summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
blob: 16ec3658ffc4852b0581357f3af06585f407ea88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

Translated from anonymously contributed C/C++ source.

Multi-threading note:  the random number generator used here is not thread-
safe; it is possible that two calls return the same random value.  However,
you can instantiate a different instance of Random() in each thread to get
generators that don't share state, then use .setstate() and .jumpahead() to
move the generators to disjoint segments of the full period.  For example,

def create_generators(num, delta, firstseed=None):
    ""\"Return list of num distinct generators.
    Each generator has its own unique segment of delta elements from
    Random.random()'s full period.
    Seed the first generator with optional arg firstseed (default is
    None, to seed from current time).
    ""\"

    from random import Random
    g = Random(firstseed)
    result = [g]
    for i in range(num - 1):
        laststate = g.getstate()
        g = Random()
        g.setstate(laststate)
        g.jumpahead(delta)
        result.append(g)
    return result

gens = create_generators(10, 1000000)

That creates 10 distinct generators, which can be passed out to 10 distinct
threads.  The generators don't share state so can be called safely in
parallel.  So long as no thread calls its g.random() more than a million
times (the second argument to create_generators), the sequences seen by
each thread will not overlap.

The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
and that limits how far this technique can be pushed.

Just for fun, note that since we know the period, .jumpahead() can also be
used to "move backward in time":

>>> g = Random(42)  # arbitrary
>>> g.random()
0.25420336316883324
>>> g.jumpahead(6953607871644L - 1) # move *back* one
>>> g.random()
0.25420336316883324
"""
# XXX The docstring sucks.

from math import log as _log, exp as _exp, pi as _pi, e as _e
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from math import floor as _floor

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "cunifvariate","expovariate","vonmisesvariate","gammavariate",
           "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate","jumpahead","whseed"]

def _verify(name, computed, expected):
    if abs(computed - expected) > 1e-7:
        raise ValueError(
            "computed value for %s deviates too much "
            "(computed %g, expected %g)" % (name, computed, expected))

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)

TWOPI = 2.0*_pi
_verify('TWOPI', TWOPI, 6.28318530718)

LOG4 = _log(4.0)
_verify('LOG4', LOG4, 1.38629436111989)

SG_MAGICCONST = 1.0 + _log(4.5)
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)

del _verify

# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.

class Random:
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.  Especially useful for multi-threaded programs, creating
    a different instance of Random for each thread, and using the jumpahead()
    method to ensure that the generated sequences seen by each thread don't
    overlap.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), setstate() and jumpahead().

    """

    VERSION = 1     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)

## -------------------- core generator -------------------

    # Specific to Wichmann-Hill generator.  Subclasses wishing to use a
    # different core generator should override the seed(), random(),
    # getstate(), setstate() and jumpahead() methods.

    def seed(self, a=None):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time.

        If a is not None or an int or long, hash(a) is used instead.

        If a is an int or long, a is used directly.  Distinct values between
        0 and 27814431486575L inclusive are guaranteed to yield distinct
        internal states (this guarantee is specific to the default
        Wichmann-Hill generator).
        """

        if a is None:
            # Initialize from current time
            import time
            a = long(time.time() * 256)

        if type(a) not in (type(3), type(3L)):
            a = hash(a)

        a, x = divmod(a, 30268)
        a, y = divmod(a, 30306)
        a, z = divmod(a, 30322)
        self._seed = int(x)+1, int(y)+1, int(z)+1

        self.gauss_next = None

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""

        # Wichman-Hill random number generator.
        #
        # Wichmann, B. A. & Hill, I. D. (1982)
        # Algorithm AS 183:
        # An efficient and portable pseudo-random number generator
        # Applied Statistics 31 (1982) 188-190
        #
        # see also:
        #        Correction to Algorithm AS 183
        #        Applied Statistics 33 (1984) 123
        #
        #        McLeod, A. I. (1985)
        #        A remark on Algorithm AS 183
        #        Applied Statistics 34 (1985),198-200

