1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
|
------------------------------------------------------------------------
-- ddFMA.decTest -- decDouble Fused Multiply Add --
-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
-- these testcases. --
-- --
-- These testcases are experimental ('beta' versions), and they --
-- may contain errors. They are offered on an as-is basis. In --
-- particular, achieving the same results as the tests here is not --
-- a guarantee that an implementation complies with any Standard --
-- or specification. The tests are not exhaustive. --
-- --
-- Please send comments, suggestions, and corrections to the author: --
-- Mike Cowlishaw, IBM Fellow --
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
version: 2.57
precision: 16
maxExponent: 384
minExponent: -383
extended: 1
clamp: 1
rounding: half_even
-- These tests comprese three parts:
-- 1. Sanity checks and other three-operand tests (especially those
-- where the fused operation makes a difference)
-- 2. Multiply tests (third operand is neutral zero [0E+emax])
-- 3. Addition tests (first operand is 1)
-- The multiply and addition tests are extensive because FMA may have
-- its own dedicated multiplication or addition routine(s), and they
-- also inherently check the left-to-right properties.
-- Sanity checks
ddfma0001 fma 1 1 1 -> 2
ddfma0002 fma 1 1 2 -> 3
ddfma0003 fma 2 2 3 -> 7
ddfma0004 fma 9 9 9 -> 90
ddfma0005 fma -1 1 1 -> 0
ddfma0006 fma -1 1 2 -> 1
ddfma0007 fma -2 2 3 -> -1
ddfma0008 fma -9 9 9 -> -72
ddfma0011 fma 1 -1 1 -> 0
ddfma0012 fma 1 -1 2 -> 1
ddfma0013 fma 2 -2 3 -> -1
ddfma0014 fma 9 -9 9 -> -72
ddfma0015 fma 1 1 -1 -> 0
ddfma0016 fma 1 1 -2 -> -1
ddfma0017 fma 2 2 -3 -> 1
ddfma0018 fma 9 9 -9 -> 72
-- non-integer exacts
ddfma0100 fma 25.2 63.6 -438 -> 1164.72
ddfma0101 fma 0.301 0.380 334 -> 334.114380
ddfma0102 fma 49.2 -4.8 23.3 -> -212.86
ddfma0103 fma 4.22 0.079 -94.6 -> -94.26662
ddfma0104 fma 903 0.797 0.887 -> 720.578
ddfma0105 fma 6.13 -161 65.9 -> -921.03
ddfma0106 fma 28.2 727 5.45 -> 20506.85
ddfma0107 fma 4 605 688 -> 3108
ddfma0108 fma 93.3 0.19 0.226 -> 17.953
ddfma0109 fma 0.169 -341 5.61 -> -52.019
ddfma0110 fma -72.2 30 -51.2 -> -2217.2
ddfma0111 fma -0.409 13 20.4 -> 15.083
ddfma0112 fma 317 77.0 19.0 -> 24428.0
ddfma0113 fma 47 6.58 1.62 -> 310.88
ddfma0114 fma 1.36 0.984 0.493 -> 1.83124
ddfma0115 fma 72.7 274 1.56 -> 19921.36
ddfma0116 fma 335 847 83 -> 283828
ddfma0117 fma 666 0.247 25.4 -> 189.902
ddfma0118 fma -3.87 3.06 78.0 -> 66.1578
ddfma0119 fma 0.742 192 35.6 -> 178.064
ddfma0120 fma -91.6 5.29 0.153 -> -484.411
-- cases where result is different from separate multiply + add; each
-- is preceded by the result of unfused multiply and add
-- [this is about 20% of all similar cases in general]
-- -> 7.123356429257969E+16
ddfma0201 fma 27583489.6645 2582471078.04 2593183.42371 -> 7.123356429257970E+16 Inexact Rounded
-- -> 22813275328.80506
ddfma0208 fma 24280.355566 939577.397653 2032.013252 -> 22813275328.80507 Inexact Rounded
-- -> -2.030397734278062E+16
ddfma0209 fma 7848976432 -2586831.2281 137903.517909 -> -2.030397734278061E+16 Inexact Rounded
-- -> 2040774094814.077
ddfma0217 fma 56890.388731 35872030.4255 339337.123410 -> 2040774094814.078 Inexact Rounded
-- -> 2.714469575205049E+18
ddfma0220 fma 7533543.57445 360317763928 5073392.31638 -> 2.714469575205050E+18 Inexact Rounded
-- -> 1.011676297716716E+19
ddfma0223 fma 739945255.563 13672312784.1 -994381.53572 -> 1.011676297716715E+19 Inexact Rounded
-- -> -2.914135721455315E+23
ddfma0224 fma -413510957218 704729988550 9234162614.0 -> -2.914135721455314E+23 Inexact Rounded
-- -> 2.620119863365786E+17
ddfma0226 fma 437484.00601 598906432790 894450638.442 -> 2.620119863365787E+17 Inexact Rounded
-- -> 1.272647995808178E+19
ddfma0253 fma 73287556929 173651305.784 -358312568.389 -> 1.272647995808177E+19 Inexact Rounded
-- -> -1.753769320861851E+18
ddfma0257 fma 203258304486 -8628278.8066 153127.446727 -> -1.753769320861850E+18 Inexact Rounded
-- -> -1.550737835263346E+17
ddfma0260 fma 42560533.1774 -3643605282.86 178277.96377 -> -1.550737835263347E+17 Inexact Rounded
-- -> 2.897624620576005E+22
ddfma0269 fma 142656587375 203118879670 604576103991 -> 2.897624620576004E+22 Inexact Rounded
-- Cases where multiply would overflow or underflow if separate
fma0300 fma 9e+384 10 0 -> Infinity Overflow Inexact Rounded
fma0301 fma 1e+384 10 0 -> Infinity Overflow Inexact Rounded
fma0302 fma 1e+384 10 -1e+384 -> 9.000000000000000E+384 Clamped
fma0303 fma 1e+384 10 -9e+384 -> 1.000000000000000E+384 Clamped
-- subnormal etc.
fma0305 fma 1e-398 0.1 0 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
fma0306 fma 1e-398 0.1 1 -> 1.000000000000000 Inexact Rounded
fma0307 fma 1e-398 0.1 1e-398 -> 1E-398 Underflow Subnormal Inexact Rounded
-- Infinite combinations
ddfma0800 fma Inf Inf Inf -> Infinity
ddfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
ddfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
ddfma0803 fma Inf -Inf -Inf -> -Infinity
ddfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
ddfma0805 fma -Inf Inf -Inf -> -Infinity
ddfma0806 fma -Inf -Inf Inf -> Infinity
ddfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
-- Triple NaN propagation
ddfma0900 fma NaN2 NaN3 NaN5 -> NaN2
ddfma0901 fma 0 NaN3 NaN5 -> NaN3
ddfma0902 fma 0 0 NaN5 -> NaN5
-- first sNaN wins (consider qNaN from earlier sNaN being
-- overridden by an sNaN in third operand)
ddfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
ddfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
ddfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
ddfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
ddfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
ddfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
-- MULTIPLICATION TESTS ------------------------------------------------
-- sanity checks
ddfma2000 fma 2 2 0e+384 -> 4
ddfma2001 fma 2 3 0e+384 -> 6
ddfma2002 fma 5 1 0e+384 -> 5
ddfma2003 fma 5 2 0e+384 -> 10
ddfma2004 fma 1.20 2 0e+384 -> 2.40
ddfma2005 fma 1.20 0 0e+384 -> 0.00
ddfma2006 fma 1.20 -2 0e+384 -> -2.40
ddfma2007 fma -1.20 2 0e+384 -> -2.40
ddfma2008 fma -1.20 0 0e+384 -> 0.00
ddfma2009 fma -1.20 -2 0e+384 -> 2.40
ddfma2010 fma 5.09 7.1 0e+384 -> 36.139
ddfma2011 fma 2.5 4 0e+384 -> 10.0
ddfma2012 fma 2.50 4 0e+384 -> 10.00
ddfma2013 fma 1.23456789 1.00000000 0e+384 -> 1.234567890000000 Rounded
ddfma2015 fma 2.50 4 0e+384 -> 10.00
ddfma2016 fma 9.999999999 9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
ddfma2017 fma 9.999999999 -9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
ddfma2018 fma -9.999999999 9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
ddfma2019 fma -9.999999999 -9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
-- zeros, etc.
