1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
"""Classes to represent arbitrary sets (including sets of sets).
This module implements sets using dictionaries whose values are
ignored. The usual operations (union, intersection, deletion, etc.)
are provided as both methods and operators.
The following classes are provided:
BaseSet -- All the operations common to both mutable and immutable
sets. This is an abstract class, not meant to be directly
instantiated.
Set -- Mutable sets, subclass of BaseSet; not hashable.
ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
An iterable argument is mandatory to create an ImmutableSet.
_TemporarilyImmutableSet -- Not a subclass of BaseSet: just a wrapper
around a Set, hashable, giving the same hash value as the
immutable set equivalent would have. Do not use this class
directly.
Only hashable objects can be added to a Set. In particular, you cannot
really add a Set as an element to another Set; if you try, what is
actuallly added is an ImmutableSet built from it (it compares equal to
the one you tried adding).
When you ask if `x in y' where x is a Set and y is a Set or
ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
what's tested is actually `z in y'.
"""
# Code history:
#
# - Greg V. Wilson wrote the first version, using a different approach
# to the mutable/immutable problem, and inheriting from dict.
#
# - Alex Martelli modified Greg's version to implement the current
# Set/ImmutableSet approach, and make the data an attribute.
#
# - Guido van Rossum rewrote much of the code, made some API changes,
# and cleaned up the docstrings.
__all__ = ['BaseSet', 'Set', 'ImmutableSet']
class BaseSet(object):
"""Common base class for mutable and immutable sets."""
__slots__ = ['_data']
# Constructor
def __init__(self, seq=None):
"""Construct a set, optionally initializing it from a sequence."""
self._data = {}
if seq is not None:
# I don't know a faster way to do this in pure Python.
# Custom code written in C only did it 65% faster,
# preallocating the dict to len(seq); without
# preallocation it was only 25% faster. So the speed of
# this Python code is respectable. Just copying True into
# a local variable is responsible for a 7-8% speedup.
data = self._data
value = True
for key in seq:
data[key] = value
# Standard protocols: __len__, __repr__, __str__, __iter__
def __len__(self):
"""Return the number of elements of a set."""
return len(self._data)
def __repr__(self):
"""Return string representation of a set.
This looks like 'Set([<list of elements>])'.
"""
return self._repr()
# __str__ is the same as __repr__
__str__ = __repr__
def _repr(self, sorted=False):
elements = self._data.keys()
if sorted:
elements.sort()
return '%s(%r)' % (self.__class__.__name__, elements)
def __iter__(self):
"""Return an iterator over the elements or a set.
This is the keys iterator for the underlying dict.
"""
return self._data.iterkeys()
# Comparisons. Ordering is determined by the ordering of the
# underlying dicts (which is consistent though unpredictable).
def __lt__(self, other):
self._binary_sanity_check(other)
return self._data < other._data
def __le__(self, other):
self._binary_sanity_check(other)
return self._data <= other._data
def __eq__(self, other):
self._binary_sanity_check(other)
return self._data == other._data
def __ne__(self, other):
self._binary_sanity_check(other)
return self._data != other._data
def __gt__(self, other):
self._binary_sanity_check(other)
return self._data > other._data
def __ge__(self, other):
self._binary_sanity_check(other)
return self._data >= other._data
# Copying operations
def copy(self):
"""Return a shallow copy of a set."""
return self.__class__(self)
__copy__ = copy # For the copy module
def __deepcopy__(self, memo):
"""Return a deep copy of a set; used by copy module."""