        # This part is thread-unsafe:
        # BEGIN CRITICAL SECTION
        x, y, z = self._seed
        x = (171 * x) % 30269
        y = (172 * y) % 30307
        z = (170 * z) % 30323
        self._seed = x, y, z
        # END CRITICAL SECTION

        # Note:  on a platform using IEEE-754 double arithmetic, this can
        # never return 0.0 (asserted by Tim; proof too long for a comment).
        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, self._seed, self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 1:
            version, self._seed, self.gauss_next = state
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Act as if n calls to random() were made, but quickly.

        n is an int, greater than or equal to 0.

        Example use:  If you have 2 threads and know that each will
        consume no more than a million random numbers, create two Random
        objects r1 and r2, then do
            r2.setstate(r1.getstate())
            r2.jumpahead(1000000)
        Then r1 and r2 will use guaranteed-disjoint segments of the full
        period.
        """

        if not n >= 0:
            raise ValueError("n must be >= 0")
        x, y, z = self._seed
        x = int(x * pow(171, n, 30269)) % 30269
        y = int(y * pow(172, n, 30307)) % 30307
        z = int(z * pow(170, n, 30323)) % 30323
        self._seed = x, y, z

    def __whseed(self, x=0, y=0, z=0):
        """Set the Wichmann-Hill seed from (x, y, z).

        These must be integers in the range [0, 256).
        """

        if not type(x) == type(y) == type(z) == int:
            raise TypeError('seeds must be integers')
        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
            raise ValueError('seeds must be in range(0, 256)')
        if 0 == x == y == z:
            # Initialize from current time
            import time
            t = long(time.time() * 256)
            t = int((t&0xffffff) ^ (t>>24))
            t, x = divmod(t, 256)
            t, y = divmod(t, 256)
            t, z = divmod(t, 256)
        # Zero is a poor seed, so substitute 1
        self._seed = (x or 1, y or 1, z or 1)

        self.gauss_next = None

    def whseed(self, a=None):
        """Seed from hashable object's hash code.

        None or no argument seeds from current time.  It is not guaranteed
        that objects with distinct hash codes lead to distinct internal
        states.

        This is obsolete, provided for compatibility with the seed routine
        used prior to Python 2.1.  Use the .seed() method instead.
        """

        if a is None:
            self.__whseed()
            return
        a = hash(a)
        a, x = divmod(a, 256)
        a, y = divmod(a, 256)
        a, z = divmod(a, 256)
        x = (x + a) % 256 or 1
        y = (y + a) % 256 or 1
        z = (z + a) % 256 or 1
        self.__whseed(x, y, z)

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, int=int, default=None):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.
        Do not supply the 'int' and 'default' arguments.
        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = int(start)
        if istart != start:
            raise ValueError, "non-integer arg 1 for randrange()"
        if stop is default:
            if istart > 0:
                return int(self.random() * istart)
            raise ValueError, "empty range for randrange()"

        # stop argument supplied.
        istop = int(stop)
        if istop != stop:
            raise ValueError, "non-integer stop for randrange()"
        if step == 1 and istart < istop:
            try:
                return istart + int(self.random()*(istop - istart))
            except OverflowError:
                # This can happen if istop-istart > sys.maxint + 1, and
                # multiplying by random() doesn't reduce it to something
                # <= sys.maxint.  We know that the overall result fits
                # in an int, and can still do it correctly via math.floor().
                # But that adds another function call, so for speed we
                # avoided that whenever possible.
                return int(istart + _floor(self.random()*(istop - istart)))
        if step == 1:
            raise ValueError, "empty range for randrange()"

        # Non-unit step argument supplied.
        istep = int(step)
        if istep != step:
            raise ValueError, "non-integer step for randrange()"
        if istep > 0:
            n = (istop - istart + istep - 1) / istep
        elif istep < 0:
            n = (istop - istart + istep + 1) / istep
        else:
            raise ValueError, "zero step for randrange()"

        if n <= 0:
            raise ValueError, "empty range for randrange()"
        return istart + istep*int(self.random() * n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        return seq[int(self.random() * len(seq))]

    def shuffle(self, x, random=None, int=int):
        """x, random=random.random -> shuffle list x in place; return None.

