summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_long.py
blob: c97842b5bfd233885270fe7086109e840ed1d761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
import unittest
from test import support

import sys

import random
import math
import array

# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = sys.int_info.bits_per_digit
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70   # from longobject.c

# Max number of base BASE digits to use in test cases.  Doubling
# this will more than double the runtime.
MAXDIGITS = 15

# build some special values
special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa]
#  some solid strings of one bits
p2 = 4  # 0 and 1 already added
for i in range(2*SHIFT):
    special.append(p2 - 1)
    p2 = p2 << 1
del p2
# add complements & negations
special += [~x for x in special] + [-x for x in special]

DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MIN_EXP = sys.float_info.min_exp
DBL_MANT_DIG = sys.float_info.mant_dig
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)


# Pure Python version of correctly-rounded integer-to-float conversion.
def int_to_float(n):
    """
    Correctly-rounded integer-to-float conversion.

    """
    # Constants, depending only on the floating-point format in use.
    # We use an extra 2 bits of precision for rounding purposes.
    PRECISION = sys.float_info.mant_dig + 2
    SHIFT_MAX = sys.float_info.max_exp - PRECISION
    Q_MAX = 1 << PRECISION
    ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1]

    # Reduce to the case where n is positive.
    if n == 0:
        return 0.0
    elif n < 0:
        return -int_to_float(-n)

    # Convert n to a 'floating-point' number q * 2**shift, where q is an
    # integer with 'PRECISION' significant bits.  When shifting n to create q,
    # the least significant bit of q is treated as 'sticky'.  That is, the
    # least significant bit of q is set if either the corresponding bit of n
    # was already set, or any one of the bits of n lost in the shift was set.
    shift = n.bit_length() - PRECISION
    q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift))

    # Round half to even (actually rounds to the nearest multiple of 4,
    # rounding ties to a multiple of 8).
    q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7]

    # Detect overflow.
    if shift + (q == Q_MAX) > SHIFT_MAX:
        raise OverflowError("integer too large to convert to float")

    # Checks: q is exactly representable, and q**2**shift doesn't overflow.
    assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig)
    assert q * 2**shift <= sys.float_info.max

    # Some circularity here, since float(q) is doing an int-to-float
    # conversion.  But here q is of bounded size, and is exactly representable
    # as a float.  In a low-level C-like language, this operation would be a
    # simple cast (e.g., from unsigned long long to double).
    return math.ldexp(float(q), shift)


# pure Python version of correctly-rounded true division
def truediv(a, b):
    """Correctly-rounded true division for integers."""
    negative = a^b < 0
    a, b = abs(a), abs(b)

    # exceptions:  division by zero, overflow
    if not b:
        raise ZeroDivisionError("division by zero")
    if a >= DBL_MIN_OVERFLOW * b:
        raise OverflowError("int/int too large to represent as a float")

   # find integer d satisfying 2**(d - 1) <= a/b < 2**d
    d = a.bit_length() - b.bit_length()
    if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
        d += 1

    # compute 2**-exp * a / b for suitable exp
    exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
    a, b = a << max(-exp, 0), b << max(exp, 0)
    q, r = divmod(a, b)

    # round-half-to-even: fractional part is r/b, which is > 0.5 iff
    # 2*r > b, and == 0.5 iff 2*r == b.
    if 2*r > b or 2*r == b and q % 2 == 1:
        q += 1

    result = math.ldexp(q, exp)
    return -result if negative else result


class LongTest(unittest.TestCase):

    # Get quasi-random long consisting of ndigits digits (in base BASE).
    # quasi == the most-significant digit will not be 0, and the number
    # is constructed to contain long strings of 0 and 1 bits.  These are
    # more likely than random bits to provoke digit-boundary errors.
    # The sign of the number is also random.

    def getran(self, ndigits):
        self.assertGreater(ndigits, 0)
        nbits_hi = ndigits * SHIFT
        nbits_lo = nbits_hi - SHIFT + 1
        answer = 0
        nbits = 0
        r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start
        while nbits < nbits_lo:
            bits = (r >> 1) + 1
            bits = min(bits, nbits_hi - nbits)
            self.assertTrue(1 <= bits <= SHIFT)
            nbits = nbits + bits
            answer = answer << bits
            if r & 1:
                answer = answer | ((1 << bits) - 1)
            r = int(random.random() * (SHIFT * 2))
        self.assertTrue(nbits_lo <= nbits <= nbits_hi)
        if random.random() < 0.5:
            answer = -answer
        return answer

    # Get random long consisting of ndigits random digits (relative to base
    # BASE).  The sign bit is also random.

    def getran2(ndigits):
        answer = 0
        for i in range(ndigits):
            answer = (answer << SHIFT) | random.randint(0, MASK)
        if random.random() < 0.5:
            answer = -answer
        return answer

    def check_division(self, x, y):
        eq = self.assertEqual
        with self.subTest(x=x, y=y):
            q, r = divmod(x, y)
            q2, r2 = x//y, x%y
            pab, pba = x*y, y*x
            eq(pab, pba, "multiplication does not commute")
            eq(q, q2, "divmod returns different quotient than /")
            eq(r, r2, "divmod returns different mod than %")
            eq(x, q*y + r, "x != q*y + r after divmod")
            if y > 0:
                self.assertTrue(0 <= r < y, "bad mod from divmod")
            else:
                self.assertTrue(y < r <= 0, "bad mod from divmod")

    def test_division(self):
        digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF,
                                                      KARATSUBA_CUTOFF + 14))
        digits.append(KARATSUBA_CUTOFF * 3)
        for lenx in digits:
            x = self.getran(lenx)
            for leny in digits:
                y = self.getran(leny) or 1
                self.check_division(x, y)

        # specific numbers chosen to exercise corner cases of the
        # current long division implementation

        # 30-bit cases involving a quotient digit estimate of BASE+1
        self.check_division(1231948412290879395966702881,
                            1147341367131428698)
        self.check_division(815427756481275430342312021515587883,
                       707270836069027745)
        self.check_division(627976073697012820849443363563599041,
                       643588798496057020)
        self.check_division(1115141373653752303710932756325578065,
                       1038556335171453937726882627)
        # 30-bit cases that require the post-subtraction correction step
        self.check_division(922498905405436751940989320930368494,
                       949985870686786135626943396)
        self.check_division(768235853328091167204009652174031844,
                       1091555541180371554426545266)

