summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_complex.py
blob: 179556f57e884fc212e3ce2f3593a4a0821c3239 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
import unittest
import sys
from test import support
from test.support.testcase import ComplexesAreIdenticalMixin
from test.test_grammar import (VALID_UNDERSCORE_LITERALS,
                               INVALID_UNDERSCORE_LITERALS)

from random import random
from math import isnan, copysign
import operator

INF = float("inf")
NAN = float("nan")
DBL_MAX = sys.float_info.max
# These tests ensure that complex math does the right thing

ZERO_DIVISION = (
    (1+1j, 0+0j),
    (1+1j, 0.0),
    (1+1j, 0),
    (1.0, 0+0j),
    (1, 0+0j),
)

class WithIndex:
    def __init__(self, value):
        self.value = value
    def __index__(self):
        return self.value

class WithFloat:
    def __init__(self, value):
        self.value = value
    def __float__(self):
        return self.value

class ComplexSubclass(complex):
    pass

class OtherComplexSubclass(complex):
    pass

class MyInt:
    def __init__(self, value):
        self.value = value

    def __int__(self):
        return self.value

class WithComplex:
    def __init__(self, value):
        self.value = value
    def __complex__(self):
        return self.value

class ComplexTest(ComplexesAreIdenticalMixin, unittest.TestCase):

    def assertAlmostEqual(self, a, b):
        if isinstance(a, complex):
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
        else:
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a, b)

    def assertCloseAbs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close"."""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        self.assertTrue(abs((x-y)/y) < eps)

    def assertClose(self, x, y, eps=1e-9):
        """Return true iff complexes x and y "are close"."""
        self.assertCloseAbs(x.real, y.real, eps)
        self.assertCloseAbs(x.imag, y.imag, eps)

    def check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            self.assertClose(q, y)
            q = z.__truediv__(x)
            self.assertClose(q, y)
        if y != 0:
            q = z / y
            self.assertClose(q, x)
            q = z.__truediv__(y)
            self.assertClose(q, x)

    def test_truediv(self):
        simple_real = [float(i) for i in range(-5, 6)]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in range(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
        self.assertRaises(TypeError, operator.truediv, 1j, None)
        self.assertRaises(TypeError, operator.truediv, None, 1j)

        for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
            z = complex(0, 0) / complex(denom_real, denom_imag)
            self.assertTrue(isnan(z.real))
            self.assertTrue(isnan(z.imag))
            z = float(0) / complex(denom_real, denom_imag)
            self.assertTrue(isnan(z.real))
            self.assertTrue(isnan(z.imag))

        self.assertComplexesAreIdentical(complex(INF, NAN) / 2,
                                         complex(INF, NAN))

        self.assertComplexesAreIdentical(complex(INF, 1)/(0.0+1j),
                                         complex(NAN, -INF))

        # test recover of infs if numerator has infs and denominator is finite
        self.assertComplexesAreIdentical(complex(INF, -INF)/(1+0j),
                                         complex(INF, -INF))
        self.assertComplexesAreIdentical(complex(INF, INF)/(0.0+1j),
                                         complex(INF, -INF))
        self.assertComplexesAreIdentical(complex(NAN, INF)/complex(2**1000, 2**-1000),
                                         complex(INF, INF))
        self.assertComplexesAreIdentical(complex(INF, NAN)/complex(2**1000, 2**-1000),
                                         complex(INF, -INF))

        # test recover of zeros if denominator is infinite
        self.assertComplexesAreIdentical((1+1j)/complex(INF, INF), (0.0+0j))
        self.assertComplexesAreIdentical((1+1j)/complex(INF, -INF), (0.0+0j))
        self.assertComplexesAreIdentical((1+1j)/complex(-INF, INF),
                                         complex(0.0, -0.0))
        self.assertComplexesAreIdentical((1+1j)/complex(-INF, -INF),
                                         complex(-0.0, 0))
        self.assertComplexesAreIdentical((INF+1j)/complex(INF, INF),
                                         complex(NAN, NAN))
        self.assertComplexesAreIdentical(complex(1, INF)/complex(INF, INF),
                                         complex(NAN, NAN))
        self.assertComplexesAreIdentical(complex(INF, 1)/complex(1, INF),
                                         complex(NAN, NAN))