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.

        Note that for even rather small len(x), the total number of
        permutations of x is larger than the period of most random number
        generators; this implies that "most" permutations of a long
        sequence can never be generated.
        """

        if random is None:
            random = self.random
        for i in xrange(len(x)-1, 0, -1):
            # pick an element in x[:i+1] with which to exchange x[i]
            j = int(random() * (i+1))
            x[i], x[j] = x[j], x[i]

    def sample(self, population, k, random=None, int=int):
        """Chooses k unique random elements from a population sequence.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use xrange as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(xrange(10000000), 60)

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) or previous selections.

        # Pools are stored in lists which provide __getitem__ for selection
        # and provide a way to remove selections.  But each list.remove()
        # rebuilds the entire list, so it is better to rearrange the list,
        # placing non-selected elements at the head of the list.  Tracking
        # the selection pool is only space efficient with small populations.

        # Previous selections are stored in dictionaries which provide
        # __contains__ for detecting repeat selections.  Discarding repeats
        # is efficient unless most of the population has already been chosen.
        # So, tracking selections is fast only with small sample sizes.

        n = len(population)
        if not 0 <= k <= n:
            raise ValueError, "sample larger than population"
        if random is None:
            random = self.random
        result = [None] * k
        if n < 6 * k:     # if n len list takes less space than a k len dict
            pool = list(population)
            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
                j = int(random() * (n-i))
                result[i] = pool[j]
                pool[j] = pool[n-i-1]
        else:
            selected = {}
            for i in xrange(k):
                j = int(random() * n)
                while j in selected:
                    j = int(random() * n)
                result[i] = selected[j] = population[j]
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        """Get a random number in the range [a, b)."""
        return a + (b-a) * self.random()

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while True:
            u1 = random()
            u2 = random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- circular uniform --------------------

    def cunifvariate(self, mean, arc):
        """Circular uniform distribution.

        mean is the mean angle, and arc is the range of the distribution,
        centered around the mean angle.  Both values must be expressed in
        radians.  Returned values range between mean - arc/2 and
        mean + arc/2 and are normalized to between 0 and pi.

        Deprecated in version 2.3.  Use:
            (mean + arc * (Random.random() - 0.5)) % Math.pi

        """
        # mean: mean angle (in radians between 0 and pi)
        # arc:  range of distribution (in radians between 0 and pi)
        import warnings
        warnings.warn("The cunifvariate function is deprecated; Use (mean "
                      "+ arc * (Random.random() - 0.5)) % Math.pi instead",
                      DeprecationWarning)

        return (mean + arc * (self.random() - 0.5)) % _pi

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  (The parameter would be
        called "lambda", but that is a reserved word in Python.)  Returned
        values range from 0 to positive infinity.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        random = self.random
        u = random()
        while u <= 1e-7:
            u = random()
        return -_log(u)/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
        r = (1.0 + b * b)/(2.0 * b)

        while True:
            u1 = random()

            z = _cos(_pi * u1)
            f = (1.0 + r * z)/(r + z)
            c = kappa * (r - f)

            u2 = random()

            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
                break

        u3 = random()
        if u3 > 0.5:
            theta = (mu % TWOPI) + _acos(f)
        else:
            theta = (mu % TWOPI) - _acos(f)