        # 15-bit cases involving a quotient digit estimate of BASE+1
        self.check_division(20172188947443, 615611397)
        self.check_division(1020908530270155025, 950795710)
        self.check_division(128589565723112408, 736393718)
        self.check_division(609919780285761575, 18613274546784)
        # 15-bit cases that require the post-subtraction correction step
        self.check_division(710031681576388032, 26769404391308)
        self.check_division(1933622614268221, 30212853348836)



    def test_karatsuba(self):
        digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF,
                                                KARATSUBA_CUTOFF + 10))
        digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])

        bits = [digit * SHIFT for digit in digits]

        # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
        # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
        for abits in bits:
            a = (1 << abits) - 1
            for bbits in bits:
                if bbits < abits:
                    continue
                with self.subTest(abits=abits, bbits=bbits):
                    b = (1 << bbits) - 1
                    x = a * b
                    y = ((1 << (abits + bbits)) -
                         (1 << abits) -
                         (1 << bbits) +
                         1)
                    self.assertEqual(x, y)

    def check_bitop_identities_1(self, x):
        eq = self.assertEqual
        with self.subTest(x=x):
            eq(x & 0, 0)
            eq(x | 0, x)
            eq(x ^ 0, x)
            eq(x & -1, x)
            eq(x | -1, -1)
            eq(x ^ -1, ~x)
            eq(x, ~~x)
            eq(x & x, x)
            eq(x | x, x)
            eq(x ^ x, 0)
            eq(x & ~x, 0)
            eq(x | ~x, -1)
            eq(x ^ ~x, -1)
            eq(-x, 1 + ~x)
            eq(-x, ~(x-1))
        for n in range(2*SHIFT):
            p2 = 2 ** n
            with self.subTest(x=x, n=n, p2=p2):
                eq(x << n >> n, x)
                eq(x // p2, x >> n)
                eq(x * p2, x << n)
                eq(x & -p2, x >> n << n)
                eq(x & -p2, x & ~(p2 - 1))

    def check_bitop_identities_2(self, x, y):
        eq = self.assertEqual
        with self.subTest(x=x, y=y):
            eq(x & y, y & x)
            eq(x | y, y | x)
            eq(x ^ y, y ^ x)
            eq(x ^ y ^ x, y)
            eq(x & y, ~(~x | ~y))
            eq(x | y, ~(~x & ~y))
            eq(x ^ y, (x | y) & ~(x & y))
            eq(x ^ y, (x & ~y) | (~x & y))
            eq(x ^ y, (x | y) & (~x | ~y))

    def check_bitop_identities_3(self, x, y, z):
        eq = self.assertEqual
        with self.subTest(x=x, y=y, z=z):
            eq((x & y) & z, x & (y & z))
            eq((x | y) | z, x | (y | z))
            eq((x ^ y) ^ z, x ^ (y ^ z))
            eq(x & (y | z), (x & y) | (x & z))
            eq(x | (y & z), (x | y) & (x | z))

    def test_bitop_identities(self):
        for x in special:
            self.check_bitop_identities_1(x)
        digits = range(1, MAXDIGITS+1)
        for lenx in digits:
            x = self.getran(lenx)
            self.check_bitop_identities_1(x)
            for leny in digits:
                y = self.getran(leny)
                self.check_bitop_identities_2(x, y)
                self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))

    def slow_format(self, x, base):
        digits = []
        sign = 0
        if x < 0:
            sign, x = 1, -x
        while x:
            x, r = divmod(x, base)
            digits.append(int(r))
        digits.reverse()
        digits = digits or [0]
        return '-'[:sign] + \
               {2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \
               "".join("0123456789abcdef"[i] for i in digits)

    def check_format_1(self, x):
        for base, mapper in (2, bin), (8, oct), (10, str), (10, repr), (16, hex):
            got = mapper(x)
            with self.subTest(x=x, mapper=mapper.__name__):
                expected = self.slow_format(x, base)
                self.assertEqual(got, expected)
            with self.subTest(got=got):
                self.assertEqual(int(got, 0), x)

    def test_format(self):
        for x in special:
            self.check_format_1(x)
        for i in range(10):
            for lenx in range(1, MAXDIGITS+1):
                x = self.getran(lenx)
                self.check_format_1(x)

    def test_long(self):
        # Check conversions from string
        LL = [
                ('1' + '0'*20, 10**20),
                ('1' + '0'*100, 10**100)
        ]
        for s, v in LL:
            for sign in "", "+", "-":
                for prefix in "", " ", "\t", "  \t\t  ":
                    ss = prefix + sign + s
                    vv = v
                    if sign == "-" and v is not ValueError:
                        vv = -v
                    try:
                        self.assertEqual(int(ss), vv)
                    except ValueError:
                        pass

        # trailing L should no longer be accepted...
        self.assertRaises(ValueError, int, '123L')
        self.assertRaises(ValueError, int, '123l')
        self.assertRaises(ValueError, int, '0L')
        self.assertRaises(ValueError, int, '-37L')
        self.assertRaises(ValueError, int, '0x32L', 16)
        self.assertRaises(ValueError, int, '1L', 21)
        # ... but it's just a normal digit if base >= 22
        self.assertEqual(int('1L', 22), 43)

        # tests with base 0
        self.assertEqual(int('000', 0), 0)
        self.assertEqual(int('0o123', 0), 83)
        self.assertEqual(int('0x123', 0), 291)
        self.assertEqual(int('0b100', 0), 4)
        self.assertEqual(int(' 0O123   ', 0), 83)
        self.assertEqual(int(' 0X123  ', 0), 291)
        self.assertEqual(int(' 0B100 ', 0), 4)
        self.assertEqual(int('0', 0), 0)
        self.assertEqual(int('+0', 0), 0)
        self.assertEqual(int('-0', 0), 0)
        self.assertEqual(int('00', 0), 0)
        self.assertRaises(ValueError, int, '08', 0)
        self.assertRaises(ValueError, int, '-012395', 0)

