'\n'
' step\n'
'\n'
' The value of the *step* parameter (or "1" if the parameter '
'was\n'
' not supplied)\n'
'\n'
'The advantage of the "range" type over a regular "list" or '
'"tuple" is\n'
'that a "range" object will always take the same (small) amount '
'of\n'
'memory, no matter the size of the range it represents (as it '
'only\n'
'stores the "start", "stop" and "step" values, calculating '
'individual\n'
'items and subranges as needed).\n'
'\n'
'Range objects implement the "collections.abc.Sequence" ABC, and\n'
'provide features such as containment tests, element index '
'lookup,\n'
'slicing and support for negative indices (see Sequence Types — '
'list,\n'
'tuple, range):\n'
'\n'
'>>> r = range(0, 20, 2)\n'
'>>> r\n'
'range(0, 20, 2)\n'
'>>> 11 in r\n'
'False\n'
'>>> 10 in r\n'
'True\n'
'>>> r.index(10)\n'
'5\n'
'>>> r[5]\n'
'10\n'
'>>> r[:5]\n'
'range(0, 10, 2)\n'
'>>> r[-1]\n'
'18\n'
'\n'
'Testing range objects for equality with "==" and "!=" compares '
'them as\n'
'sequences. That is, two range objects are considered equal if '
'they\n'
'represent the same sequence of values. (Note that two range '
'objects\n'
'that compare equal might have different "start", "stop" and '
'"step"\n'
'attributes, for example "range(0) == range(2, 1, 3)" or '
'"range(0, 3,\n'
'2) == range(0, 4, 2)".)\n'
'\n'
'Changed in version 3.2: Implement the Sequence ABC. Support '
'slicing\n'
'and negative indices. Test "int" objects for membership in '
'constant\n'
'time instead of iterating through all items.\n'
'\n'
'Changed in version 3.3: Define ‘==’ and ‘!=’ to compare range '
'objects\n'
'based on the sequence of values they define (instead of '
'comparing\n'
'based on object identity).\n'
'\n'
'New in version 3.3: The "start", "stop" and "step" attributes.\n'
'\n'
'See also:\n'
'\n'
' * The linspace recipe shows how to implement a lazy version '
'of\n'
' range suitable for floating point applications.\n',
'typesseq-mutable': 'Mutable Sequence Types\n'
'**********************\n'
'\n'
'The operations in the following table are defined on '
'mutable sequence\n'
'types. The "collections.abc.MutableSequence" ABC is '
'provided to make\n'
'it easier to correctly implement these operations on '
'custom sequence\n'
'types.\n'
'\n'
'In the table *s* is an instance of a mutable sequence '
'type, *t* is any\n'
'iterable object and *x* is an arbitrary object that '
'meets any type and\n'
'value restrictions imposed by *s* (for example, '
'"bytearray" only\n'
'accepts integers that meet the value restriction "0 <= x '
'<= 255").\n'
'\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| Operation | '
'Result | Notes '
'|\n'
'|================================|==================================|=======================|\n'
'| "s[i] = x" | item *i* of *s* is '
'replaced by | |\n'
'| | '
'*x* | '
'|\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s[i:j] = t" | slice of *s* from *i* '
'to *j* is | |\n'
'| | replaced by the '
'contents of the | |\n'
'| | iterable '
'*t* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "del s[i:j]" | same as "s[i:j] = '
'[]" | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s[i:j:k] = t" | the elements of '
'"s[i:j:k]" are | (1) |\n'
'| | replaced by those of '
'*t* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "del s[i:j:k]" | removes the elements '
'of | |\n'
'| | "s[i:j:k]" from the '
'list | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.append(x)" | appends *x* to the '
'end of the | |\n'
'| | sequence (same '
'as | |\n'
'| | "s[len(s):len(s)] = '
'[x]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.clear()" | removes all items '
'from *s* (same | (5) |\n'
'| | as "del '
's[:]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.copy()" | creates a shallow '
'copy of *s* | (5) |\n'
'| | (same as '
'"s[:]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.extend(t)" or "s += t" | extends *s* with the '
'contents of | |\n'
'| | *t* (for the most '
'part the same | |\n'
'| | as "s[len(s):len(s)] '
'= t") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s *= n" | updates *s* with its '
'contents | (6) |\n'
'| | repeated *n* '
'times | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.insert(i, x)" | inserts *x* into *s* '
'at the | |\n'
'| | index given by *i* '
'(same as | |\n'
'| | "s[i:i] = '
'[x]") | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.pop([i])" | retrieves the item at '
'*i* and | (2) |\n'
'| | also removes it from '
'*s* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.remove(x)" | remove the first item '
'from *s* | (3) |\n'
'| | where "s[i]" is equal '
'to *x* | |\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.reverse()" | reverses the items of '
'*s* in | (4) |\n'
'| | '
'place | '
'|\n'
'+--------------------------------+----------------------------------+-----------------------+\n'
'\n'
'Notes:\n'
'\n'
'1. *t* must have the same length as the slice it is '
'replacing.\n'
'\n'
'2. The optional argument *i* defaults to "-1", so that '
'by default\n'
' the last item is removed and returned.\n'
'\n'
'3. "remove()" raises "ValueError" when *x* is not found '
'in *s*.\n'
'\n'
'4. The "reverse()" method modifies the sequence in place '
'for\n'
' economy of space when reversing a large sequence. To '
'remind users\n'
' that it operates by side effect, it does not return '
'the reversed\n'
' sequence.\n'
'\n'
'5. "clear()" and "copy()" are included for consistency '
'with the\n'
' interfaces of mutable containers that don’t support '