        # mixed types
        self.assertEqual((1+1j)/float(2), 0.5+0.5j)
        self.assertEqual(float(1)/(1+2j), 0.2-0.4j)
        self.assertEqual(float(1)/(-1+2j), -0.2-0.4j)
        self.assertEqual(float(1)/(1-2j), 0.2+0.4j)
        self.assertEqual(float(1)/(2+1j), 0.4-0.2j)
        self.assertEqual(float(1)/(-2+1j), -0.4-0.2j)
        self.assertEqual(float(1)/(2-1j), 0.4+0.2j)

        self.assertComplexesAreIdentical(INF/(1+0j),
                                         complex(INF, NAN))
        self.assertComplexesAreIdentical(INF/(0.0+1j),
                                         complex(NAN, -INF))
        self.assertComplexesAreIdentical(INF/complex(2**1000, 2**-1000),
                                         complex(INF, NAN))
        self.assertComplexesAreIdentical(INF/complex(NAN, NAN),
                                         complex(NAN, NAN))

        self.assertComplexesAreIdentical(float(1)/complex(INF, INF), (0.0-0j))
        self.assertComplexesAreIdentical(float(1)/complex(INF, -INF), (0.0+0j))
        self.assertComplexesAreIdentical(float(1)/complex(-INF, INF),
                                         complex(-0.0, -0.0))
        self.assertComplexesAreIdentical(float(1)/complex(-INF, -INF),
                                         complex(-0.0, 0))
        self.assertComplexesAreIdentical(float(1)/complex(INF, NAN),
                                         complex(0.0, -0.0))
        self.assertComplexesAreIdentical(float(1)/complex(-INF, NAN),
                                         complex(-0.0, -0.0))
        self.assertComplexesAreIdentical(float(1)/complex(NAN, INF),
                                         complex(0.0, -0.0))
        self.assertComplexesAreIdentical(float(INF)/complex(NAN, INF),
                                         complex(NAN, NAN))

    def test_truediv_zero_division(self):
        for a, b in ZERO_DIVISION:
            with self.assertRaises(ZeroDivisionError):
                a / b

    def test_floordiv(self):
        with self.assertRaises(TypeError):
            (1+1j) // (1+0j)
        with self.assertRaises(TypeError):
            (1+1j) // 1.0
        with self.assertRaises(TypeError):
            (1+1j) // 1
        with self.assertRaises(TypeError):
            1.0 // (1+0j)
        with self.assertRaises(TypeError):
            1 // (1+0j)

    def test_floordiv_zero_division(self):
        for a, b in ZERO_DIVISION:
            with self.assertRaises(TypeError):
                a // b

    def test_richcompare(self):
        self.assertIs(complex.__eq__(1+1j, 1<<10000), False)
        self.assertIs(complex.__lt__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
        for i in range(1, 100):
            f = i / 100.0
            self.assertIs(complex.__eq__(f+0j, f), True)
            self.assertIs(complex.__ne__(f+0j, f), False)
            self.assertIs(complex.__eq__(complex(f, f), f), False)
            self.assertIs(complex.__ne__(complex(f, f), f), True)
        self.assertIs(complex.__lt__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__le__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__gt__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__ge__(1+1j, 2+2j), NotImplemented)
        self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.le, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j)
        self.assertIs(operator.eq(1+1j, 1+1j), True)
        self.assertIs(operator.eq(1+1j, 2+2j), False)
        self.assertIs(operator.ne(1+1j, 1+1j), False)
        self.assertIs(operator.ne(1+1j, 2+2j), True)
        self.assertIs(operator.eq(1+1j, 2.0), False)

    def test_richcompare_boundaries(self):
        def check(n, deltas, is_equal, imag = 0.0):
            for delta in deltas:
                i = n + delta
                z = complex(i, imag)
                self.assertIs(complex.__eq__(z, i), is_equal(delta))
                self.assertIs(complex.__ne__(z, i), not is_equal(delta))
        # For IEEE-754 doubles the following should hold:
        #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
        # where the interval is representable, of course.
        for i in range(1, 10):
            pow = 52 + i
            mult = 2 ** i
            check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
            check(2 ** pow, range(1, 101), lambda delta: False, float(i))
        check(2 ** 53, range(-100, 0), lambda delta: True)

    def test_add(self):
        self.assertEqual(1j + int(+1), complex(+1, 1))
        self.assertEqual(1j + int(-1), complex(-1, 1))
        self.assertComplexesAreIdentical(complex(-0.0, -0.0) + (-0.0),
                                         complex(-0.0, -0.0))
        self.assertComplexesAreIdentical((-0.0) + complex(-0.0, -0.0),
                                         complex(-0.0, -0.0))
        self.assertRaises(OverflowError, operator.add, 1j, 10**1000)
        self.assertRaises(TypeError, operator.add, 1j, None)
        self.assertRaises(TypeError, operator.add, None, 1j)

