import unittest from test import support import gc import weakref import operator import copy import pickle from random import randrange, shuffle import sys import warnings import collections class PassThru(Exception): pass def check_pass_thru(): raise PassThru yield 1 class BadCmp: def __hash__(self): return 1 def __eq__(self, other): raise RuntimeError class ReprWrapper: 'Used to test self-referential repr() calls' def __repr__(self): return repr(self.value) class HashCountingInt(int): 'int-like object that counts the number of times __hash__ is called' def __init__(self, *args): self.hash_count = 0 def __hash__(self): self.hash_count += 1 return int.__hash__(self) class TestJointOps(unittest.TestCase): # Tests common to both set and frozenset def setUp(self): self.word = word = 'simsalabim' self.otherword = 'madagascar' self.letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.s = self.thetype(word) self.d = dict.fromkeys(word) def test_new_or_init(self): self.assertRaises(TypeError, self.thetype, [], 2) self.assertRaises(TypeError, set().__init__, a=1) def test_uniquification(self): actual = sorted(self.s) expected = sorted(self.d) self.assertEqual(actual, expected) self.assertRaises(PassThru, self.thetype, check_pass_thru()) self.assertRaises(TypeError, self.thetype, [[]]) def test_len(self): self.assertEqual(len(self.s), len(self.d)) def test_contains(self): for c in self.letters: self.assertEqual(c in self.s, c in self.d) self.assertRaises(TypeError, self.s.__contains__, [[]]) s = self.thetype([frozenset(self.letters)]) self.assertIn(self.thetype(self.letters), s) def test_union(self): u = self.s.union(self.otherword) for c in self.letters: self.assertEqual(c in u, c in self.d or c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(u), self.basetype) self.assertRaises(PassThru, self.s.union, check_pass_thru()) self.assertRaises(TypeError, self.s.union, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').union(C('cdc')), set('abcd')) self.assertEqual(self.thetype('abcba').union(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').union(C('ccb')), set('abc')) self.assertEqual(self.thetype('abcba').union(C('ef')), set('abcef')) self.assertEqual(self.thetype('abcba').union(C('ef'), C('fg')), set('abcefg')) # Issue #6573 x = self.thetype() self.assertEqual(x.union(set([1]), x, set([2])), self.thetype([1, 2])) def test_or(self): i = self.s.union(self.otherword) self.assertEqual(self.s | set(self.otherword), i) self.assertEqual(self.s | frozenset(self.otherword), i) try: self.s | self.otherword except TypeError: pass else: self.fail("s|t did not screen-out general iterables") def test_intersection(self): i = self.s.intersection(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.intersection, check_pass_thru()) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').intersection(C('cdc')), set('cc')) self.assertEqual(self.thetype('abcba').intersection(C('efgfe')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('ccb')), set('bc')) self.assertEqual(self.thetype('abcba').intersection(C('ef')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('cbcf'), C('bag')), set('b')) s = self.thetype('abcba') z = s.intersection() if self.thetype == frozenset(): self.assertEqual(id(s), id(z)) else: self.assertNotEqual(id(s), id(z)) def test_isdisjoint(self): def f(s1, s2): 'Pure python equivalent of isdisjoint()' return not set(s1).intersection(s2) for larg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': s1 = self.thetype(larg) for rarg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': for C in set, frozenset, dict.fromkeys, str, list, tuple: s2 = C(rarg) actual = s1.isdisjoint(s2) expected = f(s1, s2) self.assertEqual(actual, expected) self.assertTrue(actual is True or actual is False) def test_and(self): i = self.s.intersection(self.otherword) self.assertEqual(self.s & set(self.otherword), i) self.assertEqual(self.s & frozenset(self.otherword), i) try: self.s & self.otherword except TypeError: pass else: self.fail("s&t did not screen-out general iterables") def test_difference(self): i = self.s.difference(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c not in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.difference, check_pass_thru()) self.assertRaises(TypeError, self.s.difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').difference(C('cdc')), set('ab')) self.assertEqual(self.thetype('abcba').difference(C('efgfe')), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').difference(C('ef')), set('abc')) self.assertEqual(self.thetype('abcba').difference(), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('a'), C('b')), set('c')) def