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while True:
                u1 = random()
                u2 = random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while True:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = pow(p, 1.0/alpha)
                else:
                    # p > 1
                    x = -_log((b-p)/alpha)
                u1 = random()
                if not (((p <= 1.0) and (u1 > _exp(-x))) or
                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
                    break
            return x * beta


    def stdgamma(self, alpha, ainv, bbb, ccc):
        # This method was (and shall remain) undocumented.
        # This method is deprecated
        # for the following reasons:
        # 1. Returns same as .gammavariate(alpha, 1.0)
        # 2. Requires caller to provide 3 extra arguments
        #    that are functions of alpha anyway
        # 3. Can't be used for alpha < 0.5

        # ainv = sqrt(2 * alpha - 1)
        # bbb = alpha - log(4)
        # ccc = alpha + ainv
        import warnings
        warnings.warn("The stdgamma function is deprecated; "
                      "use gammavariate() instead",
                      DeprecationWarning)
        return self.gammavariate(alpha, 1.0)



## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > -1 and beta} > -1.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = self.random()
        return 1.0 / pow(u, 1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = self.random()
        return alpha * pow(-_log(u), 1.0/beta)

## -------------------- test program --------------------

def _test_generator(n, funccall):
    import time
    print n, 'times', funccall
    code = compile(funccall, funccall, 'eval')
    sum = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = eval(code)
        sum = sum + x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print round(t1-t0, 3), 'sec,',
    avg = sum/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print 'avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest)

def _test_sample(n):
    # For the entire allowable range of 0 <= k <= n, validate that
    # the sample is of the correct length and contains only unique items
    population = xrange(n)
    for k in xrange(n+1):
        s = sample(population, k)
        assert len(dict([(elem,True) for elem in s])) == len(s) == k
        assert None not in s

def _sample_generator(n, k):
    # Return a fixed element from the sample.  Validates random ordering.
    return sample(xrange(n), k)[k//2]

def _test(N=2000):
    print 'TWOPI         =', TWOPI
    print 'LOG4          =', LOG4
    print 'NV_MAGICCONST =', NV_MAGICCONST
    print 'SG_MAGICCONST =', SG_MAGICCONST
    _test_generator(N, 'random()')
    _test_generator(N, 'normalvariate(0.0, 1.0)')
    _test_generator(N, 'lognormvariate(0.0, 1.0)')
    _test_generator(N, 'cunifvariate(0.0, 1.0)')
    _test_generator(N, 'expovariate(1.0)')
    _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
    _test_generator(N, 'gammavariate(0.01, 1.0)')
    _test_generator(N, 'gammavariate(0.1, 1.0)')
    _test_generator(N, 'gammavariate(0.1, 2.0)')
    _test_generator(N, 'gammavariate(0.5, 1.0)')
    _test_generator(N, 'gammavariate(0.9, 1.0)')
    _test_generator(N, 'gammavariate(1.0, 1.0)')
    _test_generator(N, 'gammavariate(2.0, 1.0)')
    _test_generator(N, 'gammavariate(20.0, 1.0)')
    _test_generator(N, 'gammavariate(200.0, 1.0)')
    _test_generator(N, 'gauss(0.0, 1.0)')
    _test_generator(N, 'betavariate(3.0, 3.0)')
    _test_generator(N, 'paretovariate(1.0)')
    _test_generator(N, 'weibullvariate(1.0, 1.0)')
    _test_generator(N, '_sample_generator(50, 5)')  # expected s.d.: 14.4
    _test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4
    _test_sample(500)

    # Test jumpahead.
    s = getstate()
    jumpahead(N)
    r1 = random()
    # now do it the slow way
    setstate(s)
    for i in range(N):
        random()
    r2 = random()
    if r1 != r2:
        raise ValueError("jumpahead test failed " + `(N, r1, r2)`)

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions are not threadsafe, and state
# is shared across all uses (both in the user's code and in the Python
# libraries), but that's fine for most programs and is easier for the
# casual user than making them instantiate their own Random() instance.
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
cunifvariate = _inst.cunifvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
stdgamma = _inst.stdgamma
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
whseed = _inst.whseed

if __name__ == '__main__':
    _test()