1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
|
"""Random variable generators.
integers
--------
uniform within range
sequences
---------
pick random element
pick random sample
generate random permutation
distributions on the real line:
------------------------------
uniform
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull
distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises
General notes on the underlying Mersenne Twister core generator:
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence
* Without a direct way to compute N steps forward, the
semantics of jumpahead(n) are weakened to simply jump
to another distant state and rely on the large period
to avoid overlapping sequences.
* The random() method is implemented in C, executes in
a single Python step, and is, therefore, threadsafe.
"""
from math import log as _log, exp as _exp, pi as _pi, e as _e
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from math import floor as _floor
__all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
"cunifvariate","expovariate","vonmisesvariate","gammavariate",
"stdgamma","gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate","jumpahead"]
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
# the Mersenne Twister core generator.
from _random import Random as CoreGenerator
class Random(CoreGenerator):
"""Random number generator base class used by bound module functions.
Used to instantiate instances of Random to get generators that don't
share state. Especially useful for multi-threaded programs, creating
a different instance of Random for each thread, and using the jumpahead()
method to ensure that the generated sequences seen by each thread don't
overlap.
Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods: random(), seed(), getstate(), setstate() and jumpahead().
"""
VERSION = 2 # used by getstate/setstate
def __init__(self, x=None):
"""Initialize an instance.
Optional argument x controls seeding, as for Random.seed().
"""
self.seed(x)
self.gauss_next = None
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time.
If a is not None or an int or long, hash(a) is used instead.
"""
CoreGenerator.seed(self, a)
self.gauss_next = None
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, CoreGenerator.getstate(self), self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 2:
version, internalstate, self.gauss_next = state
CoreGenerator.setstate(self, internalstate)
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.
## -------------------- pickle support -------------------
def __getstate__(self): # for pickle
return self.getstate()
def __setstate__(self, state): # for pickle
self.setstate(state)
## -------------------- integer methods -------------------
def randrange(self, start, stop=None, step=1, int=int, default=None):
"""Choose a random item from range(start, stop[, step]).
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int' and 'default' arguments.
"""
# This code is a bit messy to make it fast for the
# common case while still doing adequate error checking.
istart = int(start)
if istart != start:
raise ValueError, "non-integer arg 1 for randrange()"
if stop is default:
if istart > 0:
return int(self.random() * istart)
raise ValueError, "empty range for randrange()"
# stop argument supplied.
istop = int(stop)
if istop != stop:
raise ValueError, "non-integer stop for randrange()"
if step == 1 and istart < istop:
try:
return istart + int(self.random()*(istop - istart))
except OverflowError:
# This can happen if istop-istart > sys.maxint + 1, and
# multiplying by random() doesn't reduce it to something
# <= sys.maxint. We know that the overall result fits
# in an int, and can still do it correctly via math.floor().
# But that adds another function call, so for speed we
# avoided that whenever possible.
return int(istart + _floor(self.random()*(istop - istart)))
if step == 1:
raise ValueError, "empty range for randrange()"
# Non-unit step argument supplied.
istep = int(step)
if istep != step:
raise ValueError, "non-integer step for randrange()"
if istep > 0:
n = (istop - istart + istep - 1) / istep
elif istep < 0:
n = (istop - istart + istep + 1) / istep
else:
raise ValueError, "zero step for randrange()"
if n <= 0:
raise ValueError, "empty range for randrange()"
return istart + istep*int(self.random() * n)
def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
"""
return self.randrange(a, b+1)
## -------------------- sequence methods -------------------
def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
return seq[int(self.random() * len(seq))]
def shuffle(self, x, random=None, int=int):
"""x, random=random.random -> shuffle list x in place; return None.
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
Note that for even rather small len(x), the total number of
permutations of x is larger than the period of most random number
generators; this implies that "most" permutations of a long
sequence can never be generated.