test_sub(self): i = self.s.difference(self.otherword) self.assertEqual(self.s - set(self.otherword), i) self.assertEqual(self.s - frozenset(self.otherword), i) try: self.s - self.otherword except TypeError: pass else: self.fail("s-t did not screen-out general iterables") def test_symmetric_difference(self): i = self.s.symmetric_difference(self.otherword) for c in self.letters: self.assertEqual(c in i, (c in self.d) ^ (c in self.otherword)) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.symmetric_difference, check_pass_thru()) self.assertRaises(TypeError, self.s.symmetric_difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').symmetric_difference(C('cdc')), set('abd')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ef')), set('abcef')) def test_xor(self): i = self.s.symmetric_difference(self.otherword) self.assertEqual(self.s ^ set(self.otherword), i) self.assertEqual(self.s ^ frozenset(self.otherword), i) try: self.s ^ self.otherword except TypeError: pass else: self.fail("s^t did not screen-out general iterables") def test_equality(self): self.assertEqual(self.s, set(self.word)) self.assertEqual(self.s, frozenset(self.word)) self.assertEqual(self.s == self.word, False) self.assertNotEqual(self.s, set(self.otherword)) self.assertNotEqual(self.s, frozenset(self.otherword)) self.assertEqual(self.s != self.word, True) def test_setOfFrozensets(self): t = map(frozenset, ['abcdef', 'bcd', 'bdcb', 'fed', 'fedccba']) s = self.thetype(t) self.assertEqual(len(s), 3) def test_sub_and_super(self): p, q, r = map(self.thetype, ['ab', 'abcde', 'def']) self.assertTrue(p < q) self.assertTrue(p <= q) self.assertTrue(q <= q) self.assertTrue(q > p) self.assertTrue(q >= p) self.assertFalse(q < r) self.assertFalse(q <= r) s#! /usr/bin/env python """Test script for the gzip module. """ import unittest from test import test_support import sys, os import gzip data1 = """ int length=DEFAULTALLOC, err = Z_OK; PyObject *RetVal; int flushmode = Z_FINISH; unsigned long start_total_out; """ data2 = """/* zlibmodule.c -- gzip-compatible data compression */ /* See http://www.gzip.org/zlib/ /* See http://www.winimage.com/zLibDll for Windows */ """ class TestGzip(unittest.TestCase): filename = test_support.TESTFN def setUp (self): pass def tearDown (self): try: os.unlink(self.filename) except os.error: pass def test_write (self): f = gzip.GzipFile(self.filename, 'wb') ; f.write(data1 * 50) # Try flush and fileno. f.flush() f.fileno() if hasattr(os, 'fsync'): os.fsync(f.fileno()) f.close() def test_read(self): self.test_write() # Try reading. f = gzip.GzipFile(self.filename, 'r') ; d = f.read() ; f.close() self.assertEqual(d, data1*50) def test_append(self): self.test_write() # Append to the previous file f = gzip.GzipFile(self.filename, 'ab') ; f.write(data2 * 15) ; f.close() f = gzip.GzipFile(self.filename, 'rb') ; d = f.read() ; f.close() self.assertEqual(d, (data1*50) + (data2*15)) def test_many_append(self): # Bug #1074261 was triggered when reading a file that contained # many, many members. Create such a file and verify that reading it # works. f = gzip.open(self.filename, 'wb', 9) f.write('a') f.close() for i in range(0,200): f = gzip.open(self.filename, "ab", 9) # append f.write('a') f.close() # Try reading the file zgfile = gzip.open(self.filename, "rb") contents = "" while 1: ztxt = zgfile.read(8192) contents += ztxt if not ztxt: break zgfile.close() self.assertEquals(contents, 'a'*201) def test_readline(self): self.test_write() # Try .readline() with varying line lengths f = gzip.GzipFile(self.filename, 'rb') line_length = 0 while 1: L = f.readline(line_length) if L == "" and line_length != 0: break self.assert_(len(L) <= line_length) line_length = (line_length + 1) % 50 f.close() def test_readlines(self): self.test_write() # Try .readlines() f = gzip.GzipFile(self.filename, 'rb') L = f.readlines() f.close() f = gzip.GzipFile(self.filename, 'rb') while 1: L = f.readlines(150) if L == []: break f.close() def test_seek_read(self): self.test_write() # Try seek, read test f = gzip.GzipFile(self.filename) while 1: oldpos = f.tell() line1 = f.readline() if not line1: break newpos = f.tell() f.seek(oldpos) # negative seek if len(line1)>10: amount = 10 else: amount = len(line1) line2 = f.read(amount) self.assertEqual(line1[:amount], line2) f.seek(newpos) # positive seek f.close() def test_seek_whence(self): self.test_write() # Try seek(whence=1), read test f = gzip.GzipFile(self.filename) f.read(10) f.seek(10, whence=1) y = f.read(10) f.close() self.assertEquals(y, data1[20:30]) def test_seek_write(self): # Try seek, write test f = gzip.GzipFile(self.filename, 'w') for pos in range(0, 256, 16): f.seek(pos) f.write('GZ\n') f.close() def test_mode(self): self.test_write() f = gzip.GzipFile(self.filename, 'r') self.assertEqual(f.myfileobj.mode, 'rb') f.close() def test_1647484(self): for mode in ('wb', 'rb'): f = gzip.GzipFile(self.filename, mode) self.assert_(hasattr(f, "name")) self.assertEqual(f.name, self.filename) f.close() def test_main(verbose=None): test_support.run_unittest(TestGzip) if __name__ == "__main__": test_main(verbose=True) t) def test_iteration(self): for v in self.set: self.assertIn(v, self.values) setiter = iter(self.set) # note: __length_hint__ is an internal undocumented API, # don't rely on it in your own programs self.assertEqual(setiter.__length_hint__(), len(self.set)) def test_pickling(self): p = pickle.dumps(self.set) copy = pickle.loads(p) self.assertEqual(self.set, copy, "%s != %s" % (self.set, copy)) #------------------------------------------------------------------------------ class TestBasicOpsEmpty(TestBasicOps): def setUp(self): self.case = "empty set" self.values = [] self.set = set(self.values) self.dup = set(self.values) self.length = 0 self.repr = "set()" #------------------------------------------------------------------------------ class TestBasicOpsSingleton(TestBasicOps): def setUp(self): self.case = "unit set (number)" self.values = [3] self.set = set(self.values) self.dup = set(self.values) self.length = 1 self.repr = "{3}" def test_in(self): self.assertIn(3, self.set) def test_not_in(self): self.assertNotIn(2, self.set) #------------------------------------------------------------------------------ class TestBasicOpsTuple(TestBasicOps): def setUp(self): self.case = "unit set (tuple)" self.values = [(0, "zero")] self.set = set(self.values) self.dup = set(self.values) self.length = 1 self.repr = "{(0, 'zero')}" def test_in(self): self.assertIn((0, "zero"), self.set) def test_not_in(self): self.assertNotIn(9, self.set) #------------------------------------------------------------------------------ class TestBasicOpsTriple(TestBasicOps): def setUp(self): self.case = "triple set" self.values = [0, "zero", operator.add] self.set = set(self.values) self.dup = set(self.values) self.length = 3 self.repr = None #------------------------------------------------------------------------------ class TestBasicOpsString(TestBasicOps): def setUp(self): self.case = "string set" self.values = ["a", "b", "c"] self.set = set(self.values) self.dup = set(self.values) self.length = 3 def test_repr(self): self.check_repr_against_values() #------------------------------------------------------------------------------ class TestBasicOpsBytes(TestBasicOps): def setUp(self): self.case = "string set" self.values = [b"a", b"b", b"c"] self.set = set(self.values) self.dup = set(self.values) self.length = 3 def test_repr(self): self.check_repr_against_values() #------------------------------------------------------------------------------ class TestBasicOpsMixedStringBytes(TestBasicOps): def setUp(self): self._warning_filters = support.check_warnings() self._warning_filters.__enter__() warnings.simplefilter('ignore', BytesWarning) self.case = "string and bytes set" self.values = ["a", "b", b"a", b"b"] self.set = set(self.values) self.dup = set(self.values) self.length = 4 def tearDown(self): self._warning_filters.__exit__(None, None, None) def test_repr(self): self.check_repr_against_values() #============================================================================== def baditer(): raise TypeError yield True def gooditer(): yield True class TestExceptionPropagation(unittest.TestCase): """SF 628246: Set constructor should not trap iterator TypeErrors""" def test_instanceWithException(self): self.assertRaises(TypeError, set, baditer()) def test_instancesWithoutException(self): # All of these iterables should load without exception. set([1,2,3]) set((1,2,3)) set({'one':1, 'two':2, 'three':3}) set(range(3)) set('abc') set(gooditer()) def test_changingSizeWhileIterating(self): s = set([1,2,3]) try: for i in s: s.update([4]) except