    def test_sub(self):
        self.assertEqual(1j - int(+1), complex(-1, 1))
        self.assertEqual(1j - int(-1), complex(1, 1))
        self.assertComplexesAreIdentical(complex(-0.0, -0.0) - 0.0,
                                         complex(-0.0, -0.0))
        self.assertComplexesAreIdentical(-0.0 - complex(0.0, 0.0),
                                         complex(-0.0, -0.0))
        self.assertComplexesAreIdentical(complex(1, 2) - complex(2, 1),
                                         complex(-1, 1))
        self.assertComplexesAreIdentical(complex(2, 1) - complex(1, 2),
                                         complex(1, -1))
        self.assertRaises(OverflowError, operator.sub, 1j, 10**1000)
        self.assertRaises(TypeError, operator.sub, 1j, None)
        self.assertRaises(TypeError, operator.sub, None, 1j)

    def test_mul(self):
        self.assertEqual(1j * int(20), complex(0, 20))
        self.assertEqual(1j * int(-1), complex(0, -1))
        for c, r in [(2, complex(INF, 2)), (INF, complex(INF, INF)),
                     (0, complex(NAN, 0)), (-0.0, complex(NAN, -0.0)),
                     (NAN, complex(NAN, NAN))]:
            with self.subTest(c=c, r=r):
                self.assertComplexesAreIdentical(complex(INF, 1) * c, r)
                self.assertComplexesAreIdentical(c * complex(INF, 1), r)
        self.assertRaises(OverflowError, operator.mul, 1j, 10**1000)
        self.assertRaises(TypeError, operator.mul, 1j, None)
        self.assertRaises(TypeError, operator.mul, None, 1j)

    def test_mod(self):
        # % is no longer supported on complex numbers
        with self.assertRaises(TypeError):
            (1+1j) % (1+0j)
        with self.assertRaises(TypeError):
            (1+1j) % 1.0
        with self.assertRaises(TypeError):
            (1+1j) % 1
        with self.assertRaises(TypeError):
            1.0 % (1+0j)
        with self.assertRaises(TypeError):
            1 % (1+0j)

    def test_mod_zero_division(self):
        for a, b in ZERO_DIVISION:
            with self.assertRaises(TypeError):
                a % b

    def test_divmod(self):
        self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
        self.assertRaises(TypeError, divmod, 1+1j, 1.0)
        self.assertRaises(TypeError, divmod, 1+1j, 1)
        self.assertRaises(TypeError, divmod, 1.0, 1+0j)
        self.assertRaises(TypeError, divmod, 1, 1+0j)

    def test_divmod_zero_division(self):
        for a, b in ZERO_DIVISION:
            self.assertRaises(TypeError, divmod, a, b)

    def test_pow(self):
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
        self.assertEqual(pow(0+0j, 2000+0j), 0.0)
        self.assertEqual(pow(0, 0+0j), 1.0)
        self.assertEqual(pow(-1, 0+0j), 1.0)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, -1000)
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
        self.assertAlmostEqual(pow(1j, 200), 1)
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
        self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
        self.assertRaises(TypeError, pow, 1j, None)
        self.assertRaises(TypeError, pow, None, 1j)
        self.assertAlmostEqual(pow(1j, 0.5), 0.7071067811865476+0.7071067811865475j)

        a = 3.33+4.43j
        self.assertEqual(a ** 0j, 1)
        self.assertEqual(a ** 0.+0.j, 1)

        self.assertEqual(3j ** 0j, 1)
        self.assertEqual(3j ** 0, 1)

        try:
            0j ** a
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        try:
            0j ** (3-2j)
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        # The following is used to exercise certain code paths
        self.assertEqual(a ** 105, a ** 105)
        self.assertEqual(a ** -105, a ** -105)
        self.assertEqual(a ** -30, a ** -30)

        self.assertEqual(0.0j ** 0, 1)

        b = 5.1+2.3j
        self.assertRaises(ValueError, pow, a, b, 0)

        # Check some boundary conditions; some of these used to invoke
        # undefined behaviour (https://bugs.python.org/issue44698). We're
        # not actually checking the results of these operations, just making
        # sure they don't crash (for example when using clang's
        # UndefinedBehaviourSanitizer).
        values = (sys.maxsize, sys.maxsize+1, sys.maxsize-1,
                  -sys.maxsize, -sys.maxsize+1, -sys.maxsize+1)
        for real in values:
            for imag in values:
                with self.subTest(real=real, imag=imag):
                    c = complex(real, imag)
                    try:
                        c ** real
                    except OverflowError:
                        pass
                    try:
                        c ** c
                    except OverflowError:
                        pass