"""
if random is None:
random = self.random
for i in xrange(len(x)-1, 0, -1):
# pick an element in x[:i+1] with which to exchange x[i]
j = int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k, int=int):
"""Chooses k unique random elements from a population sequence.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60)
"""
# Sampling without replacement entails tracking either potential
# selections (the pool) in a list or previous selections in a
# dictionary.
# When the number of selections is small compared to the population,
# then tracking selections is efficient, requiring only a small
# dictionary and an occasional reselection. For a larger number of
# selections, the pool tracking method is preferred since the list takes
# less space than the dictionary and it doesn't suffer from frequent
# reselections.
n = len(population)
if not 0 <= k <= n:
raise ValueError, "sample larger than population"
random = self.random
result = [None] * k
if n < 6 * k: # if n len list takes less space than a k len dict
pool = list(population)
for i in xrange(k): # invariant: non-selected at [0,n-i)
j = int(random() * (n-i))
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
selected = {}
for i in xrange(k):
j = int(random() * n)
while j in selected:
j = int(random() * n)
result[i] = selected[j] = population[j]
return result
## -------------------- real-valued distributions -------------------
## -------------------- uniform distribution -------------------
def uniform(self, a, b):
"""Get a random number in the range [a, b)."""
return a + (b-a) * self.random()
## -------------------- normal distribution --------------------
def normalvariate(self, mu, sigma):
"""Normal distribution.
mu is the mean, and sigma is the standard deviation.
"""
# mu = mean, sigma = standard deviation
# Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
# Math Software, 3, (1977), pp257-260.
random = self.random
while True:
u1 = random()
u2 = random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -_log(u2):
break
return mu + z*sigma
## -------------------- lognormal distribution --------------------
def lognormvariate(self, mu, sigma):
"""Log normal distribution.
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
"""
return _exp(self.normalvariate(mu, sigma))
## -------------------- circular uniform --------------------
def cunifvariate(self, mean, arc):
"""Circular uniform distribution.
mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in
radians. Returned values range between mean - arc/2 and
mean + arc/2 and are normalized to between 0 and pi.
Deprecated in version 2.3. Use:
(mean + arc * (Random.random() - 0.5)) % Math.pi
"""
# mean: mean angle (in radians between 0 and pi)
# arc: range of distribution (in radians between 0 and pi)
import warnings
warnings.warn("The cunifvariate function is deprecated; Use (mean "
"+ arc * (Random.random() - 0.5)) % Math.pi instead",
DeprecationWarning)
return (mean + arc * (self.random() - 0.5)) % _pi
## -------------------- exponential distribution --------------------
def expovariate(self, lambd):
"""Exponential distribution.
lambd is 1.0 divided by the desired mean. (The parameter would be
called "lambda", but that is a reserved word in Python.) Returned
values range from 0 to positive infinity.
"""
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word)
random = self.random
u = random()
while u <= 1e-7:
u = random()
return -_log(u)/lambd
## -------------------- von Mises distribution --------------------
def vonmisesvariate(self, mu, kappa):
"""Circular data distribution.
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
"""
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle
# Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993.
# Thanks to Magnus Kessler for a correction to the
# implementation of step 4.
random = self.random
if kappa <= 1e-6:
return TWOPI * random()
a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
r = (1.0 + b * b)/(2.0 * b)
while True:
u1 = random()
z = _cos(_pi * u1)
f = (1.0 + r * z)/(r + z)
c = kappa * (r - f)
u2 = random()
if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
break
u3 = random()
if u3 > 0.5:
theta = (mu % TWOPI) + _acos(f)
else:
theta = (mu % TWOPI) - _acos(f)
return theta
## -------------------- gamma distribution --------------------
def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function!
Conditions on the parameters are alpha > 0 and beta > 0.
"""
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
# Warning: a few older sources define the gamma distribution in terms
# of alpha > -1.0
if alpha <= 0.0 or beta <= 0.0:
raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
random = self.random
if alpha > 1.0:
# Uses R.C.H. Cheng, "The generation of Gamma
# variables with non-integral shape parameters",
# Applied Statistics, (1977), 26, No. 1, p71-74
ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv
while True:
u1 = random()
u2 = random()
v = _log(u1/(1.0-u1))/ainv
x = alpha*_exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
return x * beta
elif alpha == 1.0:
# expovariate(1)
u = random()
while u <= 1e-7:
u = random()
return -_log(u) * beta
else: # alpha is between 0 and 1 (exclusive)
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
while True:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
x = pow(p, 1.0/alpha)
else:
# p > 1
x = -_log((b-p)/alpha)
u1 = random()
if not (((p <= 1.0) and (u1 > _exp(-x))) or
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
break
return x * beta
def stdgamma(self, alpha, ainv, bbb, ccc):