ddfma2021 fma 0 0 0e+384 -> 0
ddfma2022 fma 0 -0 0e+384 -> 0
ddfma2023 fma -0 0 0e+384 -> 0
ddfma2024 fma -0 -0 0e+384 -> 0
ddfma2025 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2026 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2027 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2028 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2030 fma 5.00 1E-3 0e+384 -> 0.00500
ddfma2031 fma 00.00 0.000 0e+384 -> 0.00000
ddfma2032 fma 00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2033 fma 0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2034 fma -5.00 1E-3 0e+384 -> -0.00500
ddfma2035 fma -00.00 0.000 0e+384 -> 0.00000
ddfma2036 fma -00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2037 fma -0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2038 fma 5.00 -1E-3 0e+384 -> -0.00500
ddfma2039 fma 00.00 -0.000 0e+384 -> 0.00000
ddfma2040 fma 00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2041 fma 0E-3 -00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2042 fma -5.00 -1E-3 0e+384 -> 0.00500
ddfma2043 fma -00.00 -0.000 0e+384 -> 0.00000
ddfma2044 fma -00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2045 fma -0E-3 -00.00 -0e+384 -> 0.00000 -- lhs is 0
ddfma2046 fma -0E-3 00.00 -0e+384 -> -0.00000
ddfma2047 fma 0E-3 -00.00 -0e+384 -> -0.00000
ddfma2048 fma 0E-3 00.00 -0e+384 -> 0.00000
-- examples from decarith
ddfma2050 fma 1.20 3 0e+384 -> 3.60
ddfma2051 fma 7 3 0e+384 -> 21
ddfma2052 fma 0.9 0.8 0e+384 -> 0.72
ddfma2053 fma 0.9 -0 0e+384 -> 0.0
ddfma2054 fma 654321 654321 0e+384 -> 428135971041
ddfma2060 fma 123.45 1e7 0e+384 -> 1.2345E+9
ddfma2061 fma 123.45 1e8 0e+384 -> 1.2345E+10
ddfma2062 fma 123.45 1e+9 0e+384 -> 1.2345E+11
ddfma2063 fma 123.45 1e10 0e+384 -> 1.2345E+12
ddfma2064 fma 123.45 1e11 0e+384 -> 1.2345E+13
ddfma2065 fma 123.45 1e12 0e+384 -> 1.2345E+14
ddfma2066 fma 123.45 1e13 0e+384 -> 1.2345E+15
-- test some intermediate lengths
-- 1234567890123456
ddfma2080 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
ddfma2084 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
ddfma2090 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
ddfma2094 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
-- test some more edge cases and carries
ddfma2101 fma 9 9 0e+384 -> 81
ddfma2102 fma 9 90 0e+384 -> 810
ddfma2103 fma 9 900 0e+384 -> 8100
ddfma2104 fma 9 9000 0e+384 -> 81000
ddfma2105 fma 9 90000 0e+384 -> 810000
ddfma2106 fma 9 900000 0e+384 -> 8100000
ddfma2107 fma 9 9000000 0e+384 -> 81000000
ddfma2108 fma 9 90000000 0e+384 -> 810000000
ddfma2109 fma 9 900000000 0e+384 -> 8100000000
ddfma2110 fma 9 9000000000 0e+384 -> 81000000000
ddfma2111 fma 9 90000000000 0e+384 -> 810000000000
ddfma2112 fma 9 900000000000 0e+384 -> 8100000000000
ddfma2113 fma 9 9000000000000 0e+384 -> 81000000000000
ddfma2114 fma 9 90000000000000 0e+384 -> 810000000000000
ddfma2115 fma 9 900000000000000 0e+384 -> 8100000000000000
--ddfma2116 fma 9 9000000000000000 0e+384 -> 81000000000000000
--ddfma2117 fma 9 90000000000000000 0e+384 -> 810000000000000000
--ddfma2118 fma 9 900000000000000000 0e+384 -> 8100000000000000000
--ddfma2119 fma 9 9000000000000000000 0e+384 -> 81000000000000000000
--ddfma2120 fma 9 90000000000000000000 0e+384 -> 810000000000000000000
--ddfma2121 fma 9 900000000000000000000 0e+384 -> 8100000000000000000000
--ddfma2122 fma 9 9000000000000000000000 0e+384 -> 81000000000000000000000
--ddfma2123 fma 9 90000000000000000000000 0e+384 -> 810000000000000000000000
-- test some more edge cases without carries
ddfma2131 fma 3 3 0e+384 -> 9
ddfma2132 fma 3 30 0e+384 -> 90
ddfma2133 fma 3 300 0e+384 -> 900
ddfma2134 fma 3 3000 0e+384 -> 9000
ddfma2135 fma 3 30000 0e+384 -> 90000
ddfma2136 fma 3 300000 0e+384 -> 900000
ddfma2137 fma 3 3000000 0e+384 -> 9000000
ddfma2138 fma 3 30000000 0e+384 -> 90000000
ddfma2139 fma 3 300000000 0e+384 -> 900000000
ddfma2140 fma 3 3000000000 0e+384 -> 9000000000
ddfma2141 fma 3 30000000000 0e+384 -> 90000000000
ddfma2142 fma 3 300000000000 0e+384 -> 900000000000
ddfma2143 fma 3 3000000000000 0e+384 -> 9000000000000
ddfma2144 fma 3 30000000000000 0e+384 -> 90000000000000
ddfma2145 fma 3 300000000000000 0e+384 -> 900000000000000
-- test some edge cases with exact rounding
ddfma2301 fma 9 9 0e+384 -> 81
ddfma2302 fma 9 90 0e+384 -> 810
ddfma2303 fma 9 900 0e+384 -> 8100
ddfma2304 fma 9 9000 0e+384 -> 81000
ddfma2305 fma 9 90000 0e+384 -> 810000
ddfma2306 fma 9 900000 0e+384 -> 8100000
ddfma2307 fma 9 9000000 0e+384 -> 81000000
ddfma2308 fma 9 90000000 0e+384 -> 810000000
ddfma2309 fma 9 900000000 0e+384 -> 8100000000
ddfma2310 fma 9 9000000000 0e+384 -> 81000000000
ddfma2311 fma 9 90000000000 0e+384 -> 810000000000
ddfma2312 fma 9 900000000000 0e+384 -> 8100000000000
ddfma2313 fma 9 9000000000000 0e+384 -> 81000000000000
ddfma2314 fma 9 90000000000000 0e+384 -> 810000000000000
ddfma2315 fma 9 900000000000000 0e+384 -> 8100000000000000
ddfma2316 fma 9 9000000000000000 0e+384 -> 8.100000000000000E+16 Rounded
ddfma2317 fma 90 9000000000000000 0e+384 -> 8.100000000000000E+17 Rounded
ddfma2318 fma 900 9000000000000000 0e+384 -> 8.100000000000000E+18 Rounded
ddfma2319 fma 9000 9000000000000000 0e+384 -> 8.100000000000000E+19 Rounded
ddfma2320 fma 90000 9000000000000000 0e+384 -> 8.100000000000000E+20 Rounded
ddfma2321 fma 900000 9000000000000000 0e+384 -> 8.100000000000000E+21 Rounded
ddfma2322 fma 9000000 9000000000000000 0e+384 -> 8.100000000000000E+22 Rounded
ddfma2323 fma 90000000 9000000000000000 0e+384 -> 8.100000000000000E+23 Rounded
-- tryzeros cases
ddfma2504 fma 0E-260 1000E-260 0e+384 -> 0E-398 Clamped
ddfma2505 fma 100E+260 0E+260 0e+384 -> 0E+369 Clamped
-- mixed with zeros
ddfma2541 fma 0 -1 0e+384 -> 0
ddfma2542 fma -0 -1 0e+384 -> 0
ddfma2543 fma 0 1 0e+384 -> 0
ddfma2544 fma -0 1 0e+384 -> 0
ddfma2545 fma -1 0 0e+384 -> 0
ddfma2546 fma -1 -0 0e+384 -> 0
ddfma2547 fma 1 0 0e+384 -> 0
ddfma2548 fma 1 -0 0e+384 -> 0
ddfma2551 fma 0.0 -1 0e+384 -> 0.0
ddfma2552 fma -0.0 -1 0e+384 -> 0.0
ddfma2553 fma 0.0 1 0e+384 -> 0.0
ddfma2554 fma -0.0 1 0e+384 -> 0.0
ddfma2555 fma -1.0 0 0e+384 -> 0.0
ddfma2556 fma -1.0 -0 0e+384 -> 0.0
ddfma2557 fma 1.0 0 0e+384 -> 0.0
ddfma2558 fma 1.0 -0 0e+384 -> 0.0
ddfma2561 fma 0 -1.0 0e+384 -> 0.0
ddfma2562 fma -0 -1.0 0e+384 -> 0.0
ddfma2563 fma 0 1.0 0e+384 -> 0.0
ddfma2564 fma -0 1.0 0e+384 -> 0.0
ddfma2565 fma -1 0.0 0e+384 -> 0.0
ddfma2566 fma -1 -0.0 0e+384 -> 0.0
ddfma2567 fma 1 0.0 0e+384 -> 0.0
ddfma2568 fma 1 -0.0 0e+384 -> 0.0
ddfma2571 fma 0.0 -1.0 0e+384 -> 0.00
ddfma2572 fma -0.0 -1.0 0e+384 -> 0.00
ddfma2573 fma 0.0 1.0 0e+384 -> 0.00
ddfma2574 fma -0.0 1.0 0e+384 -> 0.00
ddfma2575 fma -1.0 0.0 0e+384 -> 0.00
ddfma2576 fma -1.0 -0.0 0e+384 -> 0.00
ddfma2577 fma 1.0 0.0 0e+384 -> 0.00
ddfma2578 fma 1.0 -0.0 0e+384 -> 0.00
-- Specials
ddfma2580 fma Inf -Inf 0e+384 -> -Infinity
ddfma2581 fma Inf -1000 0e+384 -> -Infinity
ddfma2582 fma Inf -1 0e+384 -> -Infinity
ddfma2583 fma Inf -0 0e+384 -> NaN Invalid_operation
ddfma2584 fma Inf 0 0e+384 -> NaN Invalid_operation
ddfma2585 fma Inf 1 0e+384 -> Infinity
ddfma2586 fma Inf 1000 0e+384 -> Infinity
ddfma2587 fma Inf Inf 0e+384 -> Infinity
ddfma2588 fma -1000 Inf 0e+384 -> -Infinity
ddfma2589 fma -Inf Inf 0e+384 -> -Infinity
ddfma2590 fma -1 Inf 0e+384 -> -Infinity
ddfma2591 fma -0 Inf 0e+384 -> NaN Invalid_operation
ddfma2592 fma 0 Inf 0e+384 -> NaN Invalid_operation
ddfma2593 fma 1 Inf 0e+384 -> Infinity
ddfma2594 fma 1000 Inf 0e+384 -> Infinity
ddfma2595 fma Inf Inf 0e+384 -> Infinity
ddfma2600 fma -Inf -Inf 0e+384 -> Infinity
ddfma2601 fma -Inf -1000 0e+384 -> Infinity
ddfma2602 fma -Inf -1 0e+384 -> Infinity
ddfma2603 fma -Inf -0 0e+384 -> NaN Invalid_operation
ddfma2604 fma -Inf 0 0e+384 -> NaN Invalid_operation
ddfma2605 fma -Inf 1 0e+384 -> -Infinity
ddfma2606 fma -Inf 1000 0e+384 -> -Infinity
ddfma2607 fma -Inf Inf 0e+384 -> -Infinity
ddfma2608 fma -1000 Inf 0e+384 -> -Infinity
ddfma2609 fma -Inf -Inf 0e+384 -> Infinity
ddfma2610 fma -1 -Inf 0e+384 -> Infinity
ddfma2611 fma -0 -Inf 0e+384 -> NaN Invalid_operation
ddfma2612 fma 0 -Inf 0e+384 -> NaN Invalid_operation
ddfma2613 fma 1 -Inf 0e+384 -> -Infinity
ddfma2614 fma 1000 -Inf 0e+384 -> -Infinity
ddfma2615 fma Inf -Inf 0e+384 -> -Infinity
ddfma2621 fma NaN -Inf 0e+384 -> NaN
ddfma2622 fma NaN -1000 0e+384 -> NaN
ddfma2623 fma NaN -1 0e+384 -> NaN
ddfma2624 fma NaN -0 0e+384 -> NaN
ddfma2625 fma NaN 0 0e+384 -> NaN
ddfma2626 fma NaN 1 0e+384 -> NaN
ddfma2627 fma NaN 1000 0e+384 -> NaN