        # gh-113841: possible undefined division by 0 in _Py_c_pow()
        x, y = 9j, 33j**3
        with self.assertRaises(OverflowError):
            x**y

    def test_pow_with_small_integer_exponents(self):
        # Check that small integer exponents are handled identically
        # regardless of their type.
        values = [
            complex(5.0, 12.0),
            complex(5.0e100, 12.0e100),
            complex(-4.0, INF),
            complex(INF, 0.0),
        ]
        exponents = [-19, -5, -3, -2, -1, 0, 1, 2, 3, 5, 19]
        for value in values:
            for exponent in exponents:
                with self.subTest(value=value, exponent=exponent):
                    try:
                        int_pow = value**exponent
                    except OverflowError:
                        int_pow = "overflow"
                    try:
                        float_pow = value**float(exponent)
                    except OverflowError:
                        float_pow = "overflow"
                    try:
                        complex_pow = value**complex(exponent)
                    except OverflowError:
                        complex_pow = "overflow"
                    self.assertEqual(str(float_pow), str(int_pow))
                    self.assertEqual(str(complex_pow), str(int_pow))

    def test_boolcontext(self):
        for i in range(100):
            self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
        self.assertTrue(not complex(0.0, 0.0))
        self.assertTrue(1j)

    def test_conjugate(self):
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        def check(z, x, y):
            self.assertIs(type(z), complex)
            self.assertFloatsAreIdentical(z.real, x)
            self.assertFloatsAreIdentical(z.imag, y)

        check(complex(),  0.0, 0.0)
        check(complex(10), 10.0, 0.0)
        check(complex(4.25), 4.25, 0.0)
        check(complex(4.25+0j), 4.25, 0.0)
        check(complex(4.25+0.5j), 4.25, 0.5)
        check(complex(ComplexSubclass(4.25+0.5j)), 4.25, 0.5)
        check(complex(WithComplex(4.25+0.5j)), 4.25, 0.5)

        check(complex(1, 10), 1.0, 10.0)
        check(complex(1, 10.0), 1.0, 10.0)
        check(complex(1, 4.25), 1.0, 4.25)
        check(complex(1.0, 10), 1.0, 10.0)
        check(complex(4.25, 10), 4.25, 10.0)
        check(complex(1.0, 10.0), 1.0, 10.0)
        check(complex(4.25, 0.5), 4.25, 0.5)

        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(4.25+0j, 0), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not .*ComplexSubclass"):
            check(complex(ComplexSubclass(4.25+0j), 0), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not .*WithComplex"):
            check(complex(WithComplex(4.25+0j), 0), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(4.25j, 0), 0.0, 4.25)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(0j, 4.25), 0.0, 4.25)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'imag' must be a real number, not complex"):
            check(complex(0, 4.25+0j), 0.0, 4.25)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'imag' must be a real number, not .*ComplexSubclass"):
            check(complex(0, ComplexSubclass(4.25+0j)), 0.0, 4.25)
        with self.assertRaisesRegex(TypeError,
                "argument 'imag' must be a real number, not .*WithComplex"):
            complex(0, WithComplex(4.25+0j))
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'imag' must be a real number, not complex"):
            check(complex(0.0, 4.25j), -4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(4.25+0j, 0j), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(4.25j, 0j), 0.0, 4.25)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(0j, 4.25+0j), 0.0, 4.25)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(0j, 4.25j), -4.25, 0.0)

        check(complex(real=4.25), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(real=4.25+0j), 4.25, 0.0)
        with self.assertWarnsRegex(DeprecationWarning,
                "argument 'real' must be a real number, not complex"):
            check(complex(real=4.25+1.5j), 4.25, 1.5)
        check(complex(imag=1.5), 0.0, 1.5)
        check(complex(real=4.25, imag=1.5), 4.25, 1.5)
        check(complex(4.25, imag=1.5), 4.25, 1.5)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.
        for x in 1.0, -1.0:
            for y in 0.0, -0.0:
                check(complex(x, y), x, y)
                check(complex(y, x), y, x)

        c = complex(4.25, 1.5)
        self.assertIs(complex(c), c)
        c2 = ComplexSubclass(c)
        self.assertEqual(c2, c)
        self.assertIs(type(c2), ComplexSubclass)
        del c, c2

        self.assertRaisesRegex(TypeError,
            "argument must be a string or a number, not dict",
            complex, {})
        self.assertRaisesRegex(TypeError,
            "argument must be a string or a number, not NoneType",
            complex, None)
        self.assertRaisesRegex(TypeError,
            "argument 'real' must be a real number, not dict",
            complex, {1:2}, 0)
        self.assertRaisesRegex(TypeError,
            "argument 'real' must be a real number, not str",
            complex, '1', 0)
        self.assertRaisesRegex(TypeError,
            "argument 'imag' must be a real number, not dict",
            complex, 0, {1:2})
        self.assertRaisesRegex(TypeError,
            "argument 'imag' must be a real number, not str",
            complex, 0, '1')

        self.assertRaises(TypeError, complex, WithComplex(1.5))
        self.assertRaises(TypeError, complex, WithComplex(1))
        self.assertRaises(TypeError, complex, WithComplex(None))
        self.assertRaises(TypeError, complex, WithComplex(4.25+0j), object())
        self.assertRaises(TypeError, complex, WithComplex(1.5), object())
        self.assertRaises(TypeError, complex, WithComplex(1), object())
        self.assertRaises(TypeError, complex, WithComplex(None), object())

