summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_long.py
blob: 1f652029a9b84fafdabc7b0fc5cbcc102bc6c5cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import unittest
from test import test_support

import random

# Used for lazy formatting of failure messages
class Frm(object):
    def __init__(self, format, *args):
        self.format = format
        self.args = args

    def __str__(self):
        return self.format % self.args

# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = 15
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70   # from longobject.c

# Max number of base BASE digits to use in test cases.  Doubling
# this will more than double the runtime.
MAXDIGITS = 15

# build some special values
special = map(int, [0, 1, 2, BASE, BASE >> 1])
special.append(0x5555555555555555)
special.append(0xaaaaaaaaaaaaaaaa)
#  some solid strings of one bits
p2 = 4  # 0 and 1 already added
for i in range(2*SHIFT):
    special.append(p2 - 1)
    p2 = p2 << 1
del p2
# add complements & negations
special = special + map(lambda x: ~x, special) + \
                    map(lambda x: -x, special)


class LongTest(unittest.TestCase):

    # Get quasi-random long consisting of ndigits digits (in base BASE).
    # quasi == the most-significant digit will not be 0, and the number
    # is constructed to contain long strings of 0 and 1 bits.  These are
    # more likely than random bits to provoke digit-boundary errors.
    # The sign of the number is also random.

    def getran(self, ndigits):
        self.assert_(ndigits > 0)
        nbits_hi = ndigits * SHIFT
        nbits_lo = nbits_hi - SHIFT + 1
        answer = 0
        nbits = 0
        r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start
        while nbits < nbits_lo:
            bits = (r >> 1) + 1
            bits = min(bits, nbits_hi - nbits)
            self.assert_(1 <= bits <= SHIFT)
            nbits = nbits + bits
            answer = answer << bits
            if r & 1:
                answer = answer | ((1 << bits) - 1)
            r = int(random.random() * (SHIFT * 2))
        self.assert_(nbits_lo <= nbits <= nbits_hi)
        if random.random() < 0.5:
            answer = -answer
        return answer

    # Get random long consisting of ndigits random digits (relative to base
    # BASE).  The sign bit is also random.

    def getran2(ndigits):
        answer = 0
        for i in xrange(ndigits):
            answer = (answer << SHIFT) | random.randint(0, MASK)
        if random.random() < 0.5:
            answer = -answer
        return answer

    def check_division(self, x, y):
        eq = self.assertEqual
        q, r = divmod(x, y)
        q2, r2 = x//y, x%y
        pab, pba = x*y, y*x
        eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y))
        eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y))
        eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y))
        eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y))
        if y > 0:
            self.assert_(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y))
        else:
            self.assert_(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y))

    def test_division(self):
        digits = range(1, MAXDIGITS+1) + range(KARATSUBA_CUTOFF,
                                               KARATSUBA_CUTOFF + 14)
        digits.append(KARATSUBA_CUTOFF * 3)
        for lenx in digits:
            x = self.getran(lenx)
            for leny in digits:
                y = self.getran(leny) or 1
                self.check_division(x, y)

    def test_karatsuba(self):
        digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10)
        digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])

        bits = [digit * SHIFT for digit in digits]

        # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
        # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
        for abits in bits:
            a = (1 << abits) - 1
            for bbits in bits:
                if bbits < abits:
                    continue
                b = (1 << bbits) - 1
                x = a * b
                y = ((1 << (abits + bbits)) -
                     (1 << abits) -
                     (1 << bbits) +
                     1)
                self.assertEqual(x, y,
                    Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y))

    def check_bitop_identities_1(self, x):
        eq = self.assertEqual
        eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x))
        eq(x | 0, x, Frm("x | 0 != x for x=%r", x))
        eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x))
        eq(x & -1, x, Frm("x & -1 != x for x=%r", x))
        eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x))
        eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x))
        eq(x, ~~x, Frm("x != ~~x for x=%r", x))
        eq(x & x, x, Frm("x & x != x for x=%r", x))
        eq(x | x, x, Frm("x | x != x for x=%r", x))
        eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x))
        eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x))
        eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x))
        eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x))
        eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x))
        eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x))
        for n in xrange(2*SHIFT):
            p2 = 2 ** n
            eq(x << n >> n, x,
                Frm("x << n >> n != x for x=%r, n=%r", (x, n)))
            eq(x // p2, x >> n,
                Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2)))
            eq(x * p2, x << n,
                Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2)))
            eq(x & -p2, x >> n << n,
                Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2)))
            eq(x & -p2, x & ~(p2 - 1),
                Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2)))

    def check_bitop_identities_2(self, x, y):
        eq = self.assertEqual
        eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y)))
        eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y)))
        eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y)))
        eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y)))
        eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y)))
        eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y)))
        eq(x ^ y, (x | y) & ~(x & y),
             Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y)))
        eq(x ^ y, (x & ~y) | (~x & y),
             Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y)))
        eq(x ^ y, (x | y) & (~x | ~y),
             Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y)))

