1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
|
import unittest
from test import support
import sys
import random
import math
# Used for lazy formatting of failure messages
class Frm(object):
def __init__(self, format, *args):
self.format = format
self.args = args
def __str__(self):
return self.format % self.args
# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = sys.int_info.bits_per_digit
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70 # from longobject.c
# Max number of base BASE digits to use in test cases. Doubling
# this will more than double the runtime.
MAXDIGITS = 15
# build some special values
special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa]
# some solid strings of one bits
p2 = 4 # 0 and 1 already added
for i in range(2*SHIFT):
special.append(p2 - 1)
p2 = p2 << 1
del p2
# add complements & negations
special += [~x for x in special] + [-x for x in special]
L = [
('0', 0),
('1', 1),
('9', 9),
('10', 10),
('99', 99),
('100', 100),
('314', 314),
(' 314', 314),
('314 ', 314),
(' \t\t 314 \t\t ', 314),
(repr(sys.maxsize), sys.maxsize),
(' 1x', ValueError),
(' 1 ', 1),
(' 1\02 ', ValueError),
('', ValueError),
(' ', ValueError),
(' \t\t ', ValueError)
]
class LongTest(unittest.TestCase):
# Get quasi-random long consisting of ndigits digits (in base BASE).
# quasi == the most-significant digit will not be 0, and the number
# is constructed to contain long strings of 0 and 1 bits. These are
# more likely than random bits to provoke digit-boundary errors.
# The sign of the number is also random.
def getran(self, ndigits):
self.assertTrue(ndigits > 0)
nbits_hi = ndigits * SHIFT
nbits_lo = nbits_hi - SHIFT + 1
answer = 0
nbits = 0
r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start
while nbits < nbits_lo:
bits = (r >> 1) + 1
bits = min(bits, nbits_hi - nbits)
self.assertTrue(1 <= bits <= SHIFT)
nbits = nbits + bits
answer = answer << bits
if r & 1:
answer = answer | ((1 << bits) - 1)
r = int(random.random() * (SHIFT * 2))
self.assertTrue(nbits_lo <= nbits <= nbits_hi)
if random.random() < 0.5:
answer = -answer
return answer
# Get random long consisting of ndigits random digits (relative to base
# BASE). The sign bit is also random.
def getran2(ndigits):
answer = 0
for i in range(ndigits):
answer = (answer << SHIFT) | random.randint(0, MASK)
if random.random() < 0.5:
answer = -answer
return answer
def check_division(self, x, y):
eq = self.assertEqual
q, r = divmod(x, y)
q2, r2 = x//y, x%y
pab, pba = x*y, y*x
eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y))
eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y))
eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y))
eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y))
if y > 0:
self.assertTrue(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y))
else:
self.assertTrue(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y))
def test_division(self):
digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 14))
digits.append(KARATSUBA_CUTOFF * 3)
for lenx in digits:
x = self.getran(lenx)
for leny in digits:
y = self.getran(leny) or 1
self.check_division(x, y)
# specific numbers chosen to exercise corner cases of the
# current long division implementation
# 30-bit cases involving a quotient digit estimate of BASE+1
self.check_division(1231948412290879395966702881,
1147341367131428698)
self.check_division(815427756481275430342312021515587883,
707270836069027745)
self.check_division(627976073697012820849443363563599041,
643588798496057020)
self.check_division(1115141373653752303710932756325578065,
1038556335171453937726882627)
# 30-bit cases that require the post-subtraction correction step
self.check_division(922498905405436751940989320930368494,
949985870686786135626943396)
self.check_division(768235853328091167204009652174031844,
1091555541180371554426545266)
# 15-bit cases involving a quotient digit estimate of BASE+1
self.check_division(20172188947443, 615611397)
self.check_division(1020908530270155025, 950795710)
self.check_division(128589565723112408, 736393718)
self.check_division(609919780285761575, 18613274546784)
# 15-bit cases that require the post-subtraction correction step
self.check_division(710031681576388032, 26769404391308)
self.check_division(1933622614268221, 30212853348836)
def test_karatsuba(self):
digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 10))
digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
bits = [digit * SHIFT for digit in digits]
# Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
# 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
for abits in bits:
a = (1 << abits) - 1
for bbits in bits:
if bbits < abits:
continue
b = (1 << bbits) - 1
x = a * b
y = ((1 << (abits + bbits)) -
(1 << abits) -
(1 << bbits) +
1)
self.assertEqual(x, y,
Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y))
def check_bitop_identities_1(self, x):
eq = self.assertEqual
eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x))
eq(x | 0, x, Frm("x | 0 != x for x=%r", x))
eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x))
eq(x & -1, x, Frm("x & -1 != x for x=%r", x))
eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x))
eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x))
eq(x, ~~x, Frm("x != ~~x for x=%r", x))
eq(x & x, x, Frm("x & x != x for x=%r", x))
eq(x | x, x, Frm("x | x != x for x=%r", x))
eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x))
eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x))
eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x))
eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x))
eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x))
eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x))
for n in range(2*SHIFT):
p2 = 2 ** n
eq(x << n >> n, x,
Frm("x << n >> n != x for x=%r, n=%r", (x, n)))
eq(x // p2, x >> n,
Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2)))
eq(x * p2, x << n,
Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2)))
eq(x & -p2, x >> n << n,
Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2)))
eq(x & -p2, x & ~(p2 - 1),
Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2)))
def check_bitop_identities_2(self, x, y):
eq = self.assertEqual
eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y)))
eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y)))
eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y)))
eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y)))
eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y)))
eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y)))
eq(x ^ y, (x | y) & ~(x & y),
Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y)))
eq(x ^ y, (x & ~y) | (~x & y),
Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y)))
eq(x ^ y, (x | y) & (~x | ~y),
Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y)))
def check_bitop_identities_3(self, x, y, z):
eq = self.assertEqual
eq((x & y) & z, x & (y & z),
Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z)))
eq((x | y) | z, x | (y | z),
Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z)))
eq((x ^ y) ^ z, x ^ (y ^ z),
Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z)))
eq(x & (y | z), (x & y) | (x & z),
Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z)))
eq(x | (y & z), (x | y) & (x | z),
Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z)))
def test_bitop_identities(self):
for x in special:
self.check_bitop_identities_1(x)
digits = range(1, MAXDIGITS+1)
for lenx in digits:
x = self.getran(lenx)
self.check_bitop_identities_1(x)
for leny in digits:
y = self.getran(leny)
self.check_bitop_identities_2(x, y)
self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))
def slow_format(self, x, base):
digits = []
sign = 0
if x < 0:
sign, x = 1, -x
while x:
x, r = divmod(x, base)
digits.append(int(r))
digits.reverse()
digits = digits or [0]
return '-'[:sign] + \
{2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \
"".join(map(lambda i: "0123456789abcdef"[i], digits))
def check_format_1(self, x):
for base, mapper in (8, oct), (10, repr), (16, hex):
got = mapper(x)
expected = self.slow_format(x, base)
msg = Frm("%s returned %r but expected %r for %r",
mapper.__name__, got, expected, x)
self.assertEqual(got, expected, msg)
self.assertEqual(int(got, 0), x, Frm('long("%s", 0) != %r', got, x))
# str() has to be checked a little differently since there's no
# trailing "L"
got = str(x)
expected = self.slow_format(x, 10)
msg = Frm("%s returned %r but expected %r for %r",
mapper.__name__, got, expected, x)
self.assertEqual(got, expected, msg)
def test_format(self):
for x in special:
self.check_format_1(x)
for i in range(10):
for lenx in range(1, MAXDIGITS+1):
x = self.getran(lenx)
self.check_format_1(x)
def test_long(self):
self.assertEqual(int(314), 314)
self.assertEqual(int(3.14), 3)
self.assertEqual(int(314), 314)
# Check that conversion from float truncates towards zero
self.assertEqual(int(-3.14), -3)
self.assertEqual(int(3.9), 3)
self.assertEqual(int(-3.9), -3)
self.assertEqual(int(3.5), 3)
self.assertEqual(int(-3.5), -3)
self.assertEqual(int("-3"), -3)
# Different base:
self.assertEqual(int("10",16), 16)
# Check conversions from string (same test set as for int(), and then some)
LL = [
('1' + '0'*20, 10**20),
('1' + '0'*100, 10**100)
]
L2 = L[:]
for s, v in L2 + LL:
for sign in "", "+", "-":
for prefix in "", " ", "\t", " \t\t ":
ss = prefix + sign + s
vv = v
if sign == "-" and v is not ValueError:
vv = -v
try:
self.assertEqual(int(ss), int(vv))
except ValueError:
pass
self.assertRaises(ValueError, int, '123\0')
self.assertRaises(ValueError, int, '53', 40)