        # invalid bases
        invalid_bases = [-909,
                          2**31-1, 2**31, -2**31, -2**31-1,
                          2**63-1, 2**63, -2**63, -2**63-1,
                          2**100, -2**100,
                          ]
        for base in invalid_bases:
            self.assertRaises(ValueError, int, '42', base)

        # Invalid unicode string
        # See bpo-34087
        self.assertRaises(ValueError, int, '\u3053\u3093\u306b\u3061\u306f')


    def test_conversion(self):

        class JustLong:
            # test that __long__ no longer used in 3.x
            def __long__(self):
                return 42
        self.assertRaises(TypeError, int, JustLong())

        class LongTrunc:
            # __long__ should be ignored in 3.x
            def __long__(self):
                return 42
            def __trunc__(self):
                return 1729
        self.assertEqual(int(LongTrunc()), 1729)

    def check_float_conversion(self, n):
        # Check that int -> float conversion behaviour matches
        # that of the pure Python version above.
        try:
            actual = float(n)
        except OverflowError:
            actual = 'overflow'

        try:
            expected = int_to_float(n)
        except OverflowError:
            expected = 'overflow'

        msg = ("Error in conversion of integer {} to float.  "
               "Got {}, expected {}.".format(n, actual, expected))
        self.assertEqual(actual, expected, msg)

    @support.requires_IEEE_754
    def test_float_conversion(self):

        exact_values = [0, 1, 2,
                         2**53-3,
                         2**53-2,
                         2**53-1,
                         2**53,
                         2**53+2,
                         2**54-4,
                         2**54-2,
                         2**54,
                         2**54+4]
        for x in exact_values:
            self.assertEqual(float(x), x)
            self.assertEqual(float(-x), -x)

        # test round-half-even
        for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]:
            for p in range(15):
                self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y))

        for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8),
                     (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12),
                     (13, 12), (14, 16), (15, 16)]:
            for p in range(15):
                self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y))

        # behaviour near extremes of floating-point range
        int_dbl_max = int(DBL_MAX)
        top_power = 2**DBL_MAX_EXP
        halfway = (int_dbl_max + top_power)//2
        self.assertEqual(float(int_dbl_max), DBL_MAX)
        self.assertEqual(float(int_dbl_max+1), DBL_MAX)
        self.assertEqual(float(halfway-1), DBL_MAX)
        self.assertRaises(OverflowError, float, halfway)
        self.assertEqual(float(1-halfway), -DBL_MAX)
        self.assertRaises(OverflowError, float, -halfway)
        self.assertRaises(OverflowError, float, top_power-1)
        self.assertRaises(OverflowError, float, top_power)
        self.assertRaises(OverflowError, float, top_power+1)
        self.assertRaises(OverflowError, float, 2*top_power-1)
        self.assertRaises(OverflowError, float, 2*top_power)
        self.assertRaises(OverflowError, float, top_power*top_power)

        for p in range(100):
            x = 2**p * (2**53 + 1) + 1
            y = 2**p * (2**53 + 2)
            self.assertEqual(int(float(x)), y)

            x = 2**p * (2**53 + 1)
            y = 2**p * 2**53
            self.assertEqual(int(float(x)), y)

        # Compare builtin float conversion with pure Python int_to_float
        # function above.
        test_values = [
            int_dbl_max-1, int_dbl_max, int_dbl_max+1,
            halfway-1, halfway, halfway + 1,
            top_power-1, top_power, top_power+1,
            2*top_power-1, 2*top_power, top_power*top_power,
        ]
        test_values.extend(exact_values)
        for p in range(-4, 8):
            for x in range(-128, 128):
                test_values.append(2**(p+53) + x)
        for value in test_values:
            self.check_float_conversion(value)
            self.check_float_conversion(-value)

    def test_float_overflow(self):
        for x in -2.0, -1.0, 0.0, 1.0, 2.0:
            self.assertEqual(float(int(x)), x)

        shuge = '12345' * 120
        huge = 1 << 30000
        mhuge = -huge
        namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
        for test in ["float(huge)", "float(mhuge)",
                     "complex(huge)", "complex(mhuge)",
                     "complex(huge, 1)", "complex(mhuge, 1)",
                     "complex(1, huge)", "complex(1, mhuge)",
                     "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
                     "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
                     "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
                     "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
                     "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
                     "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
                     "math.sin(huge)", "math.sin(mhuge)",
                     "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
                     # math.floor() of an int returns an int now
                     ##"math.floor(huge)", "math.floor(mhuge)",
                     ]:

            self.assertRaises(OverflowError, eval, test, namespace)

        # XXX Perhaps float(shuge) can raise OverflowError on some box?
        # The comparison should not.
        self.assertNotEqual(float(shuge), int(shuge),
            "float(shuge) should not equal int(shuge)")

    def test_logs(self):
        LOG10E = math.log10(math.e)

        for exp in list(range(10)) + [100, 1000, 10000]:
            value = 10 ** exp
            log10 = math.log10(value)
            self.assertAlmostEqual(log10, exp)

            # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
            # exp/LOG10E
            expected = exp / LOG10E
            log = math.log(value)
            self.assertAlmostEqual(log, expected)

        for bad in -(1 << 10000), -2, 0:
            self.assertRaises(ValueError, math.log, bad)
            self.assertRaises(ValueError, math.log10, bad)

    def test_mixed_compares(self):
        eq = self.assertEqual

        # We're mostly concerned with that mixing floats and ints does the
        # right stuff, even when ints are too large to fit in a float.
        # The safest way to check the results is to use an entirely different
        # method, which we do here via a skeletal rational class (which
        # represents all Python ints and floats exactly).
        class Rat:
            def __init__(self, value):
                if isinstance(value, int):
                    self.n = value
                    self.d = 1
                elif isinstance(value, float):
                    # Convert to exact rational equivalent.
                    f, e = math.frexp(abs(value))
                    assert f == 0 or 0.5 <= f < 1.0
                    # |value| = f * 2**e exactly