ddfma2628 fma NaN Inf 0e+384 -> NaN
ddfma2629 fma NaN NaN 0e+384 -> NaN
ddfma2630 fma -Inf NaN 0e+384 -> NaN
ddfma2631 fma -1000 NaN 0e+384 -> NaN
ddfma2632 fma -1 NaN 0e+384 -> NaN
ddfma2633 fma -0 NaN 0e+384 -> NaN
ddfma2634 fma 0 NaN 0e+384 -> NaN
ddfma2635 fma 1 NaN 0e+384 -> NaN
ddfma2636 fma 1000 NaN 0e+384 -> NaN
ddfma2637 fma Inf NaN 0e+384 -> NaN
ddfma2641 fma sNaN -Inf 0e+384 -> NaN Invalid_operation
ddfma2642 fma sNaN -1000 0e+384 -> NaN Invalid_operation
ddfma2643 fma sNaN -1 0e+384 -> NaN Invalid_operation
ddfma2644 fma sNaN -0 0e+384 -> NaN Invalid_operation
ddfma2645 fma sNaN 0 0e+384 -> NaN Invalid_operation
ddfma2646 fma sNaN 1 0e+384 -> NaN Invalid_operation
ddfma2647 fma sNaN 1000 0e+384 -> NaN Invalid_operation
ddfma2648 fma sNaN NaN 0e+384 -> NaN Invalid_operation
ddfma2649 fma sNaN sNaN 0e+384 -> NaN Invalid_operation
ddfma2650 fma NaN sNaN 0e+384 -> NaN Invalid_operation
ddfma2651 fma -Inf sNaN 0e+384 -> NaN Invalid_operation
ddfma2652 fma -1000 sNaN 0e+384 -> NaN Invalid_operation
ddfma2653 fma -1 sNaN 0e+384 -> NaN Invalid_operation
ddfma2654 fma -0 sNaN 0e+384 -> NaN Invalid_operation
ddfma2655 fma 0 sNaN 0e+384 -> NaN Invalid_operation
ddfma2656 fma 1 sNaN 0e+384 -> NaN Invalid_operation
ddfma2657 fma 1000 sNaN 0e+384 -> NaN Invalid_operation
ddfma2658 fma Inf sNaN 0e+384 -> NaN Invalid_operation
ddfma2659 fma NaN sNaN 0e+384 -> NaN Invalid_operation
-- propagating NaNs
ddfma2661 fma NaN9 -Inf 0e+384 -> NaN9
ddfma2662 fma NaN8 999 0e+384 -> NaN8
ddfma2663 fma NaN71 Inf 0e+384 -> NaN71
ddfma2664 fma NaN6 NaN5 0e+384 -> NaN6
ddfma2665 fma -Inf NaN4 0e+384 -> NaN4
ddfma2666 fma -999 NaN33 0e+384 -> NaN33
ddfma2667 fma Inf NaN2 0e+384 -> NaN2
ddfma2671 fma sNaN99 -Inf 0e+384 -> NaN99 Invalid_operation
ddfma2672 fma sNaN98 -11 0e+384 -> NaN98 Invalid_operation
ddfma2673 fma sNaN97 NaN 0e+384 -> NaN97 Invalid_operation
ddfma2674 fma sNaN16 sNaN94 0e+384 -> NaN16 Invalid_operation
ddfma2675 fma NaN95 sNaN93 0e+384 -> NaN93 Invalid_operation
ddfma2676 fma -Inf sNaN92 0e+384 -> NaN92 Invalid_operation
ddfma2677 fma 088 sNaN91 0e+384 -> NaN91 Invalid_operation
ddfma2678 fma Inf sNaN90 0e+384 -> NaN90 Invalid_operation
ddfma2679 fma NaN sNaN89 0e+384 -> NaN89 Invalid_operation
ddfma2681 fma -NaN9 -Inf 0e+384 -> -NaN9
ddfma2682 fma -NaN8 999 0e+384 -> -NaN8
ddfma2683 fma -NaN71 Inf 0e+384 -> -NaN71
ddfma2684 fma -NaN6 -NaN5 0e+384 -> -NaN6
ddfma2685 fma -Inf -NaN4 0e+384 -> -NaN4
ddfma2686 fma -999 -NaN33 0e+384 -> -NaN33
ddfma2687 fma Inf -NaN2 0e+384 -> -NaN2
ddfma2691 fma -sNaN99 -Inf 0e+384 -> -NaN99 Invalid_operation
ddfma2692 fma -sNaN98 -11 0e+384 -> -NaN98 Invalid_operation
ddfma2693 fma -sNaN97 NaN 0e+384 -> -NaN97 Invalid_operation
ddfma2694 fma -sNaN16 -sNaN94 0e+384 -> -NaN16 Invalid_operation
ddfma2695 fma -NaN95 -sNaN93 0e+384 -> -NaN93 Invalid_operation
ddfma2696 fma -Inf -sNaN92 0e+384 -> -NaN92 Invalid_operation
ddfma2697 fma 088 -sNaN91 0e+384 -> -NaN91 Invalid_operation
ddfma2698 fma Inf -sNaN90 0e+384 -> -NaN90 Invalid_operation
ddfma2699 fma -NaN -sNaN89 0e+384 -> -NaN89 Invalid_operation
ddfma2701 fma -NaN -Inf 0e+384 -> -NaN
ddfma2702 fma -NaN 999 0e+384 -> -NaN
ddfma2703 fma -NaN Inf 0e+384 -> -NaN
ddfma2704 fma -NaN -NaN 0e+384 -> -NaN
ddfma2705 fma -Inf -NaN0 0e+384 -> -NaN
ddfma2706 fma -999 -NaN 0e+384 -> -NaN
ddfma2707 fma Inf -NaN 0e+384 -> -NaN
ddfma2711 fma -sNaN -Inf 0e+384 -> -NaN Invalid_operation
ddfma2712 fma -sNaN -11 0e+384 -> -NaN Invalid_operation
ddfma2713 fma -sNaN00 NaN 0e+384 -> -NaN Invalid_operation
ddfma2714 fma -sNaN -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2715 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2716 fma -Inf -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2717 fma 088 -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2718 fma Inf -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2719 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
-- overflow and underflow tests .. note subnormal results
-- signs
ddfma2751 fma 1e+277 1e+311 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2752 fma 1e+277 -1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
ddfma2753 fma -1e+277 1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
ddfma2754 fma -1e+277 -1e+311 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2755 fma 1e-277 1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2756 fma 1e-277 -1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2757 fma -1e-277 1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2758 fma -1e-277 -1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
ddfma2760 fma 1e-291 1e-101 0e+384 -> 1E-392 Subnormal
ddfma2761 fma 1e-291 1e-102 0e+384 -> 1E-393 Subnormal
ddfma2762 fma 1e-291 1e-103 0e+384 -> 1E-394 Subnormal
ddfma2763 fma 1e-291 1e-104 0e+384 -> 1E-395 Subnormal
ddfma2764 fma 1e-291 1e-105 0e+384 -> 1E-396 Subnormal
ddfma2765 fma 1e-291 1e-106 0e+384 -> 1E-397 Subnormal
ddfma2766 fma 1e-291 1e-107 0e+384 -> 1E-398 Subnormal
ddfma2767 fma 1e-291 1e-108 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2768 fma 1e-291 1e-109 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2769 fma 1e-291 1e-110 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
ddfma2770 fma 1e+60 1e+321 0e+384 -> 1.000000000000E+381 Clamped
ddfma2771 fma 1e+60 1e+322 0e+384 -> 1.0000000000000E+382 Clamped
ddfma2772 fma 1e+60 1e+323 0e+384 -> 1.00000000000000E+383 Clamped
ddfma2773 fma 1e+60 1e+324 0e+384 -> 1.000000000000000E+384 Clamped
ddfma2774 fma 1e+60 1e+325 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2775 fma 1e+60 1e+326 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2776 fma 1e+60 1e+327 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2777 fma 1e+60 1e+328 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2778 fma 1e+60 1e+329 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2779 fma 1e+60 1e+330 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2801 fma 1.0000E-394 1 0e+384 -> 1.0000E-394 Subnormal
ddfma2802 fma 1.000E-394 1e-1 0e+384 -> 1.000E-395 Subnormal
ddfma2803 fma 1.00E-394 1e-2 0e+384 -> 1.00E-396 Subnormal
ddfma2804 fma 1.0E-394 1e-3 0e+384 -> 1.0E-397 Subnormal
ddfma2805 fma 1.0E-394 1e-4 0e+384 -> 1E-398 Subnormal Rounded
ddfma2806 fma 1.3E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2807 fma 1.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2808 fma 1.7E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2809 fma 2.3E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2810 fma 2.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2811 fma 2.7E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
ddfma2812 fma 1.49E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2813 fma 1.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2814 fma 1.51E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2815 fma 2.49E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2816 fma 2.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2817 fma 2.51E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
ddfma2818 fma 1E-394 1e-4 0e+384 -> 1E-398 Subnormal
ddfma2819 fma 3E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2820 fma 5E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2821 fma 7E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2822 fma 9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2823 fma 9.9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2824 fma 1E-394 -1e-4 0e+384 -> -1E-398 Subnormal
ddfma2825 fma 3E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2826 fma -5E-394 1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2827 fma 7E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2828 fma -9E-394 1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2829 fma 9.9E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2830 fma 3.0E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2831 fma 1.0E-199 1e-200 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2832 fma 1.0E-199 1e-199 0e+384 -> 1E-398 Subnormal Rounded
ddfma2833 fma 1.0E-199 1e-198 0e+384 -> 1.0E-397 Subnormal
ddfma2834 fma 2.0E-199 2e-198 0e+384 -> 4.0E-397 Subnormal
ddfma2835 fma 4.0E-199 4e-198 0e+384 -> 1.60E-396 Subnormal
ddfma2836 fma 10.0E-199 10e-198 0e+384 -> 1.000E-395 Subnormal
ddfma2837 fma 30.0E-199 30e-198 0e+384 -> 9.000E-395 Subnormal
ddfma2838 fma 40.0E-199 40e-188 0e+384 -> 1.6000E-384 Subnormal
ddfma2839 fma 40.0E-199 40e-187 0e+384 -> 1.6000E-383
ddfma2840 fma 40.0E-199 40e-186 0e+384 -> 1.6000E-382