# This pre-creates the result and inserts it in the memo
# early, in case the deep copy recurses into another reference
# to this same set. A set can't be an element of itself, but
# it can certainly contain an object that has a reference to
# itself.
from copy import deepcopy
result = self.__class__([])
memo[id(self)] = result
data = result._data
value = True
for elt in self:
data[deepcopy(elt, memo)] = value
return result
# Standard set operations: union, intersection, both differences
def union(self, other):
"""Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
"""
self._binary_sanity_check(other)
result = self.__class__(self._data)
result._data.update(other._data)
return result
__or__ = union
def intersection(self, other):
"""Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
"""
self._binary_sanity_check(other)
if len(self) <= len(other):
little, big = self, other
else:
little, big = other, self
result = self.__class__([])
data = result._data
value = True
for elt in little:
if elt in big:
data[elt] = value
return result
__and__ = intersection
def symmetric_difference(self, other):
"""Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
"""
self._binary_sanity_check(other)
result = self.__class__([])
data = result._data
value = True
for elt in self:
if elt not in other:
data[elt] = value
for elt in other:
if elt not in self:
data[elt] = value
return result
__xor__ = symmetric_difference
def difference(self, other):
"""Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
"""
self._binary_sanity_check(other)
result = self.__class__([])
data = result._data
value = True
for elt in self:
if elt not in other:
data[elt] = value
return result
__sub__ = difference
# Membership test
def __contains__(self, element):
"""Report whether an element is a member of a set.
(Called in response to the expression `element in self'.)
"""
try:
transform = element._as_temporarily_immutable
except AttributeError:
pass
else:
element = transform()
return element in self._data
# Subset and superset test
def issubset(self, other):
"""Report whether another set contains this set."""
self._binary_sanity_check(other)
for elt in self:
if elt not in other:
return False
return True
def issuperset(self, other):
"""Report whether this set contains another set."""
self._binary_sanity_check(other)
for elt in other:
if elt not in self:
return False
return True
# Assorted helpers
def _binary_sanity_check(self, other):
# Check that the other argument to a binary operation is also
# a set, raising a TypeError otherwise.
if not isinstance(other, BaseSet):
raise TypeError, "Binary operation only permitted between sets"
def _compute_hash(self):
# Calculate hash code for a set by xor'ing the hash codes of
# the elements. This algorithm ensures that the hash code
# does not depend on the order in which elements are added to
# the code. This is not called __hash__ because a BaseSet
# should not be hashable; only an ImmutableSet is hashable.
result = 0
for elt in self:
result ^= hash(elt)
return result
class ImmutableSet(BaseSet):
"""Immutable set class."""
__slots__ = ['_hashcode']
# BaseSet + hashing
def __init__(self, seq):
"""Construct an immutable set from a sequence."""
# Override the constructor to make 'seq' a required argument
BaseSet.__init__(self, seq)
self._hashcode = None
def __hash__(self):
if self._hashcode is None:
self._hashcode = self._compute_hash()
return self._hashcode
class Set(BaseSet):
""" Mutable set class."""
__slots__ = []
# BaseSet + operations requiring mutability; no hashing
# In-place union, intersection, differences
def union_update(self, other):
"""Update a set with the union of itself and another."""
self._binary_sanity_check(other)
self._data.update(other._data)
return self
__ior__ = union_update
def intersection_update(self, other):
"""Update a set with the intersection of itself and another."""
self._binary_sanity_check(other)
for elt in self._data.keys():
if elt not in other:
del self._data[elt]
return self
__iand__ = intersection_update
def symmetric_difference_update(self, other):
"""Update a set with the symmetric difference of itself and another."""
self._binary_sanity_check(other)
data = self._data
value = True
for elt in other:
if elt in data:
del data[elt]
else:
data[elt] = value
return self
__ixor__ = symmetric_difference_update
def difference_update(self, other):
"""Remove all elements of another set from this set."""
self._binary_sanity_check(other)
data = self._data
for elt in other:
if elt in data:
del data[elt]
return self
__isub__ = difference_update
# Python dict-like mass mutations: update, clear
def update(self, iterable):
"""Add all values from an iterable (such as a list or file)."""
data = self._data
value = True
for elt in iterable:
try:
transform = elt._as_immutable
except AttributeError:
pass
else:
elt = transform()
data[elt] = value
def clear(self):
"""Remove all elements from this set."""
self._data.clear()
# Single-element mutations: add, remove, discard
def add(self, element):
"""Add an element to a set.
This has no effect if the element is already present.