# This method was (and shall remain) undocumented.
# This method is deprecated
# for the following reasons:
# 1. Returns same as .gammavariate(alpha, 1.0)
# 2. Requires caller to provide 3 extra arguments
# that are functions of alpha anyway
# 3. Can't be used for alpha < 0.5
# ainv = sqrt(2 * alpha - 1)
# bbb = alpha - log(4)
# ccc = alpha + ainv
import warnings
warnings.warn("The stdgamma function is deprecated; "
"use gammavariate() instead",
DeprecationWarning)
return self.gammavariate(alpha, 1.0)
## -------------------- Gauss (faster alternative) --------------------
def gauss(self, mu, sigma):
"""Gaussian distribution.
mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function.
Not thread-safe without a lock around calls.
"""
# When x and y are two variables from [0, 1), uniformly
# distributed, then
#
# cos(2*pi*x)*sqrt(-2*log(1-y))
# sin(2*pi*x)*sqrt(-2*log(1-y))
#
# are two *independent* variables with normal distribution
# (mu = 0, sigma = 1).
# (Lambert Meertens)
# (corrected version; bug discovered by Mike Miller, fixed by LM)
# Multithreading note: When two threads call this function
# simultaneously, it is possible that they will receive the
# same return value. The window is very small though. To
# avoid this, you have to use a lock around all calls. (I
# didn't want to slow this down in the serial case by using a
# lock here.)
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z*sigma
## -------------------- beta --------------------
## See
## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
## for Ivan Frohne's insightful analysis of why the original implementation:
##
## def betavariate(self, alpha, beta):
## # Discrete Event Simulation in C, pp 87-88.
##
## y = self.expovariate(alpha)
## z = self.expovariate(1.0/beta)
## return z/(y+z)
##
## was dead wrong, and how it probably got that way.
def betavariate(self, alpha, beta):
"""Beta distribution.
Conditions on the parameters are alpha > -1 and beta} > -1.
Returned values range between 0 and 1.
"""
# This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
y = self.gammavariate(alpha, 1.)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.))
## -------------------- Pareto --------------------
def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495
u = self.random()
return 1.0 / pow(u, 1.0/alpha)
## -------------------- Weibull --------------------
def weibullvariate(self, alpha, beta):
"""Weibull distribution.
alpha is the scale parameter and beta is the shape parameter.
"""
# Jain, pg. 499; bug fix courtesy Bill Arms
u = self.random()
return alpha * pow(-_log(u), 1.0/beta)
## -------------------- Wichmann-Hill -------------------
class WichmannHill(Random):
VERSION = 1 # used by getstate/setstate
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time.
If a is not None or an int or long, hash(a) is used instead.
If a is an int or long, a is used directly. Distinct values between
0 and 27814431486575L inclusive are guaranteed to yield distinct
internal states (this guarantee is specific to the default
Wichmann-Hill generator).
"""
if a is None:
# Initialize from current time
import time
a = long(time.time() * 256)
if not isinstance(a, (int, long)):
a = hash(a)
a, x = divmod(a, 30268)
a, y = divmod(a, 30306)
a, z = divmod(a, 30322)
self._seed = int(x)+1, int(y)+1, int(z)+1
self.gauss_next = None
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
# Wichman-Hill random number generator.
#
# Wichmann, B. A. & Hill, I. D. (1982)
# Algorithm AS 183:
# An efficient and portable pseudo-random number generator
# Applied Statistics 31 (1982) 188-190
#
# see also:
# Correction to Algorithm AS 183
# Applied Statistics 33 (1984) 123
#
# McLeod, A. I. (1985)
# A remark on Algorithm AS 183
# Applied Statistics 34 (1985),198-200
# This part is thread-unsafe:
# BEGIN CRITICAL SECTION
x, y, z = self._seed
x = (171 * x) % 30269
y = (172 * y) % 30307
z = (170 * z) % 30323
self._seed = x, y, z
# END CRITICAL SECTION
# Note: on a platform using IEEE-754 double arithmetic, this can
# never return 0.0 (asserted by Tim; proof too long for a comment).
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, self._seed, self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 1:
version, self._seed, self.gauss_next = state
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
"""Act as if n calls to random() were made, but quickly.
n is an int, greater than or equal to 0.