-- Long operand overflow may be a different path
ddfma2870 fma 100 9.999E+383 0e+384 -> Infinity Inexact Overflow Rounded
ddfma2871 fma 100 -9.999E+383 0e+384 -> -Infinity Inexact Overflow Rounded
ddfma2872 fma 9.999E+383 100 0e+384 -> Infinity Inexact Overflow Rounded
ddfma2873 fma -9.999E+383 100 0e+384 -> -Infinity Inexact Overflow Rounded
-- check for double-rounded subnormals
ddfma2881 fma 1.2347E-355 1.2347E-40 0e+384 -> 1.524E-395 Inexact Rounded Subnormal Underflow
ddfma2882 fma 1.234E-355 1.234E-40 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2883 fma 1.23E-355 1.23E-40 0e+384 -> 1.513E-395 Inexact Rounded Subnormal Underflow
ddfma2884 fma 1.2E-355 1.2E-40 0e+384 -> 1.44E-395 Subnormal
ddfma2885 fma 1.2E-355 1.2E-41 0e+384 -> 1.44E-396 Subnormal
ddfma2886 fma 1.2E-355 1.2E-42 0e+384 -> 1.4E-397 Subnormal Inexact Rounded Underflow
ddfma2887 fma 1.2E-355 1.3E-42 0e+384 -> 1.6E-397 Subnormal Inexact Rounded Underflow
ddfma2888 fma 1.3E-355 1.3E-42 0e+384 -> 1.7E-397 Subnormal Inexact Rounded Underflow
ddfma2889 fma 1.3E-355 1.3E-43 0e+384 -> 2E-398 Subnormal Inexact Rounded Underflow
ddfma2890 fma 1.3E-356 1.3E-43 0e+384 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow
ddfma2891 fma 1.2345E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
ddfma2892 fma 1.23456E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
ddfma2893 fma 1.2345E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2894 fma 1.23456E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2895 fma 1.2345E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
ddfma2896 fma 1.23456E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
-- Now explore the case where we get a normal result with Underflow
ddfma2900 fma 0.3000000000E-191 0.3000000000E-191 0e+384 -> 9.00000000000000E-384 Subnormal Rounded
ddfma2901 fma 0.3000000001E-191 0.3000000001E-191 0e+384 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
ddfma2902 fma 9.999999999999999E-383 0.0999999999999 0e+384 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
ddfma2903 fma 9.999999999999999E-383 0.09999999999999 0e+384 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
ddfma2904 fma 9.999999999999999E-383 0.099999999999999 0e+384 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
ddfma2905 fma 9.999999999999999E-383 0.0999999999999999 0e+384 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
-- prove operands are exact
ddfma2906 fma 9.999999999999999E-383 1 0e+384 -> 9.999999999999999E-383
ddfma2907 fma 1 0.09999999999999999 0e+384 -> 0.09999999999999999
-- the next rounds to Nmin
ddfma2908 fma 9.999999999999999E-383 0.09999999999999999 0e+384 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
-- hugest
ddfma2909 fma 9999999999999999 9999999999999999 0e+384 -> 9.999999999999998E+31 Inexact Rounded
-- Null tests
ddfma2990 fma 10 # 0e+384 -> NaN Invalid_operation
ddfma2991 fma # 10 0e+384 -> NaN Invalid_operation
-- ADDITION TESTS ------------------------------------------------------
-- [first group are 'quick confidence check']
ddfma3001 fma 1 1 1 -> 2
ddfma3002 fma 1 2 3 -> 5
ddfma3003 fma 1 '5.75' '3.3' -> 9.05
ddfma3004 fma 1 '5' '-3' -> 2
ddfma3005 fma 1 '-5' '-3' -> -8
ddfma3006 fma 1 '-7' '2.5' -> -4.5
ddfma3007 fma 1 '0.7' '0.3' -> 1.0
ddfma3008 fma 1 '1.25' '1.25' -> 2.50
ddfma3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
ddfma3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
-- 1234567890123456 1234567890123456
ddfma3011 fma 1 '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded
ddfma3012 fma 1 '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded
ddfma3013 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
ddfma3014 fma 1 '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded
ddfma3015 fma 1 '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded
ddfma3016 fma 1 '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded
ddfma3017 fma 1 '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded
ddfma3018 fma 1 '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded
ddfma3019 fma 1 '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded
ddfma3020 fma 1 '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded
ddfma3021 fma 1 0 1 -> 1
ddfma3022 fma 1 1 1 -> 2
ddfma3023 fma 1 2 1 -> 3
ddfma3024 fma 1 3 1 -> 4
ddfma3025 fma 1 4 1 -> 5
ddfma3026 fma 1 5 1 -> 6
ddfma3027 fma 1 6 1 -> 7
ddfma3028 fma 1 7 1 -> 8
ddfma3029 fma 1 8 1 -> 9
ddfma3030 fma 1 9 1 -> 10
-- some carrying effects
ddfma3031 fma 1 '0.9998' '0.0000' -> '0.9998'
ddfma3032 fma 1 '0.9998' '0.0001' -> '0.9999'
ddfma3033 fma 1 '0.9998' '0.0002' -> '1.0000'
ddfma3034 fma 1 '0.9998' '0.0003' -> '1.0001'
ddfma3035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
ddfma3039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
-- symmetry:
ddfma3040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
ddfma3041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
ddfma3042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
ddfma3044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
ddfma3045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
-- same, without rounding
ddfma3046 fma 1 '10000e+9' '7' -> '10000000000007'
ddfma3047 fma 1 '10000e+9' '70' -> '10000000000070'
ddfma3048 fma 1 '10000e+9' '700' -> '10000000000700'
ddfma3049 fma 1 '10000e+9' '7000' -> '10000000007000'
ddfma3050 fma 1 '10000e+9' '70000' -> '10000000070000'
ddfma3051 fma 1 '10000e+9' '700000' -> '10000000700000'
ddfma3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
-- examples from decarith
ddfma3053 fma 1 '12' '7.00' -> '19.00'
ddfma3054 fma 1 '1.3' '-1.07' -> '0.23'
ddfma3055 fma 1 '1.3' '-1.30' -> '0.00'
ddfma3056 fma 1 '1.3' '-2.07' -> '-0.77'
ddfma3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
-- leading zero preservation
ddfma3061 fma 1 1 '0.0001' -> '1.0001'
ddfma3062 fma 1 1 '0.00001' -> '1.00001'
ddfma3063 fma 1 1 '0.000001' -> '1.000001'
ddfma3064 fma 1 1 '0.0000001' -> '1.0000001'
ddfma3065 fma 1 1 '0.00000001' -> '1.00000001'
-- some funny zeros [in case of bad signum]
ddfma3070 fma 1 1 0 -> 1
ddfma3071 fma 1 1 0. -> 1
ddfma3072 fma 1 1 .0 -> 1.0
ddfma3073 fma 1 1 0.0 -> 1.0
ddfma3074 fma 1 1 0.00 -> 1.00
ddfma3075 fma 1 0 1 -> 1
ddfma3076 fma 1 0. 1 -> 1
ddfma3077 fma 1 .0 1 -> 1.0
ddfma3078 fma 1 0.0 1 -> 1.0
ddfma3079 fma 1 0.00 1 -> 1.00
-- some carries
ddfma3080 fma 1 999999998 1 -> 999999999
ddfma3081 fma 1 999999999 1 -> 1000000000
ddfma3082 fma 1 99999999 1 -> 100000000
ddfma3083 fma 1 9999999 1 -> 10000000
ddfma3084 fma 1 999999 1 -> 1000000
ddfma3085 fma 1 99999 1 -> 100000
ddfma3086 fma 1 9999 1 -> 10000
ddfma3087 fma 1 999 1 -> 1000
ddfma3088 fma 1 99 1 -> 100
ddfma3089 fma 1 9 1 -> 10
-- more LHS swaps
ddfma3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
ddfma3091 fma 1 '-56267E-6' 0 -> '-0.056267'
ddfma3092 fma 1 '-56267E-5' 0 -> '-0.56267'
ddfma3093 fma 1 '-56267E-4' 0 -> '-5.6267'
ddfma3094 fma 1 '-56267E-3' 0 -> '-56.267'
ddfma3095 fma 1 '-56267E-2' 0 -> '-562.67'
ddfma3096 fma 1 '-56267E-1' 0 -> '-5626.7'
ddfma3097 fma 1 '-56267E-0' 0 -> '-56267'
ddfma3098 fma 1 '-5E-10' 0 -> '-5E-10'
ddfma3099 fma 1 '-5E-7' 0 -> '-5E-7'
ddfma3100 fma 1 '-5E-6' 0 -> '-0.000005'
ddfma3101 fma 1 '-5E-5' 0 -> '-0.00005'
ddfma3102 fma 1 '-5E-4' 0 -> '-0.0005'
ddfma3103 fma 1 '-5E-1' 0 -> '-0.5'
ddfma3104 fma 1 '-5E0' 0 -> '-5'
ddfma3105 fma 1 '-5E1' 0 -> '-50'
ddfma3106 fma 1 '-5E5' 0 -> '-500000'
ddfma3107 fma 1 '-5E15' 0 -> '-5000000000000000'
ddfma3108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded
ddfma3109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded
ddfma3110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded
ddfma3111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded
-- more RHS swaps
ddfma3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
ddfma3114 fma 1 0 '-56267E-6' -> '-0.056267'
ddfma3116 fma 1 0 '-56267E-5' -> '-0.56267'
ddfma3117 fma 1 0 '-56267E-4' -> '-5.6267'
ddfma3119 fma 1 0 '-56267E-3' -> '-56.267'
ddfma3120 fma 1 0 '-56267E-2' -> '-562.67'
ddfma3121 fma 1 0 '-56267E-1' -> '-5626.7'
ddfma3122 fma 1 0 '-56267E-0' -> '-56267'
ddfma3123 fma 1 0 '-5E-10' -> '-5E-10'
ddfma3124 fma 1 0 '-5E-7' -> '-5E-7'
ddfma3125 fma 1 0 '-5E-6' -> '-0.000005'
ddfma3126 fma 1 0 '-5E-5' -> '-0.00005'
ddfma3127 fma 1 0 '-5E-4' -> '-0.0005'
ddfma3128 fma 1 0 '-5E-1' -> '-0.5'
ddfma3129 fma 1 0 '-5E0' -> '-5'
ddfma3130 fma 1 0 '-5E1' -> '-50'
ddfma3131 fma 1 0 '-5E5' -> '-500000'