# trailing L should no longer be accepted...
self.assertRaises(ValueError, int, '123L')
self.assertRaises(ValueError, int, '123l')
self.assertRaises(ValueError, int, '0L')
self.assertRaises(ValueError, int, '-37L')
self.assertRaises(ValueError, int, '0x32L', 16)
self.assertRaises(ValueError, int, '1L', 21)
# ... but it's just a normal digit if base >= 22
self.assertEqual(int('1L', 22), 43)
self.assertRaises(TypeError, int, 1, 12)
# SF patch #1638879: embedded NULs were not detected with
# explicit base
self.assertRaises(ValueError, int, '123\0', 10)
self.assertRaises(ValueError, int, '123\x00 245', 20)
self.assertEqual(int('100000000000000000000000000000000', 2),
4294967296)
self.assertEqual(int('102002022201221111211', 3), 4294967296)
self.assertEqual(int('10000000000000000', 4), 4294967296)
self.assertEqual(int('32244002423141', 5), 4294967296)
self.assertEqual(int('1550104015504', 6), 4294967296)
self.assertEqual(int('211301422354', 7), 4294967296)
self.assertEqual(int('40000000000', 8), 4294967296)
self.assertEqual(int('12068657454', 9), 4294967296)
self.assertEqual(int('4294967296', 10), 4294967296)
self.assertEqual(int('1904440554', 11), 4294967296)
self.assertEqual(int('9ba461594', 12), 4294967296)
self.assertEqual(int('535a79889', 13), 4294967296)
self.assertEqual(int('2ca5b7464', 14), 4294967296)
self.assertEqual(int('1a20dcd81', 15), 4294967296)
self.assertEqual(int('100000000', 16), 4294967296)
self.assertEqual(int('a7ffda91', 17), 4294967296)
self.assertEqual(int('704he7g4', 18), 4294967296)
self.assertEqual(int('4f5aff66', 19), 4294967296)
self.assertEqual(int('3723ai4g', 20), 4294967296)
self.assertEqual(int('281d55i4', 21), 4294967296)
self.assertEqual(int('1fj8b184', 22), 4294967296)
self.assertEqual(int('1606k7ic', 23), 4294967296)
self.assertEqual(int('mb994ag', 24), 4294967296)
self.assertEqual(int('hek2mgl', 25), 4294967296)
self.assertEqual(int('dnchbnm', 26), 4294967296)
self.assertEqual(int('b28jpdm', 27), 4294967296)
self.assertEqual(int('8pfgih4', 28), 4294967296)
self.assertEqual(int('76beigg', 29), 4294967296)
self.assertEqual(int('5qmcpqg', 30), 4294967296)
self.assertEqual(int('4q0jto4', 31), 4294967296)
self.assertEqual(int('4000000', 32), 4294967296)
self.assertEqual(int('3aokq94', 33), 4294967296)
self.assertEqual(int('2qhxjli', 34), 4294967296)
self.assertEqual(int('2br45qb', 35), 4294967296)
self.assertEqual(int('1z141z4', 36), 4294967296)
self.assertEqual(int('100000000000000000000000000000001', 2),
4294967297)
self.assertEqual(int('102002022201221111212', 3), 4294967297)
self.assertEqual(int('10000000000000001', 4), 4294967297)
self.assertEqual(int('32244002423142', 5), 4294967297)
self.assertEqual(int('1550104015505', 6), 4294967297)
self.assertEqual(int('211301422355', 7), 4294967297)
self.assertEqual(int('40000000001', 8), 4294967297)
self.assertEqual(int('12068657455', 9), 4294967297)
self.assertEqual(int('4294967297', 10), 4294967297)
self.assertEqual(int('1904440555', 11), 4294967297)
self.assertEqual(int('9ba461595', 12), 4294967297)
self.assertEqual(int('535a7988a', 13), 4294967297)
self.assertEqual(int('2ca5b7465', 14), 4294967297)
self.assertEqual(int('1a20dcd82', 15), 4294967297)