    def check_bitop_identities_3(self, x, y, z):
        eq = self.assertEqual
        eq((x & y) & z, x & (y & z),
             Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z)))
        eq((x | y) | z, x | (y | z),
             Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z)))
        eq((x ^ y) ^ z, x ^ (y ^ z),
             Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z)))
        eq(x & (y | z), (x & y) | (x & z),
             Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z)))
        eq(x | (y & z), (x | y) & (x | z),
             Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z)))

    def test_bitop_identities(self):
        for x in special:
            self.check_bitop_identities_1(x)
        digits = xrange(1, MAXDIGITS+1)
        for lenx in digits:
            x = self.getran(lenx)
            self.check_bitop_identities_1(x)
            for leny in digits:
                y = self.getran(leny)
                self.check_bitop_identities_2(x, y)
                self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))

    def slow_format(self, x, base):
        if (x, base) == (0, 8):
            # this is an oddball!
            return "0"
        digits = []
        sign = 0
        if x < 0:
            sign, x = 1, -x
        while x:
            x, r = divmod(x, base)
            digits.append(int(r))
        digits.reverse()
        digits = digits or [0]
        return '-'[:sign] + \
               {8: '0', 10: '', 16: '0x'}[base] + \
               "".join(map(lambda i: "0123456789abcdef"[i], digits))

    def check_format_1(self, x):
        for base, mapper in (8, oct), (10, repr), (16, hex):
            got = mapper(x)
            expected = self.slow_format(x, base)
            msg = Frm("%s returned %r but expected %r for %r",
                mapper.__name__, got, expected, x)
            self.assertEqual(got, expected, msg)
            self.assertEqual(int(got, 0), x, Frm('long("%s", 0) != %r', got, x))
        # str() has to be checked a little differently since there's no
        # trailing "L"
        got = str(x)
        expected = self.slow_format(x, 10)
        msg = Frm("%s returned %r but expected %r for %r",
            mapper.__name__, got, expected, x)
        self.assertEqual(got, expected, msg)

    def test_format(self):
        for x in special:
            self.check_format_1(x)
        for i in xrange(10):
            for lenx in xrange(1, MAXDIGITS+1):
                x = self.getran(lenx)
                self.check_format_1(x)

    def test_misc(self):
        import sys

        # check the extremes in int<->long conversion
        hugepos = sys.maxint
        hugeneg = -hugepos - 1
        hugepos_aslong = int(hugepos)
        hugeneg_aslong = int(hugeneg)
        self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxint) != sys.maxint")
        self.assertEqual(hugeneg, hugeneg_aslong,
            "long(-sys.maxint-1) != -sys.maxint-1")

        # long -> int should not fail for hugepos_aslong or hugeneg_aslong
        x = int(hugepos_aslong)
        try:
            self.assertEqual(x, hugepos,
                  "converting sys.maxint to long and back to int fails")
        except OverflowError:
            self.fail("int(long(sys.maxint)) overflowed!")
        if not isinstance(x, int):
            raise TestFailed("int(long(sys.maxint)) should have returned int")
        x = int(hugeneg_aslong)
        try:
            self.assertEqual(x, hugeneg,
                  "converting -sys.maxint-1 to long and back to int fails")
        except OverflowError:
            self.fail("int(long(-sys.maxint-1)) overflowed!")
        if not isinstance(x, int):
            raise TestFailed("int(long(-sys.maxint-1)) should have "
                             "returned int")
        # but long -> int should overflow for hugepos+1 and hugeneg-1
        x = hugepos_aslong + 1
        try:
            y = int(x)
        except OverflowError:
            self.fail("int(long(sys.maxint) + 1) mustn't overflow")
        self.assert_(isinstance(y, int),
            "int(long(sys.maxint) + 1) should have returned long")

        x = hugeneg_aslong - 1
        try:
            y = int(x)
        except OverflowError:
            self.fail("int(long(-sys.maxint-1) - 1) mustn't overflow")
        self.assert_(isinstance(y, int),
               "int(long(-sys.maxint-1) - 1) should have returned long")

        class long2(int):
            pass
        x = long2(1<<100)
        y = int(x)
        self.assert_(type(y) is int,
            "overflowing int conversion must return long not long subtype")

        # long -> Py_ssize_t conversion
        class X(object):
            def __getslice__(self, i, j):
                return i, j

        self.assertEqual(X()[-5:7], (-5, 7))
        # use the clamping effect to test the smallest and largest longs
        # that fit a Py_ssize_t
        slicemin, slicemax = X()[-2**100:2**100]
        self.assertEqual(X()[slicemin:slicemax], (slicemin, slicemax))

