summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_complex.py
blob: 87e25841fcd27a10d949fb20270cff24d8116d88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import unittest, os
from test import support

from random import random
from math import atan2, isnan, copysign

INF = float("inf")
NAN = float("nan")
# These tests ensure that complex math does the right thing

class ComplexTest(unittest.TestCase):

    def assertAlmostEqual(self, a, b):
        if isinstance(a, complex):
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
        else:
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a, b)

    def assertCloseAbs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close\""""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        self.assert_(abs((x-y)/y) < eps)

    def assertFloatsAreIdentical(self, x, y):
        """assert that floats x and y are identical, in the sense that:
        (1) both x and y are nans, or
        (2) both x and y are infinities, with the same sign, or
        (3) both x and y are zeros, with the same sign, or
        (4) x and y are both finite and nonzero, and x == y

        """
        msg = 'floats {!r} and {!r} are not identical'

        if isnan(x) or isnan(y):
            if isnan(x) and isnan(y):
                return
        elif x == y:
            if x != 0.0:
                return
            # both zero; check that signs match
            elif copysign(1.0, x) == copysign(1.0, y):
                return
            else:
                msg += ': zeros have different signs'
        self.fail(msg.format(x, y))

    def assertClose(self, x, y, eps=1e-9):
        """Return true iff complexes x and y "are close\""""
        self.assertCloseAbs(x.real, y.real, eps)
        self.assertCloseAbs(x.imag, y.imag, eps)

    def assertIs(self, a, b):
        self.assert_(a is b)

    def check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            self.assertClose(q, y)
            q = z.__truediv__(x)
            self.assertClose(q, y)
        if y != 0:
            q = z / y
            self.assertClose(q, x)
            q = z.__truediv__(y)
            self.assertClose(q, x)

    def test_truediv(self):
        simple_real = [float(i) for i in range(-5, 6)]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in range(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
        # FIXME: The following currently crashes on Alpha
        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)

    def test_truediv(self):
        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)

    def test_floordiv(self):
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j)
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j)

    def test_richcompare(self):
        self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1<<10000)
        self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
        self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)

    def test_mod(self):
        # % is no longer supported on complex numbers
        self.assertRaises(TypeError, (1+1j).__mod__, 0+0j)
        self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0)
        self.assertRaises(TypeError, (1+1j).__mod__, 4.3j)

    def test_divmod(self):
        self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
        self.assertRaises(TypeError, divmod, 1+1j, 0+0j)

    def test_pow(self):
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
        self.assertAlmostEqual(pow(1j, 200), 1)
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)

        a = 3.33+4.43j
        self.assertEqual(a ** 0j, 1)
        self.assertEqual(a ** 0.+0.j, 1)

        self.assertEqual(3j ** 0j, 1)
        self.assertEqual(3j ** 0, 1)

        try:
            0j ** a
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        try:
            0j ** (3-2j)
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        # The following is used to exercise certain code paths
        self.assertEqual(a ** 105, a ** 105)
        self.assertEqual(a ** -105, a ** -105)
        self.assertEqual(a ** -30, a ** -30)

        self.assertEqual(0.0j ** 0, 1)

        b = 5.1+2.3j
        self.assertRaises(ValueError, pow, a, b, 0)

    def test_boolcontext(self):
        for i in range(100):
            self.assert_(complex(random() + 1e-6, random() + 1e-6))
        self.assert_(not complex(0.0, 0.0))

    def test_conjugate(self):
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        class OS:
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        class NS(object):
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        self.assertEqual(complex(OS(1+10j)), 1+10j)
        self.assertEqual(complex(NS(1+10j)), 1+10j)
        self.assertRaises(TypeError, complex, OS(None))
        self.assertRaises(TypeError, complex, NS(None))

        self.assertAlmostEqual(complex("1+10j"), 1+10j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10.0), 10+0j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10+0j), 10+0j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14), 3.14+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
        self.assertAlmostEqual(complex("1"), 1+0j)
        self.assertAlmostEqual(complex("1j"), 1j)
        self.assertAlmostEqual(complex(),  0)
        self.assertAlmostEqual(complex("-1"), -1)
        self.assertAlmostEqual(complex("+1"), +1)
        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
        self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
        self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
        self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
        self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
        self.assertAlmostEqual(complex("J"), 1j)
        self.assertAlmostEqual(complex("( j )"), 1j)
        self.assertAlmostEqual(complex("+J"), 1j)
        self.assertAlmostEqual(complex("( -j)"), -1j)
        self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
        self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
        self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)

        class complex2(complex): pass
        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.  (These checks
        # are harmless on systems without support for signed zeros.)
        def split_zeros(x):
            """Function that produces different results for 0. and -0."""
            return atan2(x, -1.)