ddfma3132 fma 1 0 '-5E15' -> '-5000000000000000'
ddfma3133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded
ddfma3134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded
ddfma3135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded
ddfma3136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded
-- related
ddfma3137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded
ddfma3138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded
ddfma3139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded
ddfma3140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded
ddfma3141 fma 1 1E+11 0.0000 -> '100000000000.0000'
ddfma3142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded
ddfma3143 fma 1 0.000 1E+12 -> '1000000000000.000'
ddfma3144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded
-- [some of the next group are really constructor tests]
ddfma3146 fma 1 '00.0' 0 -> '0.0'
ddfma3147 fma 1 '0.00' 0 -> '0.00'
ddfma3148 fma 1 0 '0.00' -> '0.00'
ddfma3149 fma 1 0 '00.0' -> '0.0'
ddfma3150 fma 1 '00.0' '0.00' -> '0.00'
ddfma3151 fma 1 '0.00' '00.0' -> '0.00'
ddfma3152 fma 1 '3' '.3' -> '3.3'
ddfma3153 fma 1 '3.' '.3' -> '3.3'
ddfma3154 fma 1 '3.0' '.3' -> '3.3'
ddfma3155 fma 1 '3.00' '.3' -> '3.30'
ddfma3156 fma 1 '3' '3' -> '6'
ddfma3157 fma 1 '3' '+3' -> '6'
ddfma3158 fma 1 '3' '-3' -> '0'
ddfma3159 fma 1 '0.3' '-0.3' -> '0.0'
ddfma3160 fma 1 '0.03' '-0.03' -> '0.00'
-- try borderline precision, with carries, etc.
ddfma3161 fma 1 '1E+12' '-1' -> '999999999999'
ddfma3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
ddfma3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
ddfma3164 fma 1 '-1' '1E+12' -> '999999999999'
ddfma3165 fma 1 '7E+12' '-1' -> '6999999999999'
ddfma3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
ddfma3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
ddfma3168 fma 1 '-1' '7E+12' -> '6999999999999'
rounding: half_up
-- 1.234567890123456 1234567890123456 1 234567890123456
ddfma3170 fma 1 '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded
ddfma3171 fma 1 '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded
ddfma3172 fma 1 '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded
ddfma3173 fma 1 '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded
ddfma3174 fma 1 '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded
ddfma3175 fma 1 '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded
ddfma3176 fma 1 '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded
ddfma3177 fma 1 '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded
ddfma3178 fma 1 '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded
ddfma3179 fma 1 '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded
ddfma3180 fma 1 '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded
ddfma3181 fma 1 '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded
ddfma3182 fma 1 '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded
ddfma3183 fma 1 '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded
-- and some more, including residue effects and different roundings
rounding: half_up
ddfma3200 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3201 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3202 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3203 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3204 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3205 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3206 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3207 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3208 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
ddfma3209 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
ddfma3210 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
ddfma3211 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
ddfma3212 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
ddfma3213 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
ddfma3214 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
ddfma3215 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
ddfma3216 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3217 fma 1 '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded
ddfma3218 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3219 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
rounding: half_even
ddfma3220 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3221 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3222 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3223 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3224 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3225 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3226 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3227 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3228 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
ddfma3229 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
ddfma3230 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
ddfma3231 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
ddfma3232 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
ddfma3233 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
ddfma3234 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
ddfma3235 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
ddfma3236 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3237 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
ddfma3238 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3239 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
-- critical few with even bottom digit...
ddfma3240 fma 1 '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded
ddfma3241 fma 1 '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded
ddfma3242 fma 1 '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded
rounding: down
ddfma3250 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3251 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3252 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3253 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3254 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3255 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3256 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3257 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3258 fma 1 '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded
ddfma3259 fma 1 '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded
ddfma3260 fma 1 '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded
ddfma3261 fma 1 '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded
ddfma3262 fma 1 '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded
ddfma3263 fma 1 '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded
ddfma3264 fma 1 '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded
ddfma3265 fma 1 '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded
ddfma3266 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3267 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
ddfma3268 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3269 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
-- 1 in last place tests
rounding: half_up
ddfma3301 fma 1 -1 1 -> 0
ddfma3302 fma 1 0 1 -> 1
ddfma3303 fma 1 1 1 -> 2
ddfma3304 fma 1 12 1 -> 13
ddfma3305 fma 1 98 1 -> 99
ddfma3306 fma 1 99 1 -> 100
ddfma3307 fma 1 100 1 -> 101
ddfma3308 fma 1 101 1 -> 102
ddfma3309 fma 1 -1 -1 -> -2
ddfma3310 fma 1 0 -1 -> -1
ddfma3311 fma 1 1 -1 -> 0
ddfma3312 fma 1 12 -1 -> 11
ddfma3313 fma 1 98 -1 -> 97
ddfma3314 fma 1 99 -1 -> 98
ddfma3315 fma 1 100 -1 -> 99
ddfma3316 fma 1 101 -1 -> 100
ddfma3321 fma 1 -0.01 0.01 -> 0.00
ddfma3322 fma 1 0.00 0.01 -> 0.01
ddfma3323 fma 1 0.01 0.01 -> 0.02
ddfma3324 fma 1 0.12 0.01 -> 0.13
ddfma3325 fma 1 0.98 0.01 -> 0.99
ddfma3326 fma 1 0.99 0.01 -> 1.00
ddfma3327 fma 1 1.00 0.01 -> 1.01
ddfma3328 fma 1 1.01 0.01 -> 1.02
ddfma3329 fma 1 -0.01 -0.01 -> -0.02
ddfma3330 fma 1 0.00 -0.01 -> -0.01
ddfma3331 fma 1 0.01 -0.01 -> 0.00
ddfma3332 fma 1 0.12 -0.01 -> 0.11
ddfma3333 fma 1 0.98 -0.01 -> 0.97
ddfma3334 fma 1 0.99 -0.01 -> 0.98
ddfma3335 fma 1 1.00 -0.01 -> 0.99
ddfma3336 fma 1 1.01 -0.01 -> 1.00
-- some more cases where adding 0 affects the coefficient
ddfma3340 fma 1 1E+3 0 -> 1000
ddfma3341 fma 1 1E+15 0 -> 1000000000000000
ddfma3342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded
ddfma3343 fma 1 1E+20 0 -> 1.000000000000000E+20 Rounded
-- which simply follow from these cases ...