self.assertEqual(int('100000001', 16), 4294967297)
self.assertEqual(int('a7ffda92', 17), 4294967297)
self.assertEqual(int('704he7g5', 18), 4294967297)
self.assertEqual(int('4f5aff67', 19), 4294967297)
self.assertEqual(int('3723ai4h', 20), 4294967297)
self.assertEqual(int('281d55i5', 21), 4294967297)
self.assertEqual(int('1fj8b185', 22), 4294967297)
self.assertEqual(int('1606k7id', 23), 4294967297)
self.assertEqual(int('mb994ah', 24), 4294967297)
self.assertEqual(int('hek2mgm', 25), 4294967297)
self.assertEqual(int('dnchbnn', 26), 4294967297)
self.assertEqual(int('b28jpdn', 27), 4294967297)
self.assertEqual(int('8pfgih5', 28), 4294967297)
self.assertEqual(int('76beigh', 29), 4294967297)
self.assertEqual(int('5qmcpqh', 30), 4294967297)
self.assertEqual(int('4q0jto5', 31), 4294967297)
self.assertEqual(int('4000001', 32), 4294967297)
self.assertEqual(int('3aokq95', 33), 4294967297)
self.assertEqual(int('2qhxjlj', 34), 4294967297)
self.assertEqual(int('2br45qc', 35), 4294967297)
self.assertEqual(int('1z141z5', 36), 4294967297)
# tests with base 0
self.assertEqual(int('000', 0), 0)
self.assertEqual(int('0o123', 0), 83)
self.assertEqual(int('0x123', 0), 291)
self.assertEqual(int('0b100', 0), 4)
self.assertEqual(int(' 0O123 ', 0), 83)
self.assertEqual(int(' 0X123 ', 0), 291)
self.assertEqual(int(' 0B100 ', 0), 4)
self.assertEqual(int('0', 0), 0)
self.assertEqual(int('+0', 0), 0)
self.assertEqual(int('-0', 0), 0)
self.assertEqual(int('00', 0), 0)
self.assertRaises(ValueError, int, '08', 0)
self.assertRaises(ValueError, int, '-012395', 0)
def test_conversion(self):
# Test __int__()
class ClassicMissingMethods:
pass
self.assertRaises(TypeError, int, ClassicMissingMethods())
class MissingMethods(object):
pass
self.assertRaises(TypeError, int, MissingMethods())
class Foo0:
def __int__(self):
return 42
class Foo1(object):
def __int__(self):
return 42
class Foo2(int):
def __int__(self):
return 42
class Foo3(int):
def __int__(self):
return self
class Foo4(int):
def __int__(self):
return 42
class Foo5(int):
def __int__(self):
return 42.
self.assertEqual(int(Foo0()), 42)
self.assertEqual(int(Foo1()), 42)
self.assertEqual(int(Foo2()), 42)
self.assertEqual(int(Foo3()), 0)
self.assertEqual(int(Foo4()), 42)
self.assertRaises(TypeError, int, Foo5())
class Classic:
pass
for base in (object, Classic):
class IntOverridesTrunc(base):
def __int__(self):
return 42
def __trunc__(self):
return -12
self.assertEqual(int(IntOverridesTrunc()), 42)
class JustTrunc(base):
def __trunc__(self):
return 42
self.assertEqual(int(JustTrunc()), 42)
class JustLong(base):
# test that __long__ no longer used in 3.x
def __long__(self):
return 42
self.assertRaises(TypeError, int, JustLong())
class LongTrunc(base):
# __long__ should be ignored in 3.x
def __long__(self):
return 42
def __trunc__(self):
return 1729
self.assertEqual(int(LongTrunc()), 1729)
for trunc_result_base in (object, Classic):
class Integral(trunc_result_base):
def __int__(self):
return 42
class TruncReturnsNonLong(base):
def __trunc__(self):
return Integral()
self.assertEqual(int(TruncReturnsNonLong()), 42)
class NonIntegral(trunc_result_base):
def __trunc__(self):