                    # Suck up CHUNK bits at a time; 28 is enough so that we suck
                    # up all bits in 2 iterations for all known binary double-
                    # precision formats, and small enough to fit in an int.
                    CHUNK = 28
                    top = 0
                    # invariant: |value| = (top + f) * 2**e exactly
                    while f:
                        f = math.ldexp(f, CHUNK)
                        digit = int(f)
                        assert digit >> CHUNK == 0
                        top = (top << CHUNK) | digit
                        f -= digit
                        assert 0.0 <= f < 1.0
                        e -= CHUNK

                    # Now |value| = top * 2**e exactly.
                    if e >= 0:
                        n = top << e
                        d = 1
                    else:
                        n = top
                        d = 1 << -e
                    if value < 0:
                        n = -n
                    self.n = n
                    self.d = d
                    assert float(n) / float(d) == value
                else:
                    raise TypeError("can't deal with %r" % value)

            def _cmp__(self, other):
                if not isinstance(other, Rat):
                    other = Rat(other)
                x, y = self.n * other.d, self.d * other.n
                return (x > y) - (x < y)
            def __eq__(self, other):
                return self._cmp__(other) == 0
            def __ge__(self, other):
                return self._cmp__(other) >= 0
            def __gt__(self, other):
                return self._cmp__(other) > 0
            def __le__(self, other):
                return self._cmp__(other) <= 0
            def __lt__(self, other):
                return self._cmp__(other) < 0

        cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
        # 2**48 is an important boundary in the internals.  2**53 is an
        # important boundary for IEEE double precision.
        for t in 2.0**48, 2.0**50, 2.0**53:
            cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
                          int(t-1), int(t), int(t+1)])
        cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)])
        # 1 << 20000 should exceed all double formats.  int(1e200) is to
        # check that we get equality with 1e200 above.
        t = int(1e200)
        cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
        cases.extend([-x for x in cases])
        for x in cases:
            Rx = Rat(x)
            for y in cases:
                Ry = Rat(y)
                Rcmp = (Rx > Ry) - (Rx < Ry)
                with self.subTest(x=x, y=y, Rcmp=Rcmp):
                    xycmp = (x > y) - (x < y)
                    eq(Rcmp, xycmp)
                    eq(x == y, Rcmp == 0)
                    eq(x != y, Rcmp != 0)
                    eq(x < y, Rcmp < 0)
                    eq(x <= y, Rcmp <= 0)
                    eq(x > y, Rcmp > 0)
                    eq(x >= y, Rcmp >= 0)

    def test__format__(self):
        self.assertEqual(format(123456789, 'd'), '123456789')
        self.assertEqual(format(123456789, 'd'), '123456789')
        self.assertEqual(format(123456789, ','), '123,456,789')
        self.assertEqual(format(123456789, '_'), '123_456_789')

        # sign and aligning are interdependent
        self.assertEqual(format(1, "-"), '1')
        self.assertEqual(format(-1, "-"), '-1')
        self.assertEqual(format(1, "-3"), '  1')
        self.assertEqual(format(-1, "-3"), ' -1')
        self.assertEqual(format(1, "+3"), ' +1')
        self.assertEqual(format(-1, "+3"), ' -1')
        self.assertEqual(format(1, " 3"), '  1')
        self.assertEqual(format(-1, " 3"), ' -1')
        self.assertEqual(format(1, " "), ' 1')
        self.assertEqual(format(-1, " "), '-1')

        # hex
        self.assertEqual(format(3, "x"), "3")
        self.assertEqual(format(3, "X"), "3")
        self.assertEqual(format(1234, "x"), "4d2")
        self.assertEqual(format(-1234, "x"), "-4d2")
        self.assertEqual(format(1234, "8x"), "     4d2")
        self.assertEqual(format(-1234, "8x"), "    -4d2")
        self.assertEqual(format(1234, "x"), "4d2")
        self.assertEqual(format(-1234, "x"), "-4d2")
        self.assertEqual(format(-3, "x"), "-3")
        self.assertEqual(format(-3, "X"), "-3")
        self.assertEqual(format(int('be', 16), "x"), "be")
        self.assertEqual(format(int('be', 16), "X"), "BE")
        self.assertEqual(format(-int('be', 16), "x"), "-be")
        self.assertEqual(format(-int('be', 16), "X"), "-BE")
        self.assertRaises(ValueError, format, 1234567890, ',x')
        self.assertEqual(format(1234567890, '_x'), '4996_02d2')
        self.assertEqual(format(1234567890, '_X'), '4996_02D2')

        # octal
        self.assertEqual(format(3, "o"), "3")
        self.assertEqual(format(-3, "o"), "-3")
        self.assertEqual(format(1234, "o"), "2322")
        self.assertEqual(format(-1234, "o"), "-2322")
        self.assertEqual(format(1234, "-o"), "2322")
        self.assertEqual(format(-1234, "-o"), "-2322")
        self.assertEqual(format(1234, " o"), " 2322")
        self.assertEqual(format(-1234, " o"), "-2322")
        self.assertEqual(format(1234, "+o"), "+2322")
        self.assertEqual(format(-1234, "+o"), "-2322")
        self.assertRaises(ValueError, format, 1234567890, ',o')
        self.assertEqual(format(1234567890, '_o'), '111_4540_1322')

        # binary
        self.assertEqual(format(3, "b"), "11")
        self.assertEqual(format(-3, "b"), "-11")
        self.assertEqual(format(1234, "b"), "10011010010")
        self.assertEqual(format(-1234, "b"), "-10011010010")
        self.assertEqual(format(1234, "-b"), "10011010010")
        self.assertEqual(format(-1234, "-b"), "-10011010010")
        self.assertEqual(format(1234, " b"), " 10011010010")
        self.assertEqual(format(-1234, " b"), "-10011010010")
        self.assertEqual(format(1234, "+b"), "+10011010010")
        self.assertEqual(format(-1234, "+b"), "-10011010010")
        self.assertRaises(ValueError, format, 1234567890, ',b')
        self.assertEqual(format(12345, '_b'), '11_0000_0011_1001')