ddfma3344 fma 1 1E+3 1 -> 1001
ddfma3345 fma 1 1E+15 1 -> 1000000000000001
ddfma3346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
ddfma3347 fma 1 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded
ddfma3348 fma 1 1E+3 7 -> 1007
ddfma3349 fma 1 1E+15 7 -> 1000000000000007
ddfma3350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
ddfma3351 fma 1 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded
-- tryzeros cases
rounding: half_up
ddfma3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
ddfma3361 fma 1 0E-50 10000E+1 -> 100000.0000000000 Rounded
ddfma3362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded
ddfma3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
ddfma3364 fma 1 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369
-- a curiosity from JSR 13 testing
rounding: half_down
ddfma3370 fma 1 999999999999999 815 -> 1000000000000814
ddfma3371 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding: half_up
ddfma3372 fma 1 999999999999999 815 -> 1000000000000814
ddfma3373 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding: half_even
ddfma3374 fma 1 999999999999999 815 -> 1000000000000814
ddfma3375 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
-- ulp replacement tests
ddfma3400 fma 1 1 77e-14 -> 1.00000000000077
ddfma3401 fma 1 1 77e-15 -> 1.000000000000077
ddfma3402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded
ddfma3403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded
ddfma3404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded
ddfma3405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded
ddfma3406 fma 1 1 77e-299 -> 1.000000000000000 Inexact Rounded
ddfma3410 fma 1 10 77e-14 -> 10.00000000000077
ddfma3411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded
ddfma3412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded
ddfma3413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded
ddfma3414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded
ddfma3415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded
ddfma3416 fma 1 10 77e-299 -> 10.00000000000000 Inexact Rounded
ddfma3420 fma 1 77e-14 1 -> 1.00000000000077
ddfma3421 fma 1 77e-15 1 -> 1.000000000000077
ddfma3422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded
ddfma3423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded
ddfma3424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded
ddfma3425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded
ddfma3426 fma 1 77e-299 1 -> 1.000000000000000 Inexact Rounded
ddfma3430 fma 1 77e-14 10 -> 10.00000000000077
ddfma3431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded
ddfma3432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded
ddfma3433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded
ddfma3434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded
ddfma3435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded
ddfma3436 fma 1 77e-299 10 -> 10.00000000000000 Inexact Rounded
-- negative ulps
ddfma36440 fma 1 1 -77e-14 -> 0.99999999999923
ddfma36441 fma 1 1 -77e-15 -> 0.999999999999923
ddfma36442 fma 1 1 -77e-16 -> 0.9999999999999923
ddfma36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
ddfma36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
ddfma36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded
ddfma36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded
ddfma36450 fma 1 10 -77e-14 -> 9.99999999999923
ddfma36451 fma 1 10 -77e-15 -> 9.999999999999923
ddfma36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded
ddfma36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded
ddfma36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded
ddfma36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded
ddfma36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded
ddfma36460 fma 1 -77e-14 1 -> 0.99999999999923
ddfma36461 fma 1 -77e-15 1 -> 0.999999999999923
ddfma36462 fma 1 -77e-16 1 -> 0.9999999999999923
ddfma36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded
ddfma36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded
ddfma36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded
ddfma36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded
ddfma36470 fma 1 -77e-14 10 -> 9.99999999999923
ddfma36471 fma 1 -77e-15 10 -> 9.999999999999923
ddfma36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded
ddfma36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded
ddfma36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded
ddfma36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded
ddfma36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded
-- negative ulps
ddfma36480 fma 1 -1 77e-14 -> -0.99999999999923
ddfma36481 fma 1 -1 77e-15 -> -0.999999999999923
ddfma36482 fma 1 -1 77e-16 -> -0.9999999999999923
ddfma36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded
ddfma36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded
ddfma36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded
ddfma36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded
ddfma36490 fma 1 -10 77e-14 -> -9.99999999999923
ddfma36491 fma 1 -10 77e-15 -> -9.999999999999923
ddfma36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded
ddfma36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded
ddfma36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded
ddfma36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded
ddfma36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded
ddfma36500 fma 1 77e-14 -1 -> -0.99999999999923
ddfma36501 fma 1 77e-15 -1 -> -0.999999999999923
ddfma36502 fma 1 77e-16 -1 -> -0.9999999999999923
ddfma36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
ddfma36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
ddfma36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded
ddfma36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded
ddfma36510 fma 1 77e-14 -10 -> -9.99999999999923
ddfma36511 fma 1 77e-15 -10 -> -9.999999999999923
ddfma36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded
ddfma36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded
ddfma36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded
ddfma36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded
ddfma36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded
-- and a couple more with longer RHS
ddfma36520 fma 1 1 -7777e-16 -> 0.9999999999992223
ddfma36521 fma 1 1 -7777e-17 -> 0.9999999999999222 Inexact Rounded
ddfma36522 fma 1 1 -7777e-18 -> 0.9999999999999922 Inexact Rounded
ddfma36523 fma 1 1 -7777e-19 -> 0.9999999999999992 Inexact Rounded
ddfma36524 fma 1 1 -7777e-20 -> 0.9999999999999999 Inexact Rounded
ddfma36525 fma 1 1 -7777e-21 -> 1.000000000000000 Inexact Rounded
ddfma36526 fma 1 1 -7777e-22 -> 1.000000000000000 Inexact Rounded
-- and some more residue effects and different roundings
rounding: half_up
ddfma36540 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma36541 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma36542 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma36543 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma36544 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma36545 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma36546 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma36547 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma36548 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
ddfma36549 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
ddfma36550 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
ddfma36551 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
ddfma36552 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
ddfma36553 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
ddfma36554 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
ddfma36555 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
ddfma36556 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma36557 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
ddfma36558 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma36559 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
rounding: half_even
ddfma36560 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma36561 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma36562 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma36563 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma36564 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma36565 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma36566 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma36567 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma36568 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
ddfma36569 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
ddfma36570 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
ddfma36571 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
ddfma36572 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
ddfma36573 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
ddfma36574 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
ddfma36575 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
ddfma36576 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma36577 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
ddfma36578 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma36579 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
-- critical few with even bottom digit...
ddfma37540 fma 1 '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded
ddfma37541 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
ddfma37542 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
rounding: down
ddfma37550 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma37551 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma37552 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma37553 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma37554 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma37555 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma37556 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma37557 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma37558 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
ddfma37559 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
ddfma37560 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
ddfma37561 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
ddfma37562 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
ddfma37563 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
ddfma37564 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
ddfma37565 fma 1 '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded
ddfma37566 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma37567 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
ddfma37568 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma37569 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
-- verify a query
rounding: down
ddfma37661 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
ddfma37662 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
ddfma37663 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
ddfma37664 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
-- more zeros, etc.