# Check that we avoid infinite recursion.
return NonIntegral()
class TruncReturnsNonIntegral(base):
def __trunc__(self):
return NonIntegral()
try:
int(TruncReturnsNonIntegral())
except TypeError as e:
self.assertEquals(str(e),
"__trunc__ returned non-Integral"
" (type NonIntegral)")
else:
self.fail("Failed to raise TypeError with %s" %
((base, trunc_result_base),))
def test_misc(self):
# check the extremes in int<->long conversion
hugepos = sys.maxsize
hugeneg = -hugepos - 1
hugepos_aslong = int(hugepos)
hugeneg_aslong = int(hugeneg)
self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxsize) != sys.maxsize")
self.assertEqual(hugeneg, hugeneg_aslong,
"long(-sys.maxsize-1) != -sys.maxsize-1")
# long -> int should not fail for hugepos_aslong or hugeneg_aslong
x = int(hugepos_aslong)
try:
self.assertEqual(x, hugepos,
"converting sys.maxsize to long and back to int fails")
except OverflowError:
self.fail("int(long(sys.maxsize)) overflowed!")
if not isinstance(x, int):
raise TestFailed("int(long(sys.maxsize)) should have returned int")
x = int(hugeneg_aslong)
try:
self.assertEqual(x, hugeneg,
"converting -sys.maxsize-1 to long and back to int fails")
except OverflowError:
self.fail("int(long(-sys.maxsize-1)) overflowed!")
if not isinstance(x, int):
raise TestFailed("int(long(-sys.maxsize-1)) should have "
"returned int")
# but long -> int should overflow for hugepos+1 and hugeneg-1
x = hugepos_aslong + 1
try:
y = int(x)
except OverflowError:
self.fail("int(long(sys.maxsize) + 1) mustn't overflow")
self.assertTrue(isinstance(y, int),
"int(long(sys.maxsize) + 1) should have returned long")
x = hugeneg_aslong - 1
try:
y = int(x)
except OverflowError:
self.fail("int(long(-sys.maxsize-1) - 1) mustn't overflow")
self.assertTrue(isinstance(y, int),
"int(long(-sys.maxsize-1) - 1) should have returned long")
class long2(int):
pass
x = long2(1<<100)
y = int(x)
self.assertTrue(type(y) is int,
"overflowing int conversion must return long not long subtype")
# ----------------------------------- tests of auto int->long conversion
def test_auto_overflow(self):
import math, sys
special = [0, 1, 2, 3, sys.maxsize-1, sys.maxsize, sys.maxsize+1]
sqrt = int(math.sqrt(sys.maxsize))
special.extend([sqrt-1, sqrt, sqrt+1])
special.extend([-i for i in special])
def checkit(*args):