"""
try:
transform = element._as_immutable
except AttributeError:
pass
else:
element = transform()
self._data[element] = True
def remove(self, element):
"""Remove an element from a set; it must be a member.
If the element is not a member, raise a KeyError.
"""
try:
transform = element._as_temporarily_immutable
except AttributeError:
pass
else:
element = transform()
del self._data[element]
def discard(self, element):
"""Remove an element from a set if it is a member.
If the element is not a member, do nothing.
"""
try:
del self._data[element]
except KeyError:
pass
def popitem(self):
"""Remove and return a randomly-chosen set element."""
return self._data.popitem()[0]
def _as_immutable(self):
# Return a copy of self as an immutable set
return ImmutableSet(self)
def _as_temporarily_immutable(self):
# Return self wrapped in a temporarily immutable set
return _TemporarilyImmutableSet(self)
class _TemporarilyImmutableSet(object):
# Wrap a mutable set as if it was temporarily immutable.
# This only supplies hashing and equality comparisons.
_hashcode = None
def __init__(self, set):
self._set = set
def __hash__(self):
if self._hashcode is None:
self._hashcode = self._set._compute_hash()
return self._hashcode
def __eq__(self, other):
return self._set == other
def __ne__(self, other):
return self._set != other
# Rudimentary self-tests
def _test():
# Empty set
red = Set()
assert `red` == "Set([])", "Empty set: %s" % `red`
# Unit set
green = Set((0,))
assert `green` == "Set([0])", "Unit set: %s" % `green`
# 3-element set
blue = Set([0, 1, 2])
assert blue._repr(True) == "Set([0, 1, 2])", "3-element set: %s" % `blue`
# 2-element set with other values
black = Set([0, 5])
assert black._repr(True) == "Set([0, 5])", "2-element set: %s" % `black`
# All elements from all sets
white = Set([0, 1, 2, 5])
assert white._repr(True) == "Set([0, 1, 2, 5])", "4-element set: %s" % `white`
# Add element to empty set
red.add(9)
assert `red` == "Set([9])", "Add to empty set: %s" % `red`
# Remove element from unit set
red.remove(9)
assert `red` == "Set([])", "Remove from unit set: %s" % `red`
# Remove element from empty set
try:
red.remove(0)
assert 0, "Remove element from empty set: %s" % `red`
except LookupError:
pass
# Length
assert len(red) == 0, "Length of empty set"
assert len(green) == 1, "Length of unit set"
assert len(blue) == 3, "Length of 3-element set"
# Compare
assert green == Set([0]), "Equality failed"
assert green != Set([1]), "Inequality failed"
# Union
assert blue | red == blue, "Union non-empty with empty"
assert red | blue == blue, "Union empty with non-empty"
assert green | blue == blue, "Union non-empty with non-empty"
assert blue | black == white, "Enclosing union"
# Intersection
assert blue & red == red, "Intersect non-empty with empty"
assert red & blue == red, "Intersect empty with non-empty"
assert green & blue == green, "Intersect non-empty with non-empty"
assert blue & black == green, "Enclosing intersection"
# Symmetric difference
assert red ^ green == green, "Empty symdiff non-empty"
assert green ^ blue == Set([1, 2]), "Non-empty symdiff"
assert white ^ white == red, "Self symdiff"
# Difference
assert red - green == red, "Empty - non-empty"
assert blue - red == blue, "Non-empty - empty"
assert white - black == Set([1, 2]), "Non-empty - non-empty"
# In-place union
orange = Set([])
orange |= Set([1])
assert orange == Set([1]), "In-place union"
# In-place intersection
orange = Set([1, 2])
orange &= Set([2])
assert orange == Set([2]), "In-place intersection"
# In-place difference
orange = Set([1, 2, 3])
orange -= Set([2, 4])
assert orange == Set([1, 3]), "In-place difference"
# In-place symmetric difference
orange = Set([1, 2, 3])
orange ^= Set([3, 4])
assert orange == Set([1, 2, 4]), "In-place symmetric difference"
print "All tests passed"
if __name__ == "__main__":
_test()
|