RuntimeError: pass else: self.fail("no exception when changing size during iteration") #============================================================================== class TestSetOfSets(unittest.TestCase): def test_constructor(self): inner = frozenset([1]) outer = set([inner]) element = outer.pop() self.assertEqual(type(element), frozenset) outer.add(inner) # Rebuild set of sets with .add method outer.remove(inner) self.assertEqual(outer, set()) # Verify that remove worked outer.discard(inner) # Absence of KeyError indicates working fine #============================================================================== class TestBinaryOps(unittest.TestCase): def setUp(self): self.set = set((2, 4, 6)) def test_eq(self): # SF bug 643115 self.assertEqual(self.set, set({2:1,4:3,6:5})) def test_union_subset(self): result = self.set | set([2]) self.assertEqual(result, set((2, 4, 6))) def test_union_superset(self): result = self.set | set([2, 4, 6, 8]) self.assertEqual(result, set([2, 4, 6, 8])) def test_union_overlap(self): result = self.set | set([3, 4, 5]) self.assertEqual(result, set([2, 3, 4, 5, 6])) def test_union_non_overlap(self): result = self.set | set([8]) self.assertEqual(result, set([2, 4, 6, 8])) def test_intersection_subset(self): result = self.set & set((2, 4)) self.assertEqual(result, set((2, 4))) def test_intersection_superset(self): result = self.set & set([2, 4, 6, 8]) self.assertEqual(result, set([2, 4, 6])) def test_intersection_overlap(self): result = self.set & set([3, 4, 5]) self.assertEqual(result, set([4])) def test_intersection_non_overlap(self): result = self.set & set([8]) self.assertEqual(result, empty_set) def test_isdisjoint_subset(self): result = self.set.isdisjoint(set((2, 4))) self.assertEqual(result, False) def test_isdisjoint_superset(self): result = self.set.isdisjoint(set([2, 4, 6, 8])) self.assertEqual(result, False) def test_isdisjoint_overlap(self): result = self.set.isdisjoint(set([3, 4, 5])) self.assertEqual(result, False) def test_isdisjoint_non_overlap(self): result = self.set.isdisjoint(set([8])) self.assertEqual(result, True) def test_sym_difference_subset(self): result = self.set ^ set((2, 4)) self.assertEqual(result, set([6])) def test_sym_difference_superset(self): result = self.set ^ set((2, 4, 6, 8)) self.assertEqual(result, set([8])) def test_sym_difference_overlap(self): result = self.set ^ set((3, 4, 5)) self.assertEqual(result, set([2, 3, 5, 6])) def test_sym_difference_non_overlap(self): result = self.set ^ set([8]) self.assertEqual(result, set([2, 4, 6, 8])) #============================================================================== class TestUpdateOps(unittest.TestCase): def setUp(self): self.set = set((2, 4, 6)) def test_union_subset(self): self.set |= set([2]) self.assertEqual(self.set, set((2, 4, 6))) def test_union_superset(self): self.set |= set([2, 4, 6, 8]) self.assertEqual(self.set, set([2, 4, 6, 8])) def test_union_overlap(self): self.set |= set([3, 4, 5]) self.assertEqual(self.set, set([2, 3, 4, 5, 6])) def test_union_non_overlap(self): self.set |= set([8]) self.assertEqual(self.set, set([2, 4, 6, 8])) def test_union_method_call(self): self.set.update(set([3, 4, 5])) self.assertEqual(self.set, set([2, 3, 4, 5, 6])) def test_intersection_subset(self): self.set &= set((2, 4)) self.assertEqual(self.set, set((2, 4))) def test_intersection_superset(self): self.set &= set([2, 4, 6, 8]) self.assertEqual(self.set, set([2, 4, 6])) def test_intersection_overlap(self): self.set &= set([3, 4, 5]) self.assertEqual(self.set, set([4])) def test_intersection_non_overlap(self): self.set &= set([8]) self.assertEqual(self.set, empty_set) def test_intersection_method_call(self): self.set.intersection_update(set([3, 4, 5])) self.assertEqual(self.set, set([4])) def test_sym_difference_subset(self): self.set ^= set((2, 4)) self.assertEqual(self.set, set([6])) def test_sym_difference_superset(self): self.set ^= set((2, 4, 6, 8)) self.assertEqual(self.set, set([8])) def test_sym_difference_overlap(self): self.set ^= set((3, 4, 5)) self.assertEqual(self.set, set([2, 3, 5, 6])) def test_sym_difference_non_overlap(self): self.set ^= set([8]) self.assertEqual(self.set, set([2, 4, 6, 8])) def test_sym_difference_method_call(self): self.set.symmetric_difference_update(set([3, 4, 5])) self.assertEqual(self.set, set([2, 3, 5, 6])) def test_difference_subset(self): self.set -= set((2, 4)) self.assertEqual(self.set, set([6])) def