        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        self.assertRaises(EvilExc, complex, evilcomplex())

        check(complex(WithFloat(4.25)), 4.25, 0.0)
        check(complex(WithFloat(4.25), 1.5), 4.25, 1.5)
        check(complex(1.5, WithFloat(4.25)), 1.5, 4.25)
        self.assertRaises(TypeError, complex, WithFloat(42))
        self.assertRaises(TypeError, complex, WithFloat(42), 1.5)
        self.assertRaises(TypeError, complex, 1.5, WithFloat(42))
        self.assertRaises(TypeError, complex, WithFloat(None))
        self.assertRaises(TypeError, complex, WithFloat(None), 1.5)
        self.assertRaises(TypeError, complex, 1.5, WithFloat(None))

        check(complex(WithIndex(42)), 42.0, 0.0)
        check(complex(WithIndex(42), 1.5), 42.0, 1.5)
        check(complex(1.5, WithIndex(42)), 1.5, 42.0)
        self.assertRaises(OverflowError, complex, WithIndex(2**2000))
        self.assertRaises(OverflowError, complex, WithIndex(2**2000), 1.5)
        self.assertRaises(OverflowError, complex, 1.5, WithIndex(2**2000))
        self.assertRaises(TypeError, complex, WithIndex(None))
        self.assertRaises(TypeError, complex, WithIndex(None), 1.5)
        self.assertRaises(TypeError, complex, 1.5, WithIndex(None))

        class MyInt:
            def __int__(self):
                return 42

        self.assertRaises(TypeError, complex, MyInt())
        self.assertRaises(TypeError, complex, MyInt(), 1.5)
        self.assertRaises(TypeError, complex, 1.5, MyInt())

        class complex0(complex):
            """Test usage of __complex__() when inheriting from 'complex'"""
            def __complex__(self):
                return 42j

        class complex1(complex):
            """Test usage of __complex__() with a __new__() method"""
            def __new__(self, value=0j):
                return complex.__new__(self, 2*value)
            def __complex__(self):
                return self

        class complex2(complex):
            """Make sure that __complex__() calls fail if anything other than a
            complex is returned"""
            def __complex__(self):
                return None

        check(complex(complex0(1j)), 0.0, 42.0)
        with self.assertWarns(DeprecationWarning):
            check(complex(complex1(1j)), 0.0, 2.0)
        self.assertRaises(TypeError, complex, complex2(1j))

    def test___complex__(self):
        z = 3 + 4j
        self.assertEqual(z.__complex__(), z)
        self.assertEqual(type(z.__complex__()), complex)

        z = ComplexSubclass(3 + 4j)
        self.assertEqual(z.__complex__(), 3 + 4j)
        self.assertEqual(type(z.__complex__()), complex)

    @support.requires_IEEE_754
    def test_constructor_special_numbers(self):
        for x in 0.0, -0.0, INF, -INF, NAN:
            for y in 0.0, -0.0, INF, -INF, NAN:
                with self.subTest(x=x, y=y):
                    z = complex(x, y)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = ComplexSubclass(x, y)
                    self.assertIs(type(z), ComplexSubclass)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = complex(ComplexSubclass(x, y))
                    self.assertIs(type(z), complex)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = ComplexSubclass(complex(x, y))
                    self.assertIs(type(z), ComplexSubclass)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)

    def test_constructor_from_string(self):
        def check(z, x, y):
            self.assertIs(type(z), complex)
            self.assertFloatsAreIdentical(z.real, x)
            self.assertFloatsAreIdentical(z.imag, y)

        check(complex("1"), 1.0, 0.0)
        check(complex("1j"), 0.0, 1.0)
        check(complex("-1"), -1.0, 0.0)
        check(complex("+1"), 1.0, 0.0)
        check(complex("1+2j"), 1.0, 2.0)
        check(complex("(1+2j)"), 1.0, 2.0)
        check(complex("(1.5+4.25j)"), 1.5, 4.25)
        check(complex("4.25+1J"), 4.25, 1.0)
        check(complex(" ( +4.25-6J )"), 4.25, -6.0)
        check(complex(" ( +4.25-J )"), 4.25, -1.0)
        check(complex(" ( +4.25+j )"), 4.25, 1.0)
        check(complex("J"), 0.0, 1.0)
        check(complex("( j )"), 0.0, 1.0)
        check(complex("+J"), 0.0, 1.0)
        check(complex("( -j)"), 0.0, -1.0)
        check(complex('1-1j'), 1.0, -1.0)
        check(complex('1J'), 0.0, 1.0)

        check(complex('1e-500'), 0.0, 0.0)
        check(complex('-1e-500j'), 0.0, -0.0)
        check(complex('1e-500+1e-500j'), 0.0, 0.0)
        check(complex('-1e-500+1e-500j'), -0.0, 0.0)
        check(complex('1e-500-1e-500j'), 0.0, -0.0)
        check(complex('-1e-500-1e-500j'), -0.0, -0.0)