'slicing\n'
' operations (such as "dict" and "set"). "copy()" is '
'not part of the\n'
' "collections.abc.MutableSequence" ABC, but most '
'concrete mutable\n'
' sequence classes provide it.\n'
'\n'
' New in version 3.3: "clear()" and "copy()" methods.\n'
'\n'
'6. The value *n* is an integer, or an object '
'implementing\n'
' "__index__()". Zero and negative values of *n* clear '
'the sequence.\n'
' Items in the sequence are not copied; they are '
'referenced multiple\n'
' times, as explained for "s * n" under Common Sequence '
'Operations.\n',
'unary': 'Unary arithmetic and bitwise operations\n'
'***************************************\n'
'\n'
'All unary arithmetic and bitwise operations have the same '
'priority:\n'
'\n'
' u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr\n'
'\n'
'The unary "-" (minus) operator yields the negation of its numeric\n'
'argument.\n'
'\n'
'The unary "+" (plus) operator yields its numeric argument '
'unchanged.\n'
'\n'
'The unary "~" (invert) operator yields the bitwise inversion of '
'its\n'
'integer argument. The bitwise inversion of "x" is defined as\n'
'"-(x+1)". It only applies to integral numbers.\n'
'\n'
'In all three cases, if the argument does not have the proper type, '
'a\n'
'"TypeError" exception is raised.\n',
'while': 'The "while" statement\n'
'*********************\n'
'\n'
'The "while" statement is used for repeated execution as long as an\n'
'expression is true:\n'
'\n'
' while_stmt ::= "while" expression ":" suite\n'
' ["else" ":" suite]\n'
'\n'
'This repeatedly tests the expression and, if it is true, executes '
'the\n'
'first suite; if the expression is false (which may be the first '
'time\n'
'it is tested) the suite of the "else" clause, if present, is '
'executed\n'
'and the loop terminates.\n'
'\n'
'A "break" statement executed in the first suite terminates the '
'loop\n'
'without executing the "else" clause’s suite. A "continue" '
'statement\n'
'executed in the first suite skips the rest of the suite and goes '
'back\n'
'to testing the expression.\n',
'with': 'The "with" statement\n'
'********************\n'
'\n'
'The "with" statement is used to wrap the execution of a block with\n'
'methods defined by a context manager (see section With Statement\n'
'Context Managers). This allows common "try"…"except"…"finally" '
'usage\n'
'patterns to be encapsulated for convenient reuse.\n'
'\n'
' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
' with_item ::= expression ["as" target]\n'
'\n'
'The execution of the "with" statement with one “item” proceeds as\n'
'follows:\n'
'\n'
'1. The context expression (the expression given in the "with_item")\n'
' is evaluated to obtain a context manager.\n'
'\n'
'2. The context manager’s "__exit__()" is loaded for later use.\n'
'\n'
'3. The context manager’s "__enter__()" method is invoked.\n'
'\n'
'4. If a target was included in the "with" statement, the return\n'
' value from "__enter__()" is assigned to it.\n'
'\n'
' Note: The "with" statement guarantees that if the "__enter__()"\n'
' method returns without an error, then "__exit__()" will always '
'be\n'
' called. Thus, if an error occurs during the assignment to the\n'
' target list, it will be treated the same as an error occurring\n'
' within the suite would be. See step 6 below.\n'
'\n'
'5. The suite is executed.\n'
'\n'
'6. The context manager’s "__exit__()" method is invoked. If an\n'
' exception caused the suite to be exited, its type, value, and\n'
' traceback are passed as arguments to "__exit__()". Otherwise, '
'three\n'
' "None" arguments are supplied.\n'
'\n'
' If the suite was exited due to an exception, and the return '
'value\n'
' from the "__exit__()" method was false, the exception is '
'reraised.\n'
' If the return value was true, the exception is suppressed, and\n'
' execution continues with the statement following the "with"\n'
' statement.\n'
'\n'
' If the suite was exited for any reason other than an exception, '
'the\n'
' return value from "__exit__()" is ignored, and execution '
'proceeds\n'
' at the normal location for the kind of exit that was taken.\n'
'\n'
'With more than one item, the context managers are processed as if\n'
'multiple "with" statements were nested:\n'
'\n'
' with A() as a, B() as b:\n'
' suite\n'
'\n'
'is equivalent to\n'
'\n'
' with A() as a:\n'
' with B() as b:\n'
' suite\n'
'\n'
'Changed in version 3.1: Support for multiple context expressions.\n'
'\n'
'See also:\n'
'\n'
' **PEP 343** - The “with” statement\n'
' The specification, background, and examples for the Python '
'"with"\n'
' statement.\n',
'yield': 'The "yield" statement\n'
'*********************\n'
'\n'
' yield_stmt ::= yield_expression\n'
'\n'
'A "yield" statement is semantically equivalent to a yield '
'expression.\n'
'The yield statement can be used to omit the parentheses that would\n'
'otherwise be required in the equivalent yield expression '
'statement.\n'
'For example, the yield statements\n'
'\n'
' yield <expr>\n'
' yield from <expr>\n'
'\n'
'are equivalent to the yield expression statements\n'
'\n'
' (yield <expr>)\n'
' (yield from <expr>)\n'
'\n'
'Yield expressions and statements are only used when defining a\n'
'*generator* function, and are only used in the body of the '
'generator\n'
'function. Using yield in a function definition is sufficient to '
'cause\n'
'that definition to create a generator function instead of a normal\n'
'function.\n'
'\n'
'For full details of "yield" semantics, refer to the Yield '
'expressions\n'
'section.\n'}
|