test_difference_superset(self): self.set -= set((2, 4, 6, 8)) self.assertEqual(self.set, set([])) def test_difference_overlap(self): self.set -= set((3, 4, 5)) self.assertEqual(self.set, set([2, 6])) def test_difference_non_overlap(self): self.set -= set([8]) self.assertEqual(self.set, set([2, 4, 6])) def test_difference_method_call(self): self.set.difference_update(set([3, 4, 5])) self.assertEqual(self.set, set([2, 6])) #============================================================================== class TestMutate(unittest.TestCase): def setUp(self): self.values = ["a", "b", "c"] self.set = set(self.values) def test_add_present(self): self.set.add("c") self.assertEqual(self.set, set("abc")) def test_add_absent(self): self.set.add("d") self.assertEqual(self.set, set("abcd")) def test_add_until_full(self): tmp = set() expected_len = 0 for v in self.values: tmp.add(v) expected_len += 1 self.assertEqual(len(tmp), expected_len) self.assertEqual(tmp, self.set) def test_remove_present(self): self.set.remove("b") self.assertEqual(self.set, set("ac")) def test_remove_absent(self): try: self.set.remove("d") self.fail("Removing missing element should have raised LookupError") except LookupError: pass def test_remove_until_empty(self): expected_len = len(self.set) for v in self.values: self.set.remove(v) expected_len -= 1 self.assertEqual(len(self.set), expected_len) def test_discard_present(self): self.set.discard("c") self.assertEqual(self.set, set("ab")) def test_discard_absent(self): self.set.discard("d") self.assertEqual(self.set, set("abc")) def test_clear(self): self.set.clear() self.assertEqual(len(self.set), 0) def test_pop(self): popped = {} while self.set: popped[self.set.pop()] = None self.assertEqual(len(popped), len(self.values)) for v in self.values: self.assertIn(v, popped) def test_update_empty_tuple(self): self.set.update(()) self.assertEqual(self.set, set(self.values)) def test_update_unit_tuple_overlap(self): self.set.update(("a",)) self.assertEqual(self.set, set(self.values)) def test_update_unit_tuple_non_overlap(self): self.set.update(("a", "z")) self.assertEqual(self.set, set(self.values + ["z"])) #============================================================================== class TestSubsets(unittest.TestCase): case2method = {"<=": "issubset", ">=": "issuperset", } reverse = {"==": "==", "!=": "!=", "<": ">", ">": "<", "<=": ">=", ">=": "<=", } def test_issubset(self): x = self.left y = self.right for case in "!=", "==", "<", "<=", ">", ">=": expected = case in self.cases # Test the binary infix spelling. result = eval("x" + case + "y", locals()) self.assertEqual(result, expected) # Test the "friendly" method-name spelling, if one exists. if case in TestSubsets.case2method: method = getattr(x, TestSubsets.case2method[case]) result = method(y) self.assertEqual(result, expected) # Now do the same for the operands reversed. rcase = TestSubsets.reverse[case] result = eval("y" + rcase + "x", locals()) self.assertEqual(result, expected) if rcase in TestSubsets.case2method: method = getattr(y, TestSubsets.case2method[rcase]) result = method(x) self.assertEqual(result, expected) #------------------------------------------------------------------------------ class TestSubsetEqualEmpty(TestSubsets): left = set() right = set() name = "both empty" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEqualNonEmpty(TestSubsets): left = set([1, 2]) right = set([1, 2]) name = "equal pair" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEmptyNonEmpty(TestSubsets): left = set() right = set([1, 2]) name = "one empty, one non-empty" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetPartial(TestSubsets): left = set([1]) right = set([1, 2]) name = "one a non-empty proper subset of other" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetNonOverlap(TestSubsets): left = set([1]) right = set([2]) name = "neither empty, neither contains" cases = "!