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, complex, '1+1j\0j')
        self.assertRaises(ValueError, complex, "")
        self.assertRaises(ValueError, complex, "\0")
        self.assertRaises(ValueError, complex, "3\09")
        self.assertRaises(ValueError, complex, "1+")
        self.assertRaises(ValueError, complex, "1+1j+1j")
        self.assertRaises(ValueError, complex, "--")
        self.assertRaises(ValueError, complex, "(1+2j")
        self.assertRaises(ValueError, complex, "1+2j)")
        self.assertRaises(ValueError, complex, "1+(2j)")
        self.assertRaises(ValueError, complex, "(1+2j)123")
        self.assertRaises(ValueError, complex, "x")
        self.assertRaises(ValueError, complex, "1j+2")
        self.assertRaises(ValueError, complex, "1e1ej")
        self.assertRaises(ValueError, complex, "1e++1ej")
        self.assertRaises(ValueError, complex, ")1+2j(")
        # the following three are accepted by Python 2.6
        self.assertRaises(ValueError, complex, "1..1j")
        self.assertRaises(ValueError, complex, "1.11.1j")
        self.assertRaises(ValueError, complex, "1e1.1j")

        # check that complex accepts long unicode strings
        self.assertIs(type(complex("1"*500)), complex)
        # check whitespace processing
        self.assertEqual(complex('\N{EM SPACE}(\N{EN SPACE}1+1j ) '), 1+1j)
        # Invalid unicode string
        # See bpo-34087
        self.assertRaises(ValueError, complex, '\u3053\u3093\u306b\u3061\u306f')

    def test_constructor_negative_nans_from_string(self):
        self.assertEqual(copysign(1., complex("-nan").real), -1.)
        self.assertEqual(copysign(1., complex("-nanj").imag), -1.)
        self.assertEqual(copysign(1., complex("-nan-nanj").real), -1.)
        self.assertEqual(copysign(1., complex("-nan-nanj").imag), -1.)

    def test_underscores(self):
        # check underscores
        for lit in VALID_UNDERSCORE_LITERALS:
            if not any(ch in lit for ch in 'xXoObB'):
                self.assertEqual(complex(lit), eval(lit))
                self.assertEqual(complex(lit), complex(lit.replace('_', '')))
        for lit in INVALID_UNDERSCORE_LITERALS:
            if lit in ('0_7', '09_99'):  # octals are not recognized here
                continue
            if not any(ch in lit for ch in 'xXoObB'):
                self.assertRaises(ValueError, complex, lit)

    def test_from_number(self, cls=complex):
        def eq(actual, expected):
            self.assertEqual(actual, expected)
            self.assertIs(type(actual), cls)

        eq(cls.from_number(3.14), 3.14+0j)
        eq(cls.from_number(3.14j), 3.14j)
        eq(cls.from_number(314), 314.0+0j)
        eq(cls.from_number(OtherComplexSubclass(3.14, 2.72)), 3.14+2.72j)
        eq(cls.from_number(WithComplex(3.14+2.72j)), 3.14+2.72j)
        eq(cls.from_number(WithFloat(3.14)), 3.14+0j)
        eq(cls.from_number(WithIndex(314)), 314.0+0j)

        cNAN = complex(NAN, NAN)
        x = cls.from_number(cNAN)
        self.assertTrue(x != x)
        self.assertIs(type(x), cls)
        if cls is complex:
            self.assertIs(cls.from_number(cNAN), cNAN)

        self.assertRaises(TypeError, cls.from_number, '3.14')
        self.assertRaises(TypeError, cls.from_number, b'3.14')
        self.assertRaises(TypeError, cls.from_number, MyInt(314))
        self.assertRaises(TypeError, cls.from_number, {})
        self.assertRaises(TypeError, cls.from_number)

    def test_from_number_subclass(self):
        self.test_from_number(ComplexSubclass)

    def test_hash(self):
        for x in range(-30, 30):
            self.assertEqual(hash(x), hash(complex(x, 0)))
            x /= 3.0    # now check against floating-point
            self.assertEqual(hash(x), hash(complex(x, 0.)))

