summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
blob: d95c324061714eb0a538b73297c3f52f3569f6d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#	R A N D O M   V A R I A B L E   G E N E R A T O R S
#
#	distributions on the real line:
#	------------------------------
#	       normal (Gaussian)
#	       lognormal
#	       negative exponential
#	       gamma
#	       beta
#
#	distributions on the circle (angles 0 to 2pi)
#	---------------------------------------------
#	       circular uniform
#	       von Mises

# Translated from anonymously contributed C/C++ source.

import whrandom
from whrandom import random, uniform, randint, choice # Also for export!
from math import log, exp, pi, e, sqrt, acos, cos, sin

# Interfaces to replace remaining needs for importing whrandom
# XXX TO DO: make the distribution functions below into methods.

def makeseed(a=None):
	"""Turn a hashable value into three seed values for whrandom.seed().

	None or no argument returns (0, 0, 0), to seed from current time.

	"""
	if a is None:
		return (0, 0, 0)
	a = hash(a)
	a, x = divmod(a, 256)
	a, y = divmod(a, 256)
	a, z = divmod(a, 256)
	x = (x + a) % 256 or 1
	y = (y + a) % 256 or 1
	z = (z + a) % 256 or 1
	return (x, y, z)

def seed(a=None):
	"""Seed the default generator from any hashable value.

	None or no argument returns (0, 0, 0) to seed from current time.

	"""
	x, y, z = makeseed(a)
	whrandom.seed(x, y, z)

class generator(whrandom.whrandom):
	"""Random generator class."""

	def __init__(self, a=None):
		"""Constructor.  Seed from current time or hashable value."""
		self.seed(a)

	def seed(self, a=None):
		"""Seed the generator from current time or hashable value."""
		x, y, z = makeseed(a)
		whrandom.whrandom.seed(self, x, y, z)

def new_generator(a=None):
	"""Return a new random generator instance."""
	return generator(a)

# Housekeeping function to verify that magic constants have been
# computed correctly

def verify(name, expected):
	computed = eval(name)
	if abs(computed - expected) > 1e-7:
		raise ValueError, \
  'computed value for %s deviates too much (computed %g, expected %g)' % \
  (name, computed, expected)

# -------------------- normal distribution --------------------

NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
verify('NV_MAGICCONST', 1.71552776992141)
def normalvariate(mu, sigma):
	# mu = mean, sigma = standard deviation

	# Uses Kinderman and Monahan method. Reference: Kinderman,
	# A.J. and Monahan, J.F., "Computer generation of random
	# variables using the ratio of uniform deviates", ACM Trans
	# Math Software, 3, (1977), pp257-260.

	while 1:
		u1 = random()
		u2 = random()
		z = NV_MAGICCONST*(u1-0.5)/u2
		zz = z*z/4.0
		if zz <= -log(u2):
			break
	return mu+z*sigma

# -------------------- lognormal distribution --------------------

def lognormvariate(mu, sigma):
	return exp(normalvariate(mu, sigma))

# -------------------- circular uniform --------------------

def cunifvariate(mean, arc):
	# mean: mean angle (in radians between 0 and pi)
	# arc:  range of distribution (in radians between 0 and pi)

	return (mean + arc * (random() - 0.5)) % pi

# -------------------- exponential distribution --------------------

def expovariate(lambd):
	# lambd: rate lambd = 1/mean
	# ('lambda' is a Python reserved word)

	u = random()
	while u <= 1e-7:
		u = random()
	return -log(u)/lambd

# -------------------- von Mises distribution --------------------

TWOPI = 2.0*pi
verify('TWOPI', 6.28318530718)

def vonmisesvariate(mu, kappa):
	# mu:    mean angle (in radians between 0 and 2*pi)
	# kappa: concentration parameter kappa (>= 0)
	# if kappa = 0 generate uniform random angle

	# Based upon an algorithm published in: Fisher, N.I.,
	# "Statistical Analysis of Circular Data", Cambridge
	# University Press, 1993.

	# Thanks to Magnus Kessler for a correction to the
	# implementation of step 4.

	if kappa <= 1e-6:
		return TWOPI * random()

	a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
	b = (a - sqrt(2.0 * a))/(2.0 * kappa)
	r = (1.0 + b * b)/(2.0 * b)

	while 1:
		u1 = random()

		z = cos(pi * u1)
		f = (1.0 + r * z)/(r + z)
		c = kappa * (r - f)

		u2 = random()

		if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
			break

	u3 = random()
	if u3 > 0.5:
		theta = (mu % TWOPI) + acos(f)
	else:
		theta = (mu % TWOPI) - acos(f)

	return theta

# -------------------- gamma distribution --------------------

LOG4 = log(4.0)
verify('LOG4', 1.38629436111989)

def gammavariate(alpha, beta):
        # beta times standard gamma
	ainv = sqrt(2.0 * alpha - 1.0)
	return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)