        # make sure these are errors
        self.assertRaises(ValueError, format, 3, "1.3")  # precision disallowed
        self.assertRaises(ValueError, format, 3, "_c")   # underscore,
        self.assertRaises(ValueError, format, 3, ",c")   # comma, and
        self.assertRaises(ValueError, format, 3, "+c")   # sign not allowed
                                                         # with 'c'

        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,d')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_d')

        self.assertRaisesRegex(ValueError, "Cannot specify ',' with 's'", format, 3, ',s')
        self.assertRaisesRegex(ValueError, "Cannot specify '_' with 's'", format, 3, '_s')

        # ensure that only int and float type specifiers work
        for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
                            [chr(x) for x in range(ord('A'), ord('Z')+1)]):
            if not format_spec in 'bcdoxXeEfFgGn%':
                self.assertRaises(ValueError, format, 0, format_spec)
                self.assertRaises(ValueError, format, 1, format_spec)
                self.assertRaises(ValueError, format, -1, format_spec)
                self.assertRaises(ValueError, format, 2**100, format_spec)
                self.assertRaises(ValueError, format, -(2**100), format_spec)

        # ensure that float type specifiers work; format converts
        #  the int to a float
        for format_spec in 'eEfFgG%':
            for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]:
                self.assertEqual(format(value, format_spec),
                                 format(float(value), format_spec))

    def test_nan_inf(self):
        self.assertRaises(OverflowError, int, float('inf'))
        self.assertRaises(OverflowError, int, float('-inf'))
        self.assertRaises(ValueError, int, float('nan'))

    def test_mod_division(self):
        with self.assertRaises(ZeroDivisionError):
            _ = 1 % 0

        self.assertEqual(13 % 10, 3)
        self.assertEqual(-13 % 10, 7)
        self.assertEqual(13 % -10, -7)
        self.assertEqual(-13 % -10, -3)

        self.assertEqual(12 % 4, 0)
        self.assertEqual(-12 % 4, 0)
        self.assertEqual(12 % -4, 0)
        self.assertEqual(-12 % -4, 0)

    def test_true_division(self):
        huge = 1 << 40000
        mhuge = -huge
        self.assertEqual(huge / huge, 1.0)
        self.assertEqual(mhuge / mhuge, 1.0)
        self.assertEqual(huge / mhuge, -1.0)
        self.assertEqual(mhuge / huge, -1.0)
        self.assertEqual(1 / huge, 0.0)
        self.assertEqual(1 / huge, 0.0)
        self.assertEqual(1 / mhuge, 0.0)
        self.assertEqual(1 / mhuge, 0.0)
        self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
        self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
        self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
        self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
        self.assertEqual(huge / (huge << 1), 0.5)
        self.assertEqual((1000000 * huge) / huge, 1000000)

        namespace = {'huge': huge, 'mhuge': mhuge}

        for overflow in ["float(huge)", "float(mhuge)",
                         "huge / 1", "huge / 2", "huge / -1", "huge / -2",
                         "mhuge / 100", "mhuge / 200"]:
            self.assertRaises(OverflowError, eval, overflow, namespace)

        for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge",
                         "100 / mhuge", "200 / mhuge"]:
            result = eval(underflow, namespace)
            self.assertEqual(result, 0.0,
                             "expected underflow to 0 from %r" % underflow)

        for zero in ["huge / 0", "mhuge / 0"]:
            self.assertRaises(ZeroDivisionError, eval, zero, namespace)

    def test_floordiv(self):
        with self.assertRaises(ZeroDivisionError):
            _ = 1 // 0

        self.assertEqual(2 // 3, 0)
        self.assertEqual(2 // -3, -1)
        self.assertEqual(-2 // 3, -1)
        self.assertEqual(-2 // -3, 0)

        self.assertEqual(-11 // -3, 3)
        self.assertEqual(-11 // 3, -4)
        self.assertEqual(11 // -3, -4)
        self.assertEqual(11 // 3, 3)

        self.assertEqual(-12 // -3, 4)
        self.assertEqual(-12 // 3, -4)
        self.assertEqual(12 // -3, -4)
        self.assertEqual(12 // 3, 4)

    def check_truediv(self, a, b, skip_small=True):
        """Verify that the result of a/b is correctly rounded, by
        comparing it with a pure Python implementation of correctly
        rounded division.  b should be nonzero."""

        # skip check for small a and b: in this case, the current
        # implementation converts the arguments to float directly and
        # then applies a float division.  This can give doubly-rounded
        # results on x87-using machines (particularly 32-bit Linux).
        if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
            return

        try:
            # use repr so that we can distinguish between -0.0 and 0.0
            expected = repr(truediv(a, b))
        except OverflowError:
            expected = 'overflow'
        except ZeroDivisionError:
            expected = 'zerodivision'

        try:
            got = repr(a / b)
        except OverflowError:
            got = 'overflow'
        except ZeroDivisionError:
            got = 'zerodivision'

        self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
                         "expected {}, got {}".format(a, b, expected, got))

    @support.requires_IEEE_754
    def test_correctly_rounded_true_division(self):
        # more stringent tests than those above, checking that the
        # result of true division of ints is always correctly rounded.
        # This test should probably be considered CPython-specific.

        # Exercise all the code paths not involving Gb-sized ints.
        # ... divisions involving zero
        self.check_truediv(123, 0)
        self.check_truediv(-456, 0)
        self.check_truediv(0, 3)
        self.check_truediv(0, -3)
        self.check_truediv(0, 0)
        # ... overflow or underflow by large margin
        self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
        self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
        # ... a much larger or smaller than b
        self.check_truediv(12345*2**100, 98765)
        self.check_truediv(12345*2**30, 98765*7**81)
        # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
        #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
        bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
                 DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
        for base in bases:
            for exp in range(base - 15, base + 15):
                self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
                self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))

        # overflow corner case
        for m in [1, 2, 7, 17, 12345, 7**100,
                  -1, -2, -5, -23, -67891, -41**50]:
            for n in range(-10, 10):
                self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
                self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)

        # check detection of inexactness in shifting stage
        for n in range(250):
            # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
            # between two representable floats, and would usually be
            # rounded down under round-half-to-even.  The tiniest of
            # additions to the numerator should cause it to be rounded
            # up instead.
            self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
                           2**DBL_MANT_DIG*12345)