        self.assertNotEqual(hash(2000005 - 1j), -1)

    def test_abs(self):
        nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)]
        for num in nums:
            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))

        self.assertRaises(OverflowError, abs, complex(DBL_MAX, DBL_MAX))

    def test_repr_str(self):
        def test(v, expected, test_fn=self.assertEqual):
            test_fn(repr(v), expected)
            test_fn(str(v), expected)

        test(1+6j, '(1+6j)')
        test(1-6j, '(1-6j)')

        test(-(1+0j), '(-1+-0j)', test_fn=self.assertNotEqual)

        test(complex(1., INF), "(1+infj)")
        test(complex(1., -INF), "(1-infj)")
        test(complex(INF, 1), "(inf+1j)")
        test(complex(-INF, INF), "(-inf+infj)")
        test(complex(NAN, 1), "(nan+1j)")
        test(complex(1, NAN), "(1+nanj)")
        test(complex(NAN, NAN), "(nan+nanj)")
        test(complex(-NAN, -NAN), "(nan+nanj)")

        test(complex(0, INF), "infj")
        test(complex(0, -INF), "-infj")
        test(complex(0, NAN), "nanj")

        self.assertEqual(1-6j,complex(repr(1-6j)))
        self.assertEqual(1+6j,complex(repr(1+6j)))
        self.assertEqual(-6j,complex(repr(-6j)))
        self.assertEqual(6j,complex(repr(6j)))

    @support.requires_IEEE_754
    def test_negative_zero_repr_str(self):
        def test(v, expected, test_fn=self.assertEqual):
            test_fn(repr(v), expected)
            test_fn(str(v), expected)

        test(complex(0., 1.),   "1j")
        test(complex(-0., 1.),  "(-0+1j)")
        test(complex(0., -1.),  "-1j")
        test(complex(-0., -1.), "(-0-1j)")

        test(complex(0., 0.),   "0j")
        test(complex(0., -0.),  "-0j")
        test(complex(-0., 0.),  "(-0+0j)")
        test(complex(-0., -0.), "(-0-0j)")

    def test_pos(self):
        self.assertEqual(+(1+6j), 1+6j)
        self.assertEqual(+ComplexSubclass(1, 6), 1+6j)
        self.assertIs(type(+ComplexSubclass(1, 6)), complex)

    def test_neg(self):
        self.assertEqual(-(1+6j), -1-6j)

    def test_getnewargs(self):
        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))

    @support.requires_IEEE_754
    def test_plus_minus_0j(self):
        # test that -0j and 0j literals are not identified
        z1, z2 = 0j, -0j
        self.assertFloatsAreIdentical(z1.imag, 0.0)
        self.assertFloatsAreIdentical(z2.imag, -0.0)

    @support.requires_IEEE_754
    def test_negated_imaginary_literal(self):
        z0 = -0j
        z1 = -7j
        z2 = -1e1000j
        # Note: In versions of Python < 3.2, a negated imaginary literal
        # accidentally ended up with real part 0.0 instead of -0.0, thanks to a
        # modification during CST -> AST translation (see issue #9011).  That's
        # fixed in Python 3.2.
        self.assertFloatsAreIdentical(z0.real, -0.0)
        self.assertFloatsAreIdentical(z0.imag, -0.0)
        self.assertFloatsAreIdentical(z1.real, -0.0)
        self.assertFloatsAreIdentical(z1.imag, -7.0)
        self.assertFloatsAreIdentical(z2.real, -0.0)
        self.assertFloatsAreIdentical(z2.imag, -INF)

    @support.requires_IEEE_754
    def test_overflow(self):
        self.assertEqual(complex("1e500"), complex(INF, 0.0))
        self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
        self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))

    @support.requires_IEEE_754
    def test_repr_roundtrip(self):
        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
        vals += [-v for v in vals]

        # complex(repr(z)) should recover z exactly, even for complex
        # numbers involving an infinity, nan, or negative zero
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = complex(repr(z))
                self.assertComplexesAreIdentical(z, roundtrip)

        # if we predefine some constants, then eval(repr(z)) should
        # also work, except that it might change the sign of zeros
        inf, nan = float('inf'), float('nan')
        infj, nanj = complex(0.0, inf), complex(0.0, nan)
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = eval(repr(z))
                # adding 0.0 has no effect beside changing -0.0 to 0.0
                self.assertFloatsAreIdentical(0.0 + z.real,
                                              0.0 + roundtrip.real)
                self.assertFloatsAreIdentical(0.0 + z.imag,
                                              0.0 + roundtrip.imag)

    def test_format(self):
        # empty format string is same as str()
        self.assertEqual(format(1+3j, ''), str(1+3j))
        self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
        self.assertEqual(format(3j, ''), str(3j))
        self.assertEqual(format(3.2j, ''), str(3.2j))
        self.assertEqual(format(3+0j, ''), str(3+0j))
        self.assertEqual(format(3.2+0j, ''), str(3.2+0j))