# Heavy use of nested scopes here!
self.assertEqual(got, expected,
Frm("for %r expected %r got %r", args, expected, got))
for x in special:
longx = int(x)
expected = -longx
got = -x
checkit('-', x)
for y in special:
longy = int(y)
expected = longx + longy
got = x + y
checkit(x, '+', y)
expected = longx - longy
got = x - y
checkit(x, '-', y)
expected = longx * longy
got = x * y
checkit(x, '*', y)
if y:
expected = longx / longy
got = x / y
checkit(x, '/', y)
expected = longx // longy
got = x // y
checkit(x, '//', y)
expected = divmod(longx, longy)
got = divmod(longx, longy)
checkit(x, 'divmod', y)
if abs(y) < 5 and not (x == 0 and y < 0):
expected = longx ** longy
got = x ** y
checkit(x, '**', y)
for z in special:
if z != 0 :
if y >= 0:
expected = pow(longx, longy, int(z))
got = pow(x, y, z)
checkit('pow', x, y, '%', z)
else:
self.assertRaises(TypeError, pow,longx, longy, int(z))
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
def test_float_conversion(self):
import sys
DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MANT_DIG = sys.float_info.mant_dig
exact_values = [0, 1, 2,
2**53-3,
2**53-2,
2**53-1,
2**53,
2**53+2,
2**54-4,
2**54-2,
2**54,
2**54+4]
for x in exact_values:
self.assertEqual(float(x), x)
self.assertEqual(float(-x), -x)
# test round-half-even
for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]:
for p in range(15):
self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y))
for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8),
(7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12),
(13, 12), (14, 16), (15, 16)]:
for p in range(15):
self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y))
# behaviour near extremes of floating-point range
int_dbl_max = int(DBL_MAX)
top_power = 2**DBL_MAX_EXP
halfway = (int_dbl_max + top_power)//2
self.assertEqual(float(int_dbl_max), DBL_MAX)
self.assertEqual(float(int_dbl_max+1), DBL_MAX)
self.assertEqual(float(halfway-1), DBL_MAX)
self.assertRaises(OverflowError, float, halfway)
self.assertEqual(float(1-halfway), -DBL_MAX)
self.assertRaises(OverflowError, float, -halfway)
self.assertRaises(OverflowError, float, top_power-1)
self.assertRaises(OverflowError, float, top_power)
self.assertRaises(OverflowError, float, top_power+1)
self.assertRaises(OverflowError, float, 2*top_power-1)
self.assertRaises(OverflowError, float, 2*top_power)
self.assertRaises(OverflowError, float, top_power*top_power)
for p in range(100):
x = 2**p * (2**53 + 1) + 1
y = 2**p * (2**53 + 2)
self.assertEqual(int(float(x)), y)
x = 2**p * (2**53 + 1)
y = 2**p * 2**53
self.assertEqual(int(float(x)), y)
def test_float_overflow(self):
import math
for x in -2.0, -1.0, 0.0, 1.0, 2.0:
self.assertEqual(float(int(x)), x)
shuge = '12345' * 120
huge = 1 << 30000
mhuge = -huge
namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
for test in ["float(huge)", "float(mhuge)",
"complex(huge)", "complex(mhuge)",
"complex(huge, 1)", "complex(mhuge, 1)",
"complex(1, huge)", "complex(1, mhuge)",
"1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
"1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
"1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
"1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
"1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
"1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
"math.sin(huge)", "math.sin(mhuge)",
"math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
# math.floor() of an int returns an int now
##"math.floor(huge)", "math.floor(mhuge)",
]:
self.assertRaises(OverflowError, eval, test, namespace)
# XXX Perhaps float(shuge) can raise OverflowError on some box?
# The comparison should not.
self.assertNotEqual(float(shuge), int(shuge),
"float(shuge) should not equal int(shuge)")
def test_logs(self):
import math
LOG10E = math.log10(math.e)
for exp in list(range(10)) + [100, 1000, 10000]:
value = 10 ** exp
log10 = math.log10(value)
self.assertAlmostEqual(log10, exp)
# log10(value) == exp, so log(value) == log10(value)/log10(e) ==
# exp/LOG10E
expected = exp / LOG10E
log = math.log(value)
self.assertAlmostEqual(log, expected)
for bad in -(1 << 10000), -2, 0:
self.assertRaises(ValueError, math.log, bad)
self.assertRaises(ValueError, math.log10, bad)
def test_mixed_compares(self):