SG_MAGICCONST = 1.0 + log(4.5)
verify('SG_MAGICCONST', 2.50407739677627)

def stdgamma(alpha, ainv, bbb, ccc):
	# ainv = sqrt(2 * alpha - 1)
	# bbb = alpha - log(4)
	# ccc = alpha + ainv

	if alpha <= 0.0:
		raise ValueError, 'stdgamma: alpha must be > 0.0'

	if alpha > 1.0:

		# Uses R.C.H. Cheng, "The generation of Gamma
		# variables with non-integral shape parameters",
		# Applied Statistics, (1977), 26, No. 1, p71-74

		while 1:
			u1 = random()
			u2 = random()
			v = log(u1/(1.0-u1))/ainv
			x = alpha*exp(v)
			z = u1*u1*u2
			r = bbb+ccc*v-x
			if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
				return x

	elif alpha == 1.0:
		# expovariate(1)
		u = random()
		while u <= 1e-7:
			u = random()
		return -log(u)

	else:	# alpha is between 0 and 1 (exclusive)

		# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

		while 1:
			u = random()
			b = (e + alpha)/e
			p = b*u
			if p <= 1.0:
				x = pow(p, 1.0/alpha)
			else:
				# p > 1
				x = -log((b-p)/alpha)
			u1 = random()
			if not (((p <= 1.0) and (u1 > exp(-x))) or
				  ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
				break
		return x


# -------------------- Gauss (faster alternative) --------------------

gauss_next = None
def gauss(mu, sigma):

	# When x and y are two variables from [0, 1), uniformly
	# distributed, then
	#
	#    cos(2*pi*x)*sqrt(-2*log(1-y))
	#    sin(2*pi*x)*sqrt(-2*log(1-y))
	#
	# are two *independent* variables with normal distribution
	# (mu = 0, sigma = 1).
	# (Lambert Meertens)
	# (corrected version; bug discovered by Mike Miller, fixed by LM)

	global gauss_next

	if gauss_next != None:
		z = gauss_next
		gauss_next = None
	else:
		x2pi = random() * TWOPI
		g2rad = sqrt(-2.0 * log(1.0 - random()))
		z = cos(x2pi) * g2rad
		gauss_next = sin(x2pi) * g2rad

	return mu + z*sigma

# -------------------- beta --------------------

def betavariate(alpha, beta):

	# Discrete Event Simulation in C, pp 87-88.

	y = expovariate(alpha)
	z = expovariate(1.0/beta)
	return z/(y+z)

# -------------------- Pareto --------------------

def paretovariate(alpha):
	# Jain, pg. 495

	u = random()
	return 1.0 / pow(u, 1.0/alpha)

# -------------------- Weibull --------------------

def weibullvariate(alpha, beta):
	# Jain, pg. 499; bug fix courtesy Bill Arms

	u = random()
	return alpha * pow(-log(u), 1.0/beta)

# -------------------- test program --------------------

def test(N = 200):
	print 'TWOPI         =', TWOPI
	print 'LOG4          =', LOG4
	print 'NV_MAGICCONST =', NV_MAGICCONST
	print 'SG_MAGICCONST =', SG_MAGICCONST
	test_generator(N, 'random()')
	test_generator(N, 'normalvariate(0.0, 1.0)')
	test_generator(N, 'lognormvariate(0.0, 1.0)')
	test_generator(N, 'cunifvariate(0.0, 1.0)')
	test_generator(N, 'expovariate(1.0)')
	test_generator(N, 'vonmisesvariate(0.0, 1.0)')
	test_generator(N, 'gammavariate(0.5, 1.0)')
	test_generator(N, 'gammavariate(0.9, 1.0)')
	test_generator(N, 'gammavariate(1.0, 1.0)')
	test_generator(N, 'gammavariate(2.0, 1.0)')
	test_generator(N, 'gammavariate(20.0, 1.0)')
	test_generator(N, 'gammavariate(200.0, 1.0)')
	test_generator(N, 'gauss(0.0, 1.0)')
	test_generator(N, 'betavariate(3.0, 3.0)')
	test_generator(N, 'paretovariate(1.0)')
	test_generator(N, 'weibullvariate(1.0, 1.0)')

def test_generator(n, funccall):
	import time
	print n, 'times', funccall
	code = compile(funccall, funccall, 'eval')
	sum = 0.0
	sqsum = 0.0
	smallest = 1e10
	largest = -1e10
	t0 = time.time()
	for i in range(n):
		x = eval(code)
		sum = sum + x
		sqsum = sqsum + x*x
		smallest = min(x, smallest)
		largest = max(x, largest)
	t1 = time.time()
	print round(t1-t0, 3), 'sec,', 
	avg = sum/n
	stddev = sqrt(sqsum/n - avg*avg)
	print 'avg %g, stddev %g, min %g, max %g' % \
		  (avg, stddev, smallest, largest)

if __name__ == '__main__':
	test()