Example use: If you have 2 threads and know that each will
consume no more than a million random numbers, create two Random
objects r1 and r2, then do
r2.setstate(r1.getstate())
r2.jumpahead(1000000)
Then r1 and r2 will use guaranteed-disjoint segments of the full
period.
"""
if not n >= 0:
raise ValueError("n must be >= 0")
x, y, z = self._seed
x = int(x * pow(171, n, 30269)) % 30269
y = int(y * pow(172, n, 30307)) % 30307
z = int(z * pow(170, n, 30323)) % 30323
self._seed = x, y, z
def __whseed(self, x=0, y=0, z=0):
"""Set the Wichmann-Hill seed from (x, y, z).
These must be integers in the range [0, 256).
"""
if not type(x) == type(y) == type(z) == int:
raise TypeError('seeds must be integers')
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
raise ValueError('seeds must be in range(0, 256)')
if 0 == x == y == z:
# Initialize from current time
import time
t = long(time.time() * 256)
t = int((t&0xffffff) ^ (t>>24))
t, x = divmod(t, 256)
t, y = divmod(t, 256)
t, z = divmod(t, 256)
# Zero is a poor seed, so substitute 1
self._seed = (x or 1, y or 1, z or 1)
self.gauss_next = None
def whseed(self, a=None):
"""Seed from hashable object's hash code.
None or no argument seeds from current time. It is not guaranteed
that objects with distinct hash codes lead to distinct internal
states.
This is obsolete, provided for compatibility with the seed routine
used prior to Python 2.1. Use the .seed() method instead.
"""
if a is None:
self.__whseed()
return
a = hash(a)
a, x = divmod(a, 256)
a, y = divmod(a, 256)
a, z = divmod(a, 256)
x = (x + a) % 256 or 1
y = (y + a) % 256 or 1
z = (z + a) % 256 or 1
self.__whseed(x, y, z)
## -------------------- test program --------------------
def _test_generator(n, funccall):
import time
print n, 'times', funccall
code = compile(funccall, funccall, 'eval')
sum = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = eval(code)
sum = sum + x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = sum/n
stddev = _sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
def _sample_generator(n, k):
# Return a fixed element from the sample. Validates random ordering.
return sample(xrange(n), k)[k//2]
def _test(N=2000):
_test_generator(N, 'random()')
_test_generator(N, 'normalvariate(0.0, 1.0)')
_test_generator(N, 'lognormvariate(0.0, 1.0)')
_test_generator(N, 'cunifvariate(0.0, 1.0)')
_test_generator(N, 'expovariate(1.0)')
_test_generator(N, 'vonmisesvariate(0.0, 1.0)')
_test_generator(N, 'gammavariate(0.01, 1.0)')
_test_generator(N, 'gammavariate(0.1, 1.0)')
_test_generator(N, 'gammavariate(0.1, 2.0)')
_test_generator(N, 'gammavariate(0.5, 1.0)')
_test_generator(N, 'gammavariate(0.9, 1.0)')
_test_generator(N, 'gammavariate(1.0, 1.0)')
_test_generator(N, 'gammavariate(2.0, 1.0)')
_test_generator(N, 'gammavariate(20.0, 1.0)')
_test_generator(N, 'gammavariate(200.0, 1.0)')
_test_generator(N, 'gauss(0.0, 1.0)')
_test_generator(N, 'betavariate(3.0, 3.0)')
_test_generator(N, 'paretovariate(1.0)')
_test_generator(N, 'weibullvariate(1.0, 1.0)')
_test_generator(N, '_sample_generator(50, 5)') # expected s.d.: 14.4
_test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
cunifvariate = _inst.cunifvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
stdgamma = _inst.stdgamma
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
if __name__ == '__main__':
_test()
|