        # 1/2731 is one of the smallest division cases that's subject
        # to double rounding on IEEE 754 machines working internally with
        # 64-bit precision.  On such machines, the next check would fail,
        # were it not explicitly skipped in check_truediv.
        self.check_truediv(1, 2731)

        # a particularly bad case for the old algorithm:  gives an
        # error of close to 3.5 ulps.
        self.check_truediv(295147931372582273023, 295147932265116303360)
        for i in range(1000):
            self.check_truediv(10**(i+1), 10**i)
            self.check_truediv(10**i, 10**(i+1))

        # test round-half-to-even behaviour, normal result
        for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
                  -1, -2, -5, -23, -67891, -41**50]:
            for n in range(-10, 10):
                self.check_truediv(2**DBL_MANT_DIG*m + n, m)

        # test round-half-to-even, subnormal result
        for n in range(-20, 20):
            self.check_truediv(n, 2**1076)

        # largeish random divisions: a/b where |a| <= |b| <=
        # 2*|a|; |ans| is between 0.5 and 1.0, so error should
        # always be bounded by 2**-54 with equality possible only
        # if the least significant bit of q=ans*2**53 is zero.
        for M in [10**10, 10**100, 10**1000]:
            for i in range(1000):
                a = random.randrange(1, M)
                b = random.randrange(a, 2*a+1)
                self.check_truediv(a, b)
                self.check_truediv(-a, b)
                self.check_truediv(a, -b)
                self.check_truediv(-a, -b)

        # and some (genuinely) random tests
        for _ in range(10000):
            a_bits = random.randrange(1000)
            b_bits = random.randrange(1, 1000)
            x = random.randrange(2**a_bits)
            y = random.randrange(1, 2**b_bits)
            self.check_truediv(x, y)
            self.check_truediv(x, -y)
            self.check_truediv(-x, y)
            self.check_truediv(-x, -y)

    def test_negative_shift_count(self):
        with self.assertRaises(ValueError):
            42 << -3
        with self.assertRaises(ValueError):
            42 << -(1 << 1000)
        with self.assertRaises(ValueError):
            42 >> -3
        with self.assertRaises(ValueError):
            42 >> -(1 << 1000)

    def test_lshift_of_zero(self):
        self.assertEqual(0 << 0, 0)
        self.assertEqual(0 << 10, 0)
        with self.assertRaises(ValueError):
            0 << -1
        self.assertEqual(0 << (1 << 1000), 0)
        with self.assertRaises(ValueError):
            0 << -(1 << 1000)

    @support.cpython_only
    def test_huge_lshift_of_zero(self):
        # Shouldn't try to allocate memory for a huge shift. See issue #27870.
        # Other implementations may have a different boundary for overflow,
        # or not raise at all.
        self.assertEqual(0 << sys.maxsize, 0)
        self.assertEqual(0 << (sys.maxsize + 1), 0)

    @support.cpython_only
    @support.bigmemtest(sys.maxsize + 1000, memuse=2/15 * 2, dry_run=False)
    def test_huge_lshift(self, size):
        self.assertEqual(1 << (sys.maxsize + 1000), 1 << 1000 << sys.maxsize)

    def test_huge_rshift(self):
        self.assertEqual(42 >> (1 << 1000), 0)
        self.assertEqual((-42) >> (1 << 1000), -1)

    @support.cpython_only
    @support.bigmemtest(sys.maxsize + 500, memuse=2/15, dry_run=False)
    def test_huge_rshift_of_huge(self, size):
        huge = ((1 << 500) + 11) << sys.maxsize
        self.assertEqual(huge >> (sys.maxsize + 1), (1 << 499) + 5)
        self.assertEqual(huge >> (sys.maxsize + 1000), 0)

    @support.cpython_only
    def test_small_ints_in_huge_calculation(self):
        a = 2 ** 100
        b = -a + 1
        c = a + 1
        self.assertIs(a + b, 1)
        self.assertIs(c - a, 1)

    def test_small_ints(self):
        for i in range(-5, 257):
            self.assertIs(i, i + 0)
            self.assertIs(i, i * 1)
            self.assertIs(i, i - 0)
            self.assertIs(i, i // 1)
            self.assertIs(i, i & -1)
            self.assertIs(i, i | 0)
            self.assertIs(i, i ^ 0)
            self.assertIs(i, ~~i)
            self.assertIs(i, i**1)
            self.assertIs(i, int(str(i)))
            self.assertIs(i, i<<2>>2, str(i))
        # corner cases
        i = 1 << 70
        self.assertIs(i - i, 0)
        self.assertIs(0 * i, 0)

    def test_bit_length(self):
        tiny = 1e-10
        for x in range(-65000, 65000):
            k = x.bit_length()
            # Check equivalence with Python version
            self.assertEqual(k, len(bin(x).lstrip('-0b')))
            # Behaviour as specified in the docs
            if x != 0:
                self.assertTrue(2**(k-1) <= abs(x) < 2**k)
            else:
                self.assertEqual(k, 0)
            # Alternative definition: x.bit_length() == 1 + floor(log_2(x))
            if x != 0:
                # When x is an exact power of 2, numeric errors can
                # cause floor(log(x)/log(2)) to be one too small; for
                # small x this can be fixed by adding a small quantity
                # to the quotient before taking the floor.
                self.assertEqual(k, 1 + math.floor(
                        math.log(abs(x))/math.log(2) + tiny))

        self.assertEqual((0).bit_length(), 0)
        self.assertEqual((1).bit_length(), 1)
        self.assertEqual((-1).bit_length(), 1)
        self.assertEqual((2).bit_length(), 2)
        self.assertEqual((-2).bit_length(), 2)
        for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
            a = 2**i
            self.assertEqual((a-1).bit_length(), i)
            self.assertEqual((1-a).bit_length(), i)
            self.assertEqual((a).bit_length(), i+1)
            self.assertEqual((-a).bit_length(), i+1)
            self.assertEqual((a+1).bit_length(), i+1)
            self.assertEqual((-a-1).bit_length(), i+1)