# ----------------------------------- tests of auto int->long conversion

    def test_auto_overflow(self):
        import math, sys

        special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1]
        sqrt = int(math.sqrt(sys.maxint))
        special.extend([sqrt-1, sqrt, sqrt+1])
        special.extend([-i for i in special])

        def checkit(*args):
            # Heavy use of nested scopes here!
            self.assertEqual(got, expected,
                Frm("for %r expected %r got %r", args, expected, got))

        for x in special:
            longx = int(x)

            expected = -longx
            got = -x
            checkit('-', x)

            for y in special:
                longy = int(y)

                expected = longx + longy
                got = x + y
                checkit(x, '+', y)

                expected = longx - longy
                got = x - y
                checkit(x, '-', y)

                expected = longx * longy
                got = x * y
                checkit(x, '*', y)

                if y:
                    expected = longx / longy
                    got = x / y
                    checkit(x, '/', y)

                    expected = longx // longy
                    got = x // y
                    checkit(x, '//', y)

                    expected = divmod(longx, longy)
                    got = divmod(longx, longy)
                    checkit(x, 'divmod', y)

                if abs(y) < 5 and not (x == 0 and y < 0):
                    expected = longx ** longy
                    got = x ** y
                    checkit(x, '**', y)

                    for z in special:
                        if z != 0 :
                            if y >= 0:
                                expected = pow(longx, longy, int(z))
                                got = pow(x, y, z)
                                checkit('pow', x, y, '%', z)
                            else:
                                self.assertRaises(TypeError, pow,longx, longy, int(z))

    def test_float_overflow(self):
        import math

        for x in -2.0, -1.0, 0.0, 1.0, 2.0:
            self.assertEqual(float(int(x)), x)

        shuge = '12345' * 120
        huge = 1 << 30000
        mhuge = -huge
        namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
        for test in ["float(huge)", "float(mhuge)",
                     "complex(huge)", "complex(mhuge)",
                     "complex(huge, 1)", "complex(mhuge, 1)",
                     "complex(1, huge)", "complex(1, mhuge)",
                     "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
                     "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
                     "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
                     "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
                     "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
                     "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
                     "math.sin(huge)", "math.sin(mhuge)",
                     "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
                     "math.floor(huge)", "math.floor(mhuge)"]:

            self.assertRaises(OverflowError, eval, test, namespace)

            # XXX Perhaps float(shuge) can raise OverflowError on some box?
            # The comparison should not.
            self.assertNotEqual(float(shuge), int(shuge),
                "float(shuge) should not equal int(shuge)")

    def test_logs(self):
        import math

        LOG10E = math.log10(math.e)

        for exp in range(10) + [100, 1000, 10000]:
            value = 10 ** exp
            log10 = math.log10(value)
            self.assertAlmostEqual(log10, exp)

            # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
            # exp/LOG10E
            expected = exp / LOG10E
            log = math.log(value)
            self.assertAlmostEqual(log, expected)

        for bad in -(1 << 10000), -2, 0:
            self.assertRaises(ValueError, math.log, bad)
            self.assertRaises(ValueError, math.log10, bad)

    def test_mixed_compares(self):
        eq = self.assertEqual
        import math
        import sys

        # We're mostly concerned with that mixing floats and longs does the
        # right stuff, even when longs are too large to fit in a float.
        # The safest way to check the results is to use an entirely different
        # method, which we do here via a skeletal rational class (which
        # represents all Python ints, longs and floats exactly).
        class Rat:
            def __init__(self, value):
                if isinstance(value, int):
                    self.n = value
                    self.d = 1
                elif isinstance(value, float):
                    # Convert to exact rational equivalent.
                    f, e = math.frexp(abs(value))
                    assert f == 0 or 0.5 <= f < 1.0
                    # |value| = f * 2**e exactly

                    # Suck up CHUNK bits at a time; 28 is enough so that we suck
                    # up all bits in 2 iterations for all known binary double-
                    # precision formats, and small enough to fit in an int.
                    CHUNK = 28
                    top = 0
                    # invariant: |value| = (top + f) * 2**e exactly
                    while f:
                        f = math.ldexp(f, CHUNK)
                        digit = int(f)
                        assert digit >> CHUNK == 0
                        top = (top << CHUNK) | digit
                        f -= digit
                        assert 0.0 <= f < 1.0
                        e -= CHUNK

                    # Now |value| = top * 2**e exactly.
                    if e >= 0:
                        n = top << e
                        d = 1
                    else:
                        n = top
                        d = 1 << -e
                    if value < 0:
                        n = -n
                    self.n = n
                    self.d = d
                    assert float(n) / float(d) == value
                else:
                    raise TypeError("can't deal with %r" % val)

            def __cmp__(self, other):
                if not isinstance(other, Rat):
                    other = Rat(other)
                return cmp(self.n * other.d, self.d * other.n)

        cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
        # 2**48 is an important boundary in the internals.  2**53 is an
        # important boundary for IEEE double precision.
        for t in 2.0**48, 2.0**50, 2.0**53:
            cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
                          int(t-1), int(t), int(t+1)])
        cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)])
        # 1L<<20000 should exceed all double formats.  long(1e200) is to
        # check that we get equality with 1e200 above.
        t = int(1e200)
        cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
        cases.extend([-x for x in cases])
        for x in cases:
            Rx = Rat(x)
            for y in cases:
                Ry = Rat(y)
                Rcmp = cmp(Rx, Ry)
                xycmp = cmp(x, y)
                eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp))
                eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp))
                eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp))
                eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp))
                eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp))
                eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp))
                eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp))

def test_main():
    test_support.run_unittest(LongTest)

if __name__ == "__main__":
    test_main()