=" #============================================================================== class TestOnlySetsInBinaryOps(unittest.TestCase): def test_eq_ne(self): # Unlike the others, this is testing that == and != *are* allowed. self.assertEqual(self.other == self.set, False) self.assertEqual(self.set == self.other, False) self.assertEqual(self.other != self.set, True) self.assertEqual(self.set != self.other, True) def test_ge_gt_le_lt(self): self.assertRaises(TypeError, lambda: self.set < self.other) self.assertRaises(TypeError, lambda: self.set <= self.other) self.assertRaises(TypeError, lambda: self.set > self.other) self.assertRaises(TypeError, lambda: self.set >= self.other) self.assertRaises(TypeError, lambda: self.other < self.set) self.assertRaises(TypeError, lambda: self.other <= self.set) self.assertRaises(TypeError, lambda: self.other > self.set) self.assertRaises(TypeError, lambda: self.other >= self.set) def test_update_operator(self): try: self.set |= self.other except TypeError: pass else: self.fail("expected TypeError") def test_update(self): if self.otherIsIterable: self.set.update(self.other) else: self.assertRaises(TypeError, self.set.update, self.other) def test_union(self): self.assertRaises(TypeError, lambda: self.set | self.other) self.assertRaises(TypeError, lambda: self.other | self.set) if self.otherIsIterable: self.set.union(self.other) else: self.assertRaises(TypeError, self.set.union, self.other) def test_intersection_update_operator(self): try: self.set &= self.other except TypeError: pass else: self.fail("expected TypeError") def test_intersection_update(self): if self.otherIsIterable: self.set.intersection_update(self.other) else: self.assertRaises(TypeError, self.set.intersection_update, self.other) def test_intersection(self): self.assertRaises(TypeError, lambda: self.set & self.other) self.assertRaises(TypeError, lambda: self.other & self.set) if self.otherIsIterable: self.set.intersection(self.other) else: self.assertRaises(TypeError, self.set.intersection, self.other) def test_sym_difference_update_operator(self): try: self.set ^= self.other except TypeError: pass else: self.fail("expected TypeError") def test_sym_difference_update(self): if self.otherIsIterable: self.set.symmetric_difference_update(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference_update, self.other) def test_sym_difference(self): self.assertRaises(TypeError, lambda: self.set ^ self.other) self.assertRaises(TypeError, lambda: self.other ^ self.set) if self.otherIsIterable: self.set.symmetric_difference(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference, self.other) def test_difference_update_operator(self): try: self.set -= self.other except TypeError: pass else: self.fail("expected TypeError") def test_difference_update(self): if self.otherIsIterable: self.set.difference_update(self.other) else: self.assertRaises(TypeError, self.set.difference_update, self.other) def test_difference(self): self.assertRaises(TypeError, lambda: self.set - self.other) self.assertRaises(TypeError, lambda: self.other - self.set) if self.otherIsIterable: self.set.difference(self.other) else: self.assertRaises(TypeError, self.set.difference, self.other) #------------------------------------------------------------------------------ class TestOnlySetsNumeric(TestOnlySetsInBinaryOps): def setUp(self): self.set = set((1, 2, 3)) self.other = 19 self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsDict(TestOnlySetsInBinaryOps): def setUp(self): self.set = set((1, 2, 3)) self.other = {1:2, 3:4} self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsOperator(TestOnlySetsInBinaryOps): def setUp(self): self.set = set((1, 2, 3)) self.other = operator.add self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsTuple(TestOnlySetsInBinaryOps): def setUp(self): self.set = set((1, 2, 3)) self.other = (2, 4, 6) self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsString(TestOnlySetsInBinaryOps): def setUp(self): self.set = set((1, 2, 3)) self.other = 'abc' self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsGenerator(TestOnlySetsInBinaryOps): def setUp(self): def gen(): for i in range(0, 10, 2): yield i self.set = set((1, 2, 3)) self.other = gen() self.otherIsIterable = True #============================================================================== class TestCopying(unittest.TestCase): def test_copy(self): dup = self.set.copy() dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertTrue(dup_list[i] is set_list[i]) def test_deep_copy(self): dup = copy.deepcopy(self.set) ##print type(dup), repr(dup) dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertEqual(dup_list[i], set_list[i]) #------------------------------------------------------------------------------ class TestCopyingEmpty(TestCopying): def setUp(self): self.set = set() #------------------------------------------------------------------------------ class TestCopyingSingleton(TestCopying): def setUp(self): self.set = set(["hello"]) #------------------------------------------------------------------------------ class TestCopyingTriple(TestCopying): def setUp(self): self.set = set(["zero", 0, None]) #------------------------------------------------------------------------------ class TestCopyingTuple(TestCopying): def setUp(self): self.set = set([(1, 2)]) #------------------------------------------------------------------------------ class TestCopyingNested(TestCopying): def setUp(self): self.set = set([((1, 2), (3, 4))]) #============================================================================== class TestIdentities(unittest.TestCase): def setUp(self): self.a = set('abracadabra') self.b = set('alacazam') def test_binopsVsSubsets(self): a, b = self.a, self.b self.assertTrue(a - b < a) self.assertTrue(b - a < b) self.assertTrue(a & b < a) self.assertTrue(a & b < b) self.assertTrue(a | b > a) self.assertTrue(a | b > b) self.assertTrue(a ^ b < a | b) def test_commutativity(self): a, b = self.a, self.b self.assertEqual(a&b, b&a) self.assertEqual(a|b, b|a) self.assertEqual(a^b, b^a) if a != b: self.assertNotEqual(a-b, b-a) def test_summations(self): # check that sums of parts equal the whole a, b = self.a, self.b self.assertEqual((a-b)|(a&b)|(b-a), a|b) self.assertEqual((a&b)|(a^b), a|b) self.assertEqual(a|(b-a), a|b) self.assertEqual((a-b)|b, a|b) self.assertEqual((a-b)|(a&b), a) self.assertEqual((b-a)|(a&b), b) self.assertEqual((a-b)|(b-a), a^b) def test_exclusion(self): # check that inverse operations show non-overlap a, b, zero = self.a, self.b, set() self.assertEqual((a-b)&b, zero) self.assertEqual((b-a)&a, zero) self.assertEqual((a&b)&(a^b), zero) # Tests derived from test_itertools.py ======================================= def R(seqn): 'Regular generator' for i in seqn: yield i class G: 'Sequence using __getitem__' def __init__(self, seqn): self.seqn = seqn def __getitem__(self, i): return self.seqn[i] class I: 'Sequence using iterator protocol' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class Ig: 'Sequence using iterator protocol defined with a generator' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): for val in self.seqn: yield val class X: 'Missing __getitem__ and __iter__' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class N: 'Iterator missing __next__()' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self class E: 'Test propagation of exceptions' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): 3 // 0 class S: 'Test immediate stop' def __init__(self, seqn): pass def __iter__(self): return self def __next__(self): raise StopIteration from itertools import chain def L(seqn): 'Test multiple tiers of iterators' return chain(map(lambda x:x, R(Ig(G(seqn))))) class TestVariousIteratorArgs(unittest.TestCase): def test_constructor(self): for cons in (set, frozenset): for s in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5)): for g in (G, I, Ig, S, L, R): self.assertEqual(sorted(cons(g(s)), key=repr), sorted(g(s), key=repr)) self.assertRaises(TypeError, cons , X(s)) self.assertRaises(TypeError, cons , N(s)) self.assertRaises(ZeroDivisionError, cons , E(s)) def test_inline_methods(self): s = set('november') for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint): for g in (G, I, Ig, L, R): expected = meth(data) actual = meth(G(data)) if isinstance(expected, bool): self.assertEqual(actual, expected) else: self.assertEqual(sorted(actual, key=repr), sorted(expected, key=repr)) self.assertRaises(TypeError, meth, X(s)) self.assertRaises(TypeError, meth, N(s)) self.assertRaises(ZeroDivisionError, meth, E(s)) def test_inplace_methods(self): for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for methname in ('update', 'intersection_update', 'difference_update', 'symmetric_difference_update'): for g in (G, I, Ig, S, L, R): s = set('january') t = s.copy() getattr(s, methname)(list(g(data))) getattr(t, methname)(g(data)) self.assertEqual(sorted(s, key=repr), sorted(t, key=repr)) self.assertRaises(TypeError, getattr(set('january'), methname), X(data)) self.assertRaises(TypeError, getattr(set('january'), methname), N(data)) self.assertRaises(ZeroDivisionError, getattr(set('january'), methname), E(data)) class bad_eq: def __eq__(self, other): if be_bad: set2.clear() raise ZeroDivisionError return self is other def __hash__(self): return 0 class bad_dict_clear: def __eq__(self, other): if be_bad: dict2.clear() return self is other def __hash__(self): return 