    def test_bit_count(self):
        for a in range(-1000, 1000):
            self.assertEqual(a.bit_count(), bin(a).count("1"))

        for exp in [10, 17, 63, 64, 65, 1009, 70234, 1234567]:
            a = 2**exp
            self.assertEqual(a.bit_count(), 1)
            self.assertEqual((a - 1).bit_count(), exp)
            self.assertEqual((a ^ 63).bit_count(), 7)
            self.assertEqual(((a - 1) ^ 510).bit_count(), exp - 8)

    def test_round(self):
        # check round-half-even algorithm. For round to nearest ten;
        # rounding map is invariant under adding multiples of 20
        test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0,
                     6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10,
                     15:20, 16:20, 17:20, 18:20, 19:20}
        for offset in range(-520, 520, 20):
            for k, v in test_dict.items():
                got = round(k+offset, -1)
                expected = v+offset
                self.assertEqual(got, expected)
                self.assertIs(type(got), int)

        # larger second argument
        self.assertEqual(round(-150, -2), -200)
        self.assertEqual(round(-149, -2), -100)
        self.assertEqual(round(-51, -2), -100)
        self.assertEqual(round(-50, -2), 0)
        self.assertEqual(round(-49, -2), 0)
        self.assertEqual(round(-1, -2), 0)
        self.assertEqual(round(0, -2), 0)
        self.assertEqual(round(1, -2), 0)
        self.assertEqual(round(49, -2), 0)
        self.assertEqual(round(50, -2), 0)
        self.assertEqual(round(51, -2), 100)
        self.assertEqual(round(149, -2), 100)
        self.assertEqual(round(150, -2), 200)
        self.assertEqual(round(250, -2), 200)
        self.assertEqual(round(251, -2), 300)
        self.assertEqual(round(172500, -3), 172000)
        self.assertEqual(round(173500, -3), 174000)
        self.assertEqual(round(31415926535, -1), 31415926540)
        self.assertEqual(round(31415926535, -2), 31415926500)
        self.assertEqual(round(31415926535, -3), 31415927000)
        self.assertEqual(round(31415926535, -4), 31415930000)
        self.assertEqual(round(31415926535, -5), 31415900000)
        self.assertEqual(round(31415926535, -6), 31416000000)
        self.assertEqual(round(31415926535, -7), 31420000000)
        self.assertEqual(round(31415926535, -8), 31400000000)
        self.assertEqual(round(31415926535, -9), 31000000000)
        self.assertEqual(round(31415926535, -10), 30000000000)
        self.assertEqual(round(31415926535, -11), 0)
        self.assertEqual(round(31415926535, -12), 0)
        self.assertEqual(round(31415926535, -999), 0)

        # should get correct results even for huge inputs
        for k in range(10, 100):
            got = round(10**k + 324678, -3)
            expect = 10**k + 325000
            self.assertEqual(got, expect)
            self.assertIs(type(got), int)

        # nonnegative second argument: round(x, n) should just return x
        for n in range(5):
            for i in range(100):
                x = random.randrange(-10000, 10000)
                got = round(x, n)
                self.assertEqual(got, x)
                self.assertIs(type(got), int)
        for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100:
            self.assertEqual(round(8979323, huge_n), 8979323)

        # omitted second argument
        for i in range(100):
            x = random.randrange(-10000, 10000)
            got = round(x)
            self.assertEqual(got, x)
            self.assertIs(type(got), int)

        # bad second argument
        bad_exponents = ('brian', 2.0, 0j)
        for e in bad_exponents:
            self.assertRaises(TypeError, round, 3, e)

    def test_to_bytes(self):
        def check(tests, byteorder, signed=False):
            for test, expected in tests.items():
                try:
                    self.assertEqual(
                        test.to_bytes(len(expected), byteorder, signed=signed),
                        expected)
                except Exception as err:
                    raise AssertionError(
                        "failed to convert {0} with byteorder={1} and signed={2}"
                        .format(test, byteorder, signed)) from err

        # Convert integers to signed big-endian byte arrays.
        tests1 = {
            0: b'\x00',
            1: b'\x01',
            -1: b'\xff',
            -127: b'\x81',
            -128: b'\x80',
            -129: b'\xff\x7f',
            127: b'\x7f',
            129: b'\x00\x81',
            -255: b'\xff\x01',
            -256: b'\xff\x00',
            255: b'\x00\xff',
            256: b'\x01\x00',
            32767: b'\x7f\xff',
            -32768: b'\xff\x80\x00',
            65535: b'\x00\xff\xff',
            -65536: b'\xff\x00\x00',
            -8388608: b'\x80\x00\x00'
        }
        check(tests1, 'big', signed=True)

        # Convert integers to signed little-endian byte arrays.
        tests2 = {
            0: b'\x00',
            1: b'\x01',
            -1: b'\xff',
            -127: b'\x81',
            -128: b'\x80',
            -129: b'\x7f\xff',
            127: b'\x7f',
            129: b'\x81\x00',
            -255: b'\x01\xff',
            -256: b'\x00\xff',
            255: b'\xff\x00',
            256: b'\x00\x01',
            32767: b'\xff\x7f',
            -32768: b'\x00\x80',
            65535: b'\xff\xff\x00',
            -65536: b'\x00\x00\xff',
            -8388608: b'\x00\x00\x80'
        }
        check(tests2, 'little', signed=True)

        # Convert integers to unsigned big-endian byte arrays.
        tests3 = {
            0: b'\x00',
            1: b'\x01',
            127: b'\x7f',
            128: b'\x80',
            255: b'\xff',
            256: b'\x01\x00',
            32767: b'\x7f\xff',
            32768: b'\x80\x00',
            65535: b'\xff\xff',
            65536: b'\x01\x00\x00'
        }
        check(tests3, 'big', signed=False)

