summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
blob: 51ecb329954638c0687b0350883024f1bad29d57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#	R A N D O M   V A R I A B L E   G E N E R A T O R S
#
#	distributions on the real line:
#	------------------------------
#	       normal (Gaussian)
#	       lognormal
#	       negative exponential
#	       gamma
#
#	distributions on the circle (angles 0 to 2pi)
#	---------------------------------------------
#	       circular uniform
#	       von Mises

# Translated from anonymously contributed C/C++ source.

from whrandom import random, uniform, randint, choice # Also for export!
from math import log, exp, pi, e, sqrt, acos, cos

# Housekeeping function to verify that magic constants have been
# computed correctly

def verify(name, expected):
	computed = eval(name)
	if abs(computed - expected) > 1e-7:
		raise ValueError, \
  'computed value for %s deviates too much (computed %g, expected %g)' % \
  (name, computed, expected)

# -------------------- normal distribution --------------------

NV_MAGICCONST = 4*exp(-0.5)/sqrt(2)
verify('NV_MAGICCONST', 1.71552776992141)
def normalvariate(mu, sigma):
	# mu = mean, sigma = standard deviation

	# Uses Kinderman and Monahan method. Reference: Kinderman,
	# A.J. and Monahan, J.F., "Computer generation of random
	# variables using the ratio of uniform deviates", ACM Trans
	# Math Software, 3, (1977), pp257-260.

	while 1:
		u1 = random()
		u2 = random()
		z = NV_MAGICCONST*(u1-0.5)/u2
		zz = z*z/4
		if zz <= -log(u2):
			break
	return mu+z*sigma

# -------------------- lognormal distribution --------------------

def lognormvariate(mu, sigma):
	return exp(normalvariate(mu, sigma))

# -------------------- circular uniform --------------------

def cunifvariate(mean, arc):
	# mean: mean angle (in radians between 0 and pi)
	# arc:  range of distribution (in radians between 0 and pi)

	return (mean + arc * (random() - 0.5)) % pi

# -------------------- exponential distribution --------------------

def expovariate(lambd):
	# lambd: rate lambd = 1/mean
	# ('lambda' is a Python reserved word)

	u = random()
	while u <= 1e-7:
		u = random()
	return -log(u)/lambd

# -------------------- von Mises distribution --------------------

TWOPI = 2*pi
verify('TWOPI', 6.28318530718)

def vonmisesvariate(mu, kappa):
	# mu:    mean angle (in radians between 0 and 180 degrees)
	# kappa: concentration parameter kappa (>= 0)
	
	# if kappa = 0 generate uniform random angle
	if kappa <= 1e-6:
		return TWOPI * random()

	a = 1.0 + sqrt(1 + 4 * kappa * kappa)
	b = (a - sqrt(2 * a))/(2 * kappa)
	r = (1 + b * b)/(2 * b)

	while 1:
		u1 = random()

		z = cos(pi * u1)
		f = (1 + r * z)/(r + z)
		c = kappa * (r - f)

		u2 = random()

		if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
			break

	u3 = random()
	if u3 > 0.5:
		theta = mu + 0.5*acos(f)
	else:
		theta = mu - 0.5*acos(f)

	return theta % pi

# -------------------- gamma distribution --------------------

LOG4 = log(4)
verify('LOG4', 1.38629436111989)

def gammavariate(alpha, beta):
        # beta times standard gamma
	ainv = sqrt(2 * alpha - 1)
	return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)

SG_MAGICCONST = 1+log(4.5)
verify('SG_MAGICCONST', 2.50407739677627)

def stdgamma(alpha, ainv, bbb, ccc):
	# ainv = sqrt(2 * alpha - 1)
	# bbb = alpha - log(4)
	# ccc = alpha + ainv

	if alpha <= 0.0:
		raise ValueError, 'stdgamma: alpha must be > 0.0'

	if alpha > 1.0:

		# Uses R.C.H. Cheng, "The generation of Gamma
		# variables with non-integral shape parameters",
		# Applied Statistics, (1977), 26, No. 1, p71-74

		while 1:
			u1 = random()
			u2 = random()
			v = log(u1/(1-u1))/ainv
			x = alpha*exp(v)
			z = u1*u1*u2
			r = bbb+ccc*v-x
			if r + SG_MAGICCONST - 4.5*z >= 0 or r >= log(z):
				return x

	elif alpha == 1.0:
		# expovariate(1)
		u = random()
		while u <= 1e-7:
			u = random()
		return -log(u)

	else:	# alpha is between 0 and 1 (exclusive)

		# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

		while 1:
			u = random()
			b = (e + alpha)/e
			p = b*u
			if p <= 1.0:
				x = pow(p, 1.0/alpha)
			else:
				# p > 1
				x = -log((b-p)/alpha)
			u1 = random()
			if not (((p <= 1.0) and (u1 > exp(-x))) or
				  ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
				break
		return x

# -------------------- test program --------------------

def test():
	print 'TWOPI         =', TWOPI
	print 'LOG4          =', LOG4
	print 'NV_MAGICCONST =', NV_MAGICCONST
	print 'SG_MAGICCONST =', SG_MAGICCONST
	N = 100
	test_generator(N, 'random()')
	test_generator(N, 'normalvariate(0.0, 1.0)')
	test_generator(N, 'lognormvariate(0.0, 1.0)')
	test_generator(N, 'cunifvariate(0.0, 1.0)')
	test_generator(N, 'expovariate(1.0)')
	test_generator(N, 'vonmisesvariate(0.0, 1.0)')
	test_generator(N, 'gammavariate(0.5, 1.0)')
	test_generator(N, 'gammavariate(0.9, 1.0)')
	test_generator(N, 'gammavariate(1.0, 1.0)')
	test_generator(N, 'gammavariate(2.0, 1.0)')
	test_generator(N, 'gammavariate(20.0, 1.0)')
	test_generator(N, 'gammavariate(200.0, 1.0)')

def test_generator(n, funccall):
	import sys
	print '%d calls to %s:' % (n, funccall),
	sys.stdout.flush()
	code = compile(funccall, funccall, 'eval')
	sum = 0.0
	sqsum = 0.0
	for i in range(n):
		x = eval(code)
		sum = sum + x
		sqsum = sqsum + x*x
	avg = sum/n
	stddev = sqrt(sqsum/n - avg*avg)
	print 'avg %g, stddev %g' % (avg, stddev)

if __name__ == '__main__':
	test()