rounding: half_even
ddfma37701 fma 1 5.00 1.00E-3 -> 5.00100
ddfma37702 fma 1 00.00 0.000 -> 0.000
ddfma37703 fma 1 00.00 0E-3 -> 0.000
ddfma37704 fma 1 0E-3 00.00 -> 0.000
ddfma37710 fma 1 0E+3 00.00 -> 0.00
ddfma37711 fma 1 0E+3 00.0 -> 0.0
ddfma37712 fma 1 0E+3 00. -> 0
ddfma37713 fma 1 0E+3 00.E+1 -> 0E+1
ddfma37714 fma 1 0E+3 00.E+2 -> 0E+2
ddfma37715 fma 1 0E+3 00.E+3 -> 0E+3
ddfma37716 fma 1 0E+3 00.E+4 -> 0E+3
ddfma37717 fma 1 0E+3 00.E+5 -> 0E+3
ddfma37718 fma 1 0E+3 -00.0 -> 0.0
ddfma37719 fma 1 0E+3 -00. -> 0
ddfma37731 fma 1 0E+3 -00.E+1 -> 0E+1
ddfma37720 fma 1 00.00 0E+3 -> 0.00
ddfma37721 fma 1 00.0 0E+3 -> 0.0
ddfma37722 fma 1 00. 0E+3 -> 0
ddfma37723 fma 1 00.E+1 0E+3 -> 0E+1
ddfma37724 fma 1 00.E+2 0E+3 -> 0E+2
ddfma37725 fma 1 00.E+3 0E+3 -> 0E+3
ddfma37726 fma 1 00.E+4 0E+3 -> 0E+3
ddfma37727 fma 1 00.E+5 0E+3 -> 0E+3
ddfma37728 fma 1 -00.00 0E+3 -> 0.00
ddfma37729 fma 1 -00.0 0E+3 -> 0.0
ddfma37730 fma 1 -00. 0E+3 -> 0
ddfma37732 fma 1 0 0 -> 0
ddfma37733 fma 1 0 -0 -> 0
ddfma37734 fma 1 -0 0 -> 0
ddfma37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
ddfma37736 fma 1 1 -1 -> 0
ddfma37737 fma 1 -1 -1 -> -2
ddfma37738 fma 1 1 1 -> 2
ddfma37739 fma 1 -1 1 -> 0
ddfma37741 fma 1 0 -1 -> -1
ddfma37742 fma 1 -0 -1 -> -1
ddfma37743 fma 1 0 1 -> 1
ddfma37744 fma 1 -0 1 -> 1
ddfma37745 fma 1 -1 0 -> -1
ddfma37746 fma 1 -1 -0 -> -1
ddfma37747 fma 1 1 0 -> 1
ddfma37748 fma 1 1 -0 -> 1
ddfma37751 fma 1 0.0 -1 -> -1.0
ddfma37752 fma 1 -0.0 -1 -> -1.0
ddfma37753 fma 1 0.0 1 -> 1.0
ddfma37754 fma 1 -0.0 1 -> 1.0
ddfma37755 fma 1 -1.0 0 -> -1.0
ddfma37756 fma 1 -1.0 -0 -> -1.0
ddfma37757 fma 1 1.0 0 -> 1.0
ddfma37758 fma 1 1.0 -0 -> 1.0
ddfma37761 fma 1 0 -1.0 -> -1.0
ddfma37762 fma 1 -0 -1.0 -> -1.0
ddfma37763 fma 1 0 1.0 -> 1.0
ddfma37764 fma 1 -0 1.0 -> 1.0
ddfma37765 fma 1 -1 0.0 -> -1.0
ddfma37766 fma 1 -1 -0.0 -> -1.0
ddfma37767 fma 1 1 0.0 -> 1.0
ddfma37768 fma 1 1 -0.0 -> 1.0
ddfma37771 fma 1 0.0 -1.0 -> -1.0
ddfma37772 fma 1 -0.0 -1.0 -> -1.0
ddfma37773 fma 1 0.0 1.0 -> 1.0
ddfma37774 fma 1 -0.0 1.0 -> 1.0
ddfma37775 fma 1 -1.0 0.0 -> -1.0
ddfma37776 fma 1 -1.0 -0.0 -> -1.0
ddfma37777 fma 1 1.0 0.0 -> 1.0
ddfma37778 fma 1 1.0 -0.0 -> 1.0
-- Specials
ddfma37780 fma 1 -Inf -Inf -> -Infinity
ddfma37781 fma 1 -Inf -1000 -> -Infinity
ddfma37782 fma 1 -Inf -1 -> -Infinity
ddfma37783 fma 1 -Inf -0 -> -Infinity
ddfma37784 fma 1 -Inf 0 -> -Infinity
ddfma37785 fma 1 -Inf 1 -> -Infinity
ddfma37786 fma 1 -Inf 1000 -> -Infinity
ddfma37787 fma 1 -1000 -Inf -> -Infinity
ddfma37788 fma 1 -Inf -Inf -> -Infinity
ddfma37789 fma 1 -1 -Inf -> -Infinity
ddfma37790 fma 1 -0 -Inf -> -Infinity
ddfma37791 fma 1 0 -Inf -> -Infinity
ddfma37792 fma 1 1 -Inf -> -Infinity
ddfma37793 fma 1 1000 -Inf -> -Infinity
ddfma37794 fma 1 Inf -Inf -> NaN Invalid_operation
ddfma37800 fma 1 Inf -Inf -> NaN Invalid_operation
ddfma37801 fma 1 Inf -1000 -> Infinity
ddfma37802 fma 1 Inf -1 -> Infinity
ddfma37803 fma 1 Inf -0 -> Infinity
ddfma37804 fma 1 Inf 0 -> Infinity
ddfma37805 fma 1 Inf 1 -> Infinity
ddfma37806 fma 1 Inf 1000 -> Infinity
ddfma37807 fma 1 Inf Inf -> Infinity
ddfma37808 fma 1 -1000 Inf -> Infinity
ddfma37809 fma 1 -Inf Inf -> NaN Invalid_operation
ddfma37810 fma 1 -1 Inf -> Infinity
ddfma37811 fma 1 -0 Inf -> Infinity
ddfma37812 fma 1 0 Inf -> Infinity
ddfma37813 fma 1 1 Inf -> Infinity
ddfma37814 fma 1 1000 Inf -> Infinity
ddfma37815 fma 1 Inf Inf -> Infinity
ddfma37821 fma 1 NaN -Inf -> NaN
ddfma37822 fma 1 NaN -1000 -> NaN
ddfma37823 fma 1 NaN -1 -> NaN
ddfma37824 fma 1 NaN -0 -> NaN
ddfma37825 fma 1 NaN 0 -> NaN
ddfma37826 fma 1 NaN 1 -> NaN
ddfma37827 fma 1 NaN 1000 -> NaN
ddfma37828 fma 1 NaN Inf -> NaN
ddfma37829 fma 1 NaN NaN -> NaN
ddfma37830 fma 1 -Inf NaN -> NaN
ddfma37831 fma 1 -1000 NaN -> NaN
ddfma37832 fma 1 -1 NaN -> NaN
ddfma37833 fma 1 -0 NaN -> NaN
ddfma37834 fma 1 0 NaN -> NaN
ddfma37835 fma 1 1 NaN -> NaN
ddfma37836 fma 1 1000 NaN -> NaN
ddfma37837 fma 1 Inf NaN -> NaN
ddfma37841 fma 1 sNaN -Inf -> NaN Invalid_operation
ddfma37842 fma 1 sNaN -1000 -> NaN Invalid_operation
ddfma37843 fma 1 sNaN -1 -> NaN Invalid_operation
ddfma37844 fma 1 sNaN -0 -> NaN Invalid_operation
ddfma37845 fma 1 sNaN 0 -> NaN Invalid_operation
ddfma37846 fma 1 sNaN 1 -> NaN Invalid_operation
ddfma37847 fma 1 sNaN 1000 -> NaN Invalid_operation
ddfma37848 fma 1 sNaN NaN -> NaN Invalid_operation
ddfma37849 fma 1 sNaN sNaN -> NaN Invalid_operation
ddfma37850 fma 1 NaN sNaN -> NaN Invalid_operation
ddfma37851 fma 1 -Inf sNaN -> NaN Invalid_operation
ddfma37852 fma 1 -1000 sNaN -> NaN Invalid_operation
ddfma37853 fma 1 -1 sNaN -> NaN Invalid_operation
ddfma37854 fma 1 -0 sNaN -> NaN Invalid_operation
ddfma37855 fma 1 0 sNaN -> NaN Invalid_operation
ddfma37856 fma 1 1 sNaN -> NaN Invalid_operation
ddfma37857 fma 1 1000 sNaN -> NaN Invalid_operation
ddfma37858 fma 1 Inf sNaN -> NaN Invalid_operation
ddfma37859 fma 1 NaN sNaN -> NaN Invalid_operation
-- propagating NaNs
ddfma37861 fma 1 NaN1 -Inf -> NaN1
ddfma37862 fma 1 +NaN2 -1000 -> NaN2
ddfma37863 fma 1 NaN3 1000 -> NaN3
ddfma37864 fma 1 NaN4 Inf -> NaN4
ddfma37865 fma 1 NaN5 +NaN6 -> NaN5
ddfma37866 fma 1 -Inf NaN7 -> NaN7
ddfma37867 fma 1 -1000 NaN8 -> NaN8
ddfma37868 fma 1 1000 NaN9 -> NaN9
ddfma37869 fma 1 Inf +NaN10 -> NaN10
ddfma37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
ddfma37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
ddfma37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
ddfma37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
ddfma37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
ddfma37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
ddfma37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
ddfma37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
ddfma37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
ddfma37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
ddfma37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
ddfma37882 fma 1 -NaN26 NaN28 -> -NaN26
ddfma37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
ddfma37884 fma 1 1000 -NaN30 -> -NaN30
ddfma37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
-- Here we explore near the boundary of rounding a subnormal to Nmin
ddfma37575 fma 1 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal
ddfma37576 fma 1 -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal
-- check overflow edge case
-- 1234567890123456
ddfma37972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
ddfma37973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
ddfma37974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
ddfma37975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
ddfma37976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
ddfma37977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
ddfma37978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
ddfma37979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
ddfma37980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
ddfma37981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
ddfma37986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
ddfma37987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
ddfma37988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
ddfma37989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
ddfma37990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
ddfma37991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
ddfma37992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
ddfma37993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
ddfma37994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
-- And for round down full and subnormal results
rounding: down
ddfma371100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
ddfma371101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
ddfma371103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
ddfma371104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
ddfma371105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
ddfma371106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
ddfma371107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
ddfma371108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
ddfma371109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
rounding: ceiling
ddfma371110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
ddfma371111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
ddfma371113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
ddfma371114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
ddfma371115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
ddfma371116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
ddfma371117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
ddfma371118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
ddfma371119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
-- tests based on Gunnar Degnbol's edge case
rounding: half_even
ddfma371300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
ddfma371310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded
ddfma371311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded
ddfma371312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
ddfma371313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
ddfma371314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
ddfma371315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
ddfma371316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
ddfma371317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
ddfma371318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
ddfma371319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
ddfma371320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
ddfma371321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
ddfma371322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
ddfma371323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
ddfma371324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
ddfma371325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
ddfma371339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
ddfma371340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
ddfma371341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
ddfma371349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
ddfma371350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
ddfma371351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
ddfma371352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
ddfma371353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
ddfma371354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
ddfma371355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
ddfma371356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
ddfma371357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
ddfma371358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
ddfma371359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
ddfma371360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
ddfma371361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
ddfma371362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
ddfma371363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
ddfma371364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
ddfma371365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
ddfma371380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
ddfma371381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
ddfma371382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
ddfma371396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
-- More GD edge cases, where difference between the unadjusted
-- exponents is larger than the maximum precision and one side is 0
ddfma371420 fma 1 0 1.123456789012345 -> 1.123456789012345
ddfma371421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345
ddfma371422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345
ddfma371423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345
ddfma371424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345
ddfma371425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345
ddfma371426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345
ddfma371427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7
ddfma371428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8
ddfma371429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9
ddfma371430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10
ddfma371431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11
ddfma371432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12
ddfma371433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13