0 class TestWeirdBugs(unittest.TestCase): def test_8420_set_merge(self): # This used to segfault global be_bad, set2, dict2 be_bad = False set1 = {bad_eq()} set2 = {bad_eq() for i in range(75)} be_bad = True self.assertRaises(ZeroDivisionError, set1.update, set2) be_bad = False set1 = {bad_dict_clear()} dict2 = {bad_dict_clear(): None} be_bad = True set1.symmetric_difference_update(dict2) # Application tests (based on David Eppstein's graph recipes ==================================== def powerset(U): """Generates all subsets of a set or sequence U.""" U = iter(U) try: x = frozenset([next(U)]) for S in powerset(U): yield S yield S | x except StopIteration: yield frozenset() def cube(n): """Graph of n-dimensional hypercube.""" singletons = [frozenset([x]) for x in range(n)] return dict([(x, frozenset([x^s for s in singletons])) for x in powerset(range(n))]) def linegraph(G): """Graph, the vertices of which are edges of G, with two vertices being adjacent iff the corresponding edges share a vertex.""" L = {} for x in G: for y in G[x]: nx = [frozenset([x,z]) for z in G[x] if z != y] ny = [frozenset([y,z]) for z in G[y] if z != x] L[frozenset([x,y])] = frozenset(nx+ny) return L def faces(G): 'Return a set of faces in G. Where a face is a set of vertices on that face' # currently limited to triangles,squares, and pentagons f = set() for v1, edges in G.items(): for v2 in edges: for v3 in G[v2]: if v1 == v3: continue if v1 in G[v3]: f.add(frozenset([v1, v2, v3])) else: for v4 in G[v3]: if v4 == v2: continue if v1 in G[v4]: f.add(frozenset([v1, v2, v3, v4])) else: for v5 in G[v4]: if v5 == v3 or v5 == v2: continue if v1 in G[v5]: f.add(frozenset([v1, v2, v3, v4, v5])) return f class TestGraphs(unittest.TestCase): def test_cube(self): g = cube(3) # vert --> {v1, v2, v3} vertices1 = set(g) self.assertEqual(len(vertices1), 8) # eight vertices for edge in g.values(): self.assertEqual(len(edge), 3) # each vertex connects to three edges vertices2 = set(v for edges in g.values() for v in edges) self.assertEqual(vertices1, vertices2) # edge vertices in original set cubefaces = faces(g) self.assertEqual(len(cubefaces), 6) # six faces for face in cubefaces: self.assertEqual(len(face), 4) # each face is a square def test_cuboctahedron(self): # http://en.wikipedia.org/wiki/Cuboctahedron # 8 triangular faces and 6 square faces # 12 indentical vertices each connecting a triangle and square g = cube(3) cuboctahedron = linegraph(g) # V( --> {V1, V2, V3, V4} self.assertEqual(len(cuboctahedron), 12)# twelve vertices vertices = set(cuboctahedron) for edges in cuboctahedron.values(): self.assertEqual(len(edges), 4) # each vertex connects to four other vertices othervertices = set(edge for edges in cuboctahedron.values() for edge in edges) self.assertEqual(vertices, othervertices) # edge vertices in original set cubofaces = faces(cuboctahedron) facesizes = collections.defaultdict(int) for face in cubofaces: facesizes[len(face)] += 1 self.assertEqual(facesizes[3], 8) # eight triangular faces self.assertEqual(facesizes[4], 6) # six square faces for vertex in cuboctahedron: edge = vertex # Cuboctahedron vertices are edges in Cube self.assertEqual(len(edge), 2) # Two cube vertices define an edge for cubevert in edge: self.assertIn(cubevert, g) #============================================================================== def test_main(verbose=None): test_classes = ( TestSet, TestSetSubclass, TestSetSubclassWithKeywordArgs, TestFrozenSet, TestFrozenSetSubclass, TestSetOfSets, TestExceptionPropagation, TestBasicOpsEmpty, TestBasicOpsSingleton, TestBasicOpsTuple, TestBasicOpsTriple, TestBasicOpsString, TestBasicOpsBytes, TestBasicOpsMixedStringBytes, TestBinaryOps, TestUpdateOps, TestMutate, TestSubsetEqualEmpty, TestSubsetEqualNonEmpty, TestSubsetEmptyNonEmpty, TestSubsetPartial, TestSubsetNonOverlap, TestOnlySetsNumeric, TestOnlySetsDict, TestOnlySetsOperator, TestOnlySetsTuple, TestOnlySetsString, TestOnlySetsGenerator, TestCopyingEmpty, TestCopyingSingleton, TestCopyingTriple, TestCopyingTuple, TestCopyingNested, TestIdentities, TestVariousIteratorArgs, TestGraphs, TestWeirdBugs, ) support.run_unittest(*test_classes) # verify reference counting if verbose and hasattr(sys, "gettotalrefcount"): import gc counts = [None] * 5 for i in range(len(counts)): support.run_unittest(*test_classes) gc.collect() counts[i] = sys.gettotalrefcount() print(counts) if __name__ == "__main__": test_main(verbose=True)