summaryrefslogtreecommitdiffstats
path: root/Lib/test/ieee754.txt
blob: a07906cf4b7322094a0477478018d570b18d7de0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
======================================
Python IEEE 754 floating point support
======================================

>>> from sys import float_info as FI
>>> from math import *
>>> PI = pi
>>> E = e

You must never compare two floats with == because you are not going to get
what you expect. We treat two floats as equal if the difference between them
is small than epsilon.
>>> EPS = 1E-15
>>> def equal(x, y):
...     """Almost equal helper for floats"""
...     return abs(x - y) < EPS


NaNs and INFs
=============

In Python 2.6 and newer NaNs (not a number) and infinity can be constructed
from the strings 'inf' and 'nan'.

>>> INF = float('inf')
>>> NINF = float('-inf')
>>> NAN = float('nan')

>>> INF
inf
>>> NINF
-inf
>>> NAN
nan

The math module's ``isnan`` and ``isinf`` functions can be used to detect INF
and NAN:
>>> isinf(INF), isinf(NINF), isnan(NAN)
(True, True, True)
>>> INF == -NINF
True

Infinity
--------

Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN.
>>> INF * 0
nan
>>> INF - INF
nan
>>> INF / INF
nan

However unambigous operations with inf return inf:
>>> INF * INF
inf
>>> 1.5 * INF
inf
>>> 0.5 * INF
inf
>>> INF / 1000
inf

Not a Number
------------

NaNs are never equal to another number, even itself
>>> NAN == NAN
False
>>> NAN < 0
False
>>> NAN >= 0
False

All operations involving a NaN return a NaN except for the power of *0* and *1*.
>>> 1 + NAN
nan
>>> 1 * NAN
nan
>>> 0 * NAN
nan
>>> 1 ** NAN
1.0
>>> 0 ** NAN
0.0
>>> (1.0 + FI.epsilon) * NAN
nan

Misc Functions
==============

The power of 1 raised to x is always 1.0, even for special values like 0,
infinity and NaN.

>>> pow(1, 0)
1.0
>>> pow(1, INF)
1.0
>>> pow(1, -INF)
1.0
>>> pow(1, NAN)
1.0

The power of 0 raised to x is defined as 0, if x is positive. Negative
values are a domain error or zero division error and NaN result in a
silent NaN.

>>> pow(0, 0)
1.0
>>> pow(0, INF)
0.0
>>> pow(0, -INF)
Traceback (most recent call last):
...
ValueError: math domain error
>>> 0 ** -1
Traceback (most recent call last):
...
ZeroDivisionError: 0.0 cannot be raised to a negative power
>>> pow(0, NAN)
nan


Trigonometric Functions
=======================

>>> sin(INF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> sin(NINF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> sin(NAN)
nan
>>> cos(INF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> cos(NINF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> cos(NAN)
nan
>>> tan(INF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> tan(NINF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> tan(NAN)
nan

Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value
and tan(pi) is a very small value:
>>> tan(PI/2) > 1E10
True
>>> -tan(-PI/2) > 1E10
True
>>> tan(PI) < 1E-15
True

>>> asin(NAN), acos(NAN), atan(NAN)
(nan, nan, nan)
>>> asin(INF), asin(NINF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> acos(INF), acos(NINF)
Traceback (most recent call last):
...
ValueError: math domain error (invalid argument)
>>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2)
(True, True)


Hyberbolic Functions
====================