        # Convert integers to unsigned little-endian byte arrays.
        tests4 = {
            0: b'\x00',
            1: b'\x01',
            127: b'\x7f',
            128: b'\x80',
            255: b'\xff',
            256: b'\x00\x01',
            32767: b'\xff\x7f',
            32768: b'\x00\x80',
            65535: b'\xff\xff',
            65536: b'\x00\x00\x01'
        }
        check(tests4, 'little', signed=False)

        self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True)
        self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False)
        self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False)
        self.assertEqual((0).to_bytes(0, 'big'), b'')
        self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01')
        self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00')
        self.assertEqual((-1).to_bytes(5, 'big', signed=True),
                         b'\xff\xff\xff\xff\xff')
        self.assertRaises(OverflowError, (1).to_bytes, 0, 'big')

    def test_from_bytes(self):
        def check(tests, byteorder, signed=False):
            for test, expected in tests.items():
                try:
                    self.assertEqual(
                        int.from_bytes(test, byteorder, signed=signed),
                        expected)
                except Exception as err:
                    raise AssertionError(
                        "failed to convert {0} with byteorder={1!r} and signed={2}"
                        .format(test, byteorder, signed)) from err

        # Convert signed big-endian byte arrays to integers.
        tests1 = {
            b'': 0,
            b'\x00': 0,
            b'\x00\x00': 0,
            b'\x01': 1,
            b'\x00\x01': 1,
            b'\xff': -1,
            b'\xff\xff': -1,
            b'\x81': -127,
            b'\x80': -128,
            b'\xff\x7f': -129,
            b'\x7f': 127,
            b'\x00\x81': 129,
            b'\xff\x01': -255,
            b'\xff\x00': -256,
            b'\x00\xff': 255,
            b'\x01\x00': 256,
            b'\x7f\xff': 32767,
            b'\x80\x00': -32768,
            b'\x00\xff\xff': 65535,
            b'\xff\x00\x00': -65536,
            b'\x80\x00\x00': -8388608
        }
        check(tests1, 'big', signed=True)

        # Convert signed little-endian byte arrays to integers.
        tests2 = {
            b'': 0,
            b'\x00': 0,
            b'\x00\x00': 0,
            b'\x01': 1,
            b'\x00\x01': 256,
            b'\xff': -1,
            b'\xff\xff': -1,
            b'\x81': -127,
            b'\x80': -128,
            b'\x7f\xff': -129,
            b'\x7f': 127,
            b'\x81\x00': 129,
            b'\x01\xff': -255,
            b'\x00\xff': -256,
            b'\xff\x00': 255,
            b'\x00\x01': 256,
            b'\xff\x7f': 32767,
            b'\x00\x80': -32768,
            b'\xff\xff\x00': 65535,
            b'\x00\x00\xff': -65536,
            b'\x00\x00\x80': -8388608
        }
        check(tests2, 'little', signed=True)

        # Convert unsigned big-endian byte arrays to integers.
        tests3 = {
            b'': 0,
            b'\x00': 0,
            b'\x01': 1,
            b'\x7f': 127,
            b'\x80': 128,
            b'\xff': 255,
            b'\x01\x00': 256,
            b'\x7f\xff': 32767,
            b'\x80\x00': 32768,
            b'\xff\xff': 65535,
            b'\x01\x00\x00': 65536,
        }
        check(tests3, 'big', signed=False)

        # Convert integers to unsigned little-endian byte arrays.
        tests4 = {
            b'': 0,
            b'\x00': 0,
            b'\x01': 1,
            b'\x7f': 127,
            b'\x80': 128,
            b'\xff': 255,
            b'\x00\x01': 256,
            b'\xff\x7f': 32767,
            b'\x00\x80': 32768,
            b'\xff\xff': 65535,
            b'\x00\x00\x01': 65536,
        }
        check(tests4, 'little', signed=False)

        class myint(int):
            pass

        self.assertIs(type(myint.from_bytes(b'\x00', 'big')), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1)
        self.assertIs(
            type(myint.from_bytes(b'\x00', 'big', signed=False)), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1)
        self.assertIs(type(myint.from_bytes(b'\x00', 'little')), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1)
        self.assertIs(type(myint.from_bytes(
            b'\x00', 'little', signed=False)), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1)
        self.assertEqual(
            int.from_bytes([255, 0, 0], 'big', signed=True), -65536)
        self.assertEqual(
            int.from_bytes((255, 0, 0), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertRaises(ValueError, int.from_bytes, [256], 'big')
        self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00')
        self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00')
        self.assertRaises(TypeError, int.from_bytes, "", 'big')
        self.assertRaises(TypeError, int.from_bytes, "\x00", 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
        self.assertRaises(TypeError, myint.from_bytes, "", 'big')
        self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big')
        self.assertRaises(TypeError, myint.from_bytes, 0, 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)

        class myint2(int):
            def __new__(cls, value):
                return int.__new__(cls, value + 1)

        i = myint2.from_bytes(b'\x01', 'big')
        self.assertIs(type(i), myint2)
        self.assertEqual(i, 2)

        class myint3(int):
            def __init__(self, value):
                self.foo = 'bar'

        i = myint3.from_bytes(b'\x01', 'big')
        self.assertIs(type(i), myint3)
        self.assertEqual(i, 1)
        self.assertEqual(getattr(i, 'foo', 'none'), 'bar')

    def test_access_to_nonexistent_digit_0(self):
        # http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that
        # ob_digit[0] was being incorrectly accessed for instances of a
        # subclass of int, with value 0.
        class Integer(int):
            def __new__(cls, value=0):
                self = int.__new__(cls, value)
                self.foo = 'foo'
                return self

        integers = [Integer(0) for i in range(1000)]
        for n in map(int, integers):
            self.assertEqual(n, 0)

    def test_shift_bool(self):
        # Issue #21422: ensure that bool << int and bool >> int return int
        for value in (True, False):
            for shift in (0, 2):
                self.assertEqual(type(value << shift), int)
                self.assertEqual(type(value >> shift), int)

    def test_as_integer_ratio(self):
        class myint(int):
            pass
        tests = [10, 0, -10, 1, sys.maxsize + 1, True, False, myint(42)]
        for value in tests:
            numerator, denominator = value.as_integer_ratio()
            self.assertEqual((numerator, denominator), (int(value), 1))
            self.assertEqual(type(numerator), int)
            self.assertEqual(type(denominator), int)


if __name__ == "__main__":
    unittest.main()