        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))

        c = 3.14 + 1j
        self.assert_(complex(c) is c)
        del c

        self.assertRaises(TypeError, complex, "1", "1")
        self.assertRaises(TypeError, complex, 1, "1")

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, complex, '1+1j\0j')

        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, float, 5+3j)
        self.assertRaises(ValueError, complex, "")
        self.assertRaises(TypeError, complex, None)
        self.assertRaises(ValueError, complex, "\0")
        self.assertRaises(ValueError, complex, "3\09")
        self.assertRaises(TypeError, complex, "1", "2")
        self.assertRaises(TypeError, complex, "1", 42)
        self.assertRaises(TypeError, complex, 1, "2")
        self.assertRaises(ValueError, complex, "1+")
        self.assertRaises(ValueError, complex, "1+1j+1j")
        self.assertRaises(ValueError, complex, "--")
        self.assertRaises(ValueError, complex, "(1+2j")
        self.assertRaises(ValueError, complex, "1+2j)")
        self.assertRaises(ValueError, complex, "1+(2j)")
        self.assertRaises(ValueError, complex, "(1+2j)123")
        self.assertRaises(ValueError, complex, "1"*500)
        self.assertRaises(ValueError, complex, "x")
        self.assertRaises(ValueError, complex, "1j+2")
        self.assertRaises(ValueError, complex, "1e1ej")
        self.assertRaises(ValueError, complex, "1e++1ej")
        self.assertRaises(ValueError, complex, ")1+2j(")
        # the following three are accepted by Python 2.6
        self.assertRaises(ValueError, complex, "1..1j")
        self.assertRaises(ValueError, complex, "1.11.1j")
        self.assertRaises(ValueError, complex, "1e1.1j")

        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        self.assertRaises(EvilExc, complex, evilcomplex())

        class float2:
            def __init__(self, value):
                self.value = value
            def __float__(self):
                return self.value

        self.assertAlmostEqual(complex(float2(42.)), 42)
        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
        self.assertRaises(TypeError, complex, float2(None))

        class complex0(complex):
            """Test usage of __complex__() when inheriting from 'complex'"""
            def __complex__(self):
                return 42j

        class complex1(complex):
            """Test usage of __complex__() with a __new__() method"""
            def __new__(self, value=0j):
                return complex.__new__(self, 2*value)
            def __complex__(self):
                return self

        class complex2(complex):
            """Make sure that __complex__() calls fail if anything other than a
            complex is returned"""
            def __complex__(self):
                return None

        self.assertAlmostEqual(complex(complex0(1j)), 42j)
        self.assertAlmostEqual(complex(complex1(1j)), 2j)
        self.assertRaises(TypeError, complex, complex2(1j))

    def test_hash(self):
        for x in range(-30, 30):
            self.assertEqual(hash(x), hash(complex(x, 0)))
            x /= 3.0    # now check against floating point
            self.assertEqual(hash(x), hash(complex(x, 0.)))

    def test_abs(self):
        nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)]
        for num in nums:
            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))

    def test_repr(self):
        self.assertEqual(repr(1+6j), '(1+6j)')
        self.assertEqual(repr(1-6j), '(1-6j)')

        self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')

        self.assertEqual(1-6j,complex(repr(1-6j)))
        self.assertEqual(1+6j,complex(repr(1+6j)))
        self.assertEqual(-6j,complex(repr(-6j)))
        self.assertEqual(6j,complex(repr(6j)))

        self.assertEqual(repr(complex(1., INF)), "(1+infj)")
        self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
        self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
        self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
        self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
        self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
        self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")

        self.assertEqual(repr(complex(0, INF)), "infj")
        self.assertEqual(repr(complex(0, -INF)), "-infj")
        self.assertEqual(repr(complex(0, NAN)), "nanj")

    def test_neg(self):
        self.assertEqual(-(1+6j), -1-6j)

    def test_file(self):
        a = 3.33+4.43j
        b = 5.1+2.3j

        fo = None
        try:
            fo = open(support.TESTFN, "w")
            print(a, b, file=fo)
            fo.close()
            fo = open(support.TESTFN, "r")
            self.assertEqual(fo.read(), ("%s %s\n" % (a, b)))
        finally:
            if (fo is not None) and (not fo.closed):
                fo.close()
            try:
                os.remove(support.TESTFN)
            except (OSError, IOError):
                pass

    def test_getnewargs(self):
        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))

    if float.__getformat__("double").startswith("IEEE"):
        def test_plus_minus_0j(self):
            # test that -0j and 0j literals are not identified
            z1, z2 = 0j, -0j
            self.assertEquals(atan2(z1.imag, -1.), atan2(0., -1.))
            self.assertEquals(atan2(z2.imag, -1.), atan2(-0., -1.))

    @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
                         "test requires IEEE 754 doubles")
    def test_repr_roundtrip(self):
        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
        vals += [-v for v in vals]

        # complex(repr(z)) should recover z exactly, even for complex
        # numbers involving an infinity, nan, or negative zero
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = complex(repr(z))
                self.assertFloatsAreIdentical(z.real, roundtrip.real)
                self.assertFloatsAreIdentical(z.imag, roundtrip.imag)

        # if we predefine some constants, then eval(repr(z)) should
        # also work, except that it might change the sign of zeros
        inf, nan = float('inf'), float('nan')
        infj, nanj = complex(0.0, inf), complex(0.0, nan)
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = eval(repr(z))
                # adding 0.0 has no effect beside changing -0.0 to 0.0
                self.assertFloatsAreIdentical(0.0 + z.real,
                                              0.0 + roundtrip.real)
                self.assertFloatsAreIdentical(0.0 + z.imag,
                                              0.0 + roundtrip.imag)



def test_main():
    support.run_unittest(ComplexTest)

if __name__ == "__main__":
    test_main()