ddfma371434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14
ddfma371435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15
ddfma371436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16
ddfma371437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17
ddfma371438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18
ddfma371439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19
-- same, reversed 0
ddfma371440 fma 1 1.123456789012345 0 -> 1.123456789012345
ddfma371441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345
ddfma371442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345
ddfma371443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345
ddfma371444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345
ddfma371445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345
ddfma371446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345
ddfma371447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7
ddfma371448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8
ddfma371449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9
ddfma371450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10
ddfma371451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11
ddfma371452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12
ddfma371453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13
ddfma371454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14
ddfma371455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15
ddfma371456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16
ddfma371457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17
ddfma371458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18
ddfma371459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19
-- same, Es on the 0
ddfma371460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345
ddfma371461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345
ddfma371462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345
ddfma371463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345
ddfma371464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345
ddfma371465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345
ddfma371466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345
ddfma371467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345
ddfma371468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345
ddfma371469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345
ddfma371470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345
ddfma371471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345
ddfma371472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345
ddfma371473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345
ddfma371474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345
ddfma371475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345
-- next four flag Rounded because the 0 extends the result
ddfma371476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
ddfma371477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
ddfma371478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
ddfma371479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
-- sum of two opposite-sign operands is exactly 0 and floor => -0
rounding: half_up
-- exact zeros from zeros
ddfma371500 fma 1 0 0E-19 -> 0E-19
ddfma371501 fma 1 -0 0E-19 -> 0E-19
ddfma371502 fma 1 0 -0E-19 -> 0E-19
ddfma371503 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371511 fma 1 -11 11 -> 0
ddfma371512 fma 1 11 -11 -> 0
rounding: half_down
-- exact zeros from zeros
ddfma371520 fma 1 0 0E-19 -> 0E-19
ddfma371521 fma 1 -0 0E-19 -> 0E-19
ddfma371522 fma 1 0 -0E-19 -> 0E-19
ddfma371523 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371531 fma 1 -11 11 -> 0
ddfma371532 fma 1 11 -11 -> 0
rounding: half_even
-- exact zeros from zeros
ddfma371540 fma 1 0 0E-19 -> 0E-19
ddfma371541 fma 1 -0 0E-19 -> 0E-19
ddfma371542 fma 1 0 -0E-19 -> 0E-19
ddfma371543 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371551 fma 1 -11 11 -> 0
ddfma371552 fma 1 11 -11 -> 0
rounding: up
-- exact zeros from zeros
ddfma371560 fma 1 0 0E-19 -> 0E-19
ddfma371561 fma 1 -0 0E-19 -> 0E-19
ddfma371562 fma 1 0 -0E-19 -> 0E-19
ddfma371563 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371571 fma 1 -11 11 -> 0
ddfma371572 fma 1 11 -11 -> 0
rounding: down
-- exact zeros from zeros
ddfma371580 fma 1 0 0E-19 -> 0E-19
ddfma371581 fma 1 -0 0E-19 -> 0E-19
ddfma371582 fma 1 0 -0E-19 -> 0E-19
ddfma371583 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371591 fma 1 -11 11 -> 0
ddfma371592 fma 1 11 -11 -> 0
rounding: ceiling
-- exact zeros from zeros
ddfma371600 fma 1 0 0E-19 -> 0E-19
ddfma371601 fma 1 -0 0E-19 -> 0E-19
ddfma371602 fma 1 0 -0E-19 -> 0E-19
ddfma371603 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371611 fma 1 -11 11 -> 0
ddfma371612 fma 1 11 -11 -> 0
-- and the extra-special ugly case; unusual minuses marked by -- *
rounding: floor
-- exact zeros from zeros
ddfma371620 fma 1 0 0E-19 -> 0E-19
ddfma371621 fma 1 -0 0E-19 -> -0E-19 -- *
ddfma371622 fma 1 0 -0E-19 -> -0E-19 -- *
ddfma371623 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371631 fma 1 -11 11 -> -0 -- *
ddfma371632 fma 1 11 -11 -> -0 -- *
-- Examples from SQL proposal (Krishna Kulkarni)
ddfma371701 fma 1 130E-2 120E-2 -> 2.50
ddfma371702 fma 1 130E-2 12E-1 -> 2.50
ddfma371703 fma 1 130E-2 1E0 -> 2.30
ddfma371704 fma 1 1E2 1E4 -> 1.01E+4
ddfma371705 fma 1 130E-2 -120E-2 -> 0.10
ddfma371706 fma 1 130E-2 -12E-1 -> 0.10
ddfma371707 fma 1 130E-2 -1E0 -> 0.30
ddfma371708 fma 1 1E2 -1E4 -> -9.9E+3
-- Gappy coefficients; check residue handling even with full coefficient gap
rounding: half_even
ddfma375001 fma 1 1234567890123456 1 -> 1234567890123457
ddfma375002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
ddfma375003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
ddfma375004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
ddfma375005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
ddfma375006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
ddfma375007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
ddfma375008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
ddfma375009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
ddfma375010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
ddfma375011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
ddfma375012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
ddfma375013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
ddfma375014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
ddfma375015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
ddfma375016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
ddfma375017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
ddfma375018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
ddfma375019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
ddfma375020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
ddfma375021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
-- widening second argument at gap
ddfma375030 fma 1 12345678 1 -> 12345679
ddfma375031 fma 1 12345678 0.1 -> 12345678.1
ddfma375032 fma 1 12345678 0.12 -> 12345678.12
ddfma375033 fma 1 12345678 0.123 -> 12345678.123
ddfma375034 fma 1 12345678 0.1234 -> 12345678.1234
ddfma375035 fma 1 12345678 0.12345 -> 12345678.12345
ddfma375036 fma 1 12345678 0.123456 -> 12345678.123456
ddfma375037 fma 1 12345678 0.1234567 -> 12345678.1234567
ddfma375038 fma 1 12345678 0.12345678 -> 12345678.12345678
ddfma375039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
ddfma375040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
ddfma375041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
ddfma375042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
ddfma375043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
ddfma375044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
ddfma375045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
ddfma375046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
ddfma375047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
ddfma375048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
ddfma375049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
-- 90123456
rounding: half_even
ddfma375050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
ddfma375051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
ddfma375052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
ddfma375053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
ddfma375054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
ddfma375055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
ddfma375056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
ddfma375057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
ddfma375060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
ddfma375061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
ddfma375062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
ddfma375063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
ddfma375064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
ddfma375065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
ddfma375066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
ddfma375067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
-- far-out residues (full coefficient gap is 16+15 digits)
rounding: up
ddfma375070 fma 1 12345678 1E-8 -> 12345678.00000001
ddfma375071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
ddfma375072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
ddfma375073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
ddfma375074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
ddfma375075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
ddfma375076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
ddfma375077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
ddfma375078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
ddfma375079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
ddfma375080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
ddfma375081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
ddfma375082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
ddfma375083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
ddfma375084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
ddfma375085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
ddfma375086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
ddfma375087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
ddfma375088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
ddfma375089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
-- desctructive subtraction (from remainder tests)
-- +++ some of these will be off-by-one remainder vs remainderNear
ddfma4000 fma -1234567890123454 1.000000000000001 1234567890123456 -> 0.765432109876546
ddfma4001 fma -1234567890123443 1.00000000000001 1234567890123456 -> 0.65432109876557
ddfma4002 fma -1234567890123332 1.0000000000001 1234567890123456 -> 0.5432109876668
ddfma4003 fma -308641972530863 4.000000000000001 1234567890123455 -> 2.691358027469137
ddfma4004 fma -308641972530863 4.000000000000001 1234567890123456 -> 3.691358027469137
ddfma4005 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696
ddfma4006 fma -246913578024691 4.99999999999999 1234567890123456 -> 3.46913578024691
ddfma4007 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691
ddfma4008 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309
ddfma4009 fma -246913578024690 5.00000000000001 1234567890123456 -> 3.53086421975310
ddfma4010 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314
ddfma4011 fma -1234567890123455 1.000000000000001 1234567890123456 -> -0.234567890123455
ddfma4012 fma -1234567890123444 1.00000000000001 1234567890123456 -> -0.34567890123444
ddfma4013 fma -1234567890123333 1.0000000000001 1234567890123456 -> -0.4567890123333
ddfma4014 fma -308641972530864 4.000000000000001 1234567890123455 -> -1.308641972530864
ddfma4015 fma -308641972530864 4.000000000000001 1234567890123456 -> -0.308641972530864
ddfma4016 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696
ddfma4017 fma -246913578024692 4.99999999999999 1234567890123456 -> -1.53086421975308
ddfma4018 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691
ddfma4019 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309
ddfma4020 fma -246913578024691 5.00000000000001 1234567890123456 -> -1.46913578024691
ddfma4021 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314
-- Null tests
ddfma39990 fma 1 10 # -> NaN Invalid_operation
ddfma39991 fma 1 # 10 -> NaN Invalid_operation
|