        # empty presentation type should still be analogous to str,
        # even when format string is nonempty (issue #5920).
        self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
        self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
        z = 4/7. - 100j/7.
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '10'), str(z))
        z = complex(0.0, 3.0)
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '2'), str(z))
        z = complex(-0.0, 2.0)
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '3'), str(z))

        self.assertEqual(format(1+3j, 'g'), '1+3j')
        self.assertEqual(format(3j, 'g'), '0+3j')
        self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')

        self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
        self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
        self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
        self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
        self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
        self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
        self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')

        self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
        self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
        self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
        self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
        self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
        self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
        self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')

        self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ')
        self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
        self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j')
        self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ')
        self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ')
        self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)')
        self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ')
        self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ')

        self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j')
        self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j')
        self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ')
        self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
        self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j')
        self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ')
        self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
        self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')

        # Issue 7094: Alternate formatting (specified by #)
        self.assertEqual(format(1+1j, '.0e'), '1e+00+1e+00j')
        self.assertEqual(format(1+1j, '#.0e'), '1.e+00+1.e+00j')
        self.assertEqual(format(1+1j, '.0f'), '1+1j')
        self.assertEqual(format(1+1j, '#.0f'), '1.+1.j')
        self.assertEqual(format(1.1+1.1j, 'g'), '1.1+1.1j')
        self.assertEqual(format(1.1+1.1j, '#g'), '1.10000+1.10000j')

        # Alternate doesn't make a difference for these, they format the same with or without it
        self.assertEqual(format(1+1j, '.1e'),  '1.0e+00+1.0e+00j')
        self.assertEqual(format(1+1j, '#.1e'), '1.0e+00+1.0e+00j')
        self.assertEqual(format(1+1j, '.1f'),  '1.0+1.0j')
        self.assertEqual(format(1+1j, '#.1f'), '1.0+1.0j')

        # Misc. other alternate tests
        self.assertEqual(format((-1.5+0.5j), '#f'), '-1.500000+0.500000j')
        self.assertEqual(format((-1.5+0.5j), '#.0f'), '-2.+0.j')
        self.assertEqual(format((-1.5+0.5j), '#e'), '-1.500000e+00+5.000000e-01j')
        self.assertEqual(format((-1.5+0.5j), '#.0e'), '-2.e+00+5.e-01j')
        self.assertEqual(format((-1.5+0.5j), '#g'), '-1.50000+0.500000j')
        self.assertEqual(format((-1.5+0.5j), '.0g'), '-2+0.5j')
        self.assertEqual(format((-1.5+0.5j), '#.0g'), '-2.+0.5j')

        # zero padding is invalid
        self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')

        # '=' alignment is invalid
        self.assertRaises(ValueError, (1.5+3j).__format__, '=20')

        # integer presentation types are an error
        for t in 'bcdoxX':
            self.assertRaises(ValueError, (1.5+0.5j).__format__, t)

        # make sure everything works in ''.format()
        self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')

        # issue 3382
        self.assertEqual(format(complex(NAN, NAN), 'f'), 'nan+nanj')
        self.assertEqual(format(complex(1, NAN), 'f'), '1.000000+nanj')
        self.assertEqual(format(complex(NAN, 1), 'f'), 'nan+1.000000j')
        self.assertEqual(format(complex(NAN, -1), 'f'), 'nan-1.000000j')
        self.assertEqual(format(complex(NAN, NAN), 'F'), 'NAN+NANj')
        self.assertEqual(format(complex(1, NAN), 'F'), '1.000000+NANj')
        self.assertEqual(format(complex(NAN, 1), 'F'), 'NAN+1.000000j')
        self.assertEqual(format(complex(NAN, -1), 'F'), 'NAN-1.000000j')
        self.assertEqual(format(complex(INF, INF), 'f'), 'inf+infj')
        self.assertEqual(format(complex(1, INF), 'f'), '1.000000+infj')
        self.assertEqual(format(complex(INF, 1), 'f'), 'inf+1.000000j')
        self.assertEqual(format(complex(INF, -1), 'f'), 'inf-1.000000j')
        self.assertEqual(format(complex(INF, INF), 'F'), 'INF+INFj')
        self.assertEqual(format(complex(1, INF), 'F'), '1.000000+INFj')
        self.assertEqual(format(complex(INF, 1), 'F'), 'INF+1.000000j')
        self.assertEqual(format(complex(INF, -1), 'F'), 'INF-1.000000j')


if __name__ == "__main__":
    unittest.main()