eq = self.assertEqual
import math
# We're mostly concerned with that mixing floats and longs does the
# right stuff, even when longs are too large to fit in a float.
# The safest way to check the results is to use an entirely different
# method, which we do here via a skeletal rational class (which
# represents all Python ints, longs and floats exactly).
class Rat:
def __init__(self, value):
if isinstance(value, int):
self.n = value
self.d = 1
elif isinstance(value, float):
# Convert to exact rational equivalent.
f, e = math.frexp(abs(value))
assert f == 0 or 0.5 <= f < 1.0
# |value| = f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: |value| = (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = int(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f -= digit
assert 0.0 <= f < 1.0
e -= CHUNK
# Now |value| = top * 2**e exactly.
if e >= 0:
n = top << e
d = 1
else:
n = top
d = 1 << -e
if value < 0:
n = -n
self.n = n
self.d = d
assert float(n) / float(d) == value
else:
raise TypeError("can't deal with %r" % val)
def _cmp__(self, other):
if not isinstance(other, Rat):
other = Rat(other)
x, y = self.n * other.d, self.d * other.n
return (x > y) - (x < y)
def __eq__(self, other):
return self._cmp__(other) == 0
def __ne__(self, other):
return self._cmp__(other) != 0
def __ge__(self, other):
return self._cmp__(other) >= 0
def __gt__(self, other):
return self._cmp__(other) > 0
def __le__(self, other):
return self._cmp__(other) <= 0
def __lt__(self, other):
return self._cmp__(other) < 0
cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
# 2**48 is an important boundary in the internals. 2**53 is an
# important boundary for IEEE double precision.
for t in 2.0**48, 2.0**50, 2.0**53:
cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
int(t-1), int(t), int(t+1)])
cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)])
# 1L<<20000 should exceed all double formats. long(1e200) is to
# check that we get equality with 1e200 above.
t = int(1e200)
cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
cases.extend([-x for x in cases])
for x in cases:
Rx = Rat(x)
for y in cases:
Ry = Rat(y)
Rcmp = (Rx > Ry) - (Rx < Ry)
xycmp = (x > y) - (x < y)
eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp))
eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp))
eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp))
eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp))
eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp))
eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp))
eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp))
def test__format__(self):
self.assertEqual(format(123456789, 'd'), '123456789')
self.assertEqual(format(123456789, 'd'), '123456789')
# sign and aligning are interdependent
self.assertEqual(format(1, "-"), '1')
self.assertEqual(format(-1, "-"), '-1')
self.assertEqual(format(1, "-3"), ' 1')
self.assertEqual(format(-1, "-3"), ' -1')
self.assertEqual(format(1, "+3"), ' +1')
self.assertEqual(format(-1, "+3"), ' -1')
self.assertEqual(format(1, " 3"), ' 1')
self.assertEqual(format(-1, " 3"), ' -1')
self.assertEqual(format(1, " "), ' 1')
self.assertEqual(format(-1, " "), '-1')
# hex
self.assertEqual(format(3, "x"), "3")
self.assertEqual(format(3, "X"), "3")
self.assertEqual(format(1234, "x"), "4d2")
self.assertEqual(format(-1234, "x"), "-4d2")
self.assertEqual(format(1234, "8x"), " 4d2")
self.assertEqual(format(-1234, "8x"), " -4d2")
self.assertEqual(format(1234, "x"), "4d2")
self.assertEqual(format(-1234, "x"), "-4d2")
self.assertEqual(format(-3, "x"), "-3")
self.assertEqual(format(-3, "X"), "-3")
self.assertEqual(format(int('be', 16), "x"), "be")
self.assertEqual(format(int('be', 16), "X"), "BE")
self.assertEqual(format(-int('be', 16), "x"), "-be")
self.assertEqual(format(-int('be', 16), "X"), "-BE")
# octal
self.assertEqual(format(3, "b"), "11")
self.assertEqual(format(-3, "b"), "-11")
self.assertEqual(format(1234, "b"), "10011010010")
self.assertEqual(format(-1234, "b"), "-10011010010")
self.assertEqual(format(1234, "-b"), "10011010010")
self.assertEqual(format(-1234, "-b"), "-10011010010")
self.assertEqual(format(1234, " b"), " 10011010010")
self.assertEqual(format(-1234, " b"), "-10011010010")
self.assertEqual(format(1234, "+b"), "+10011010010")
self.assertEqual(format(-1234, "+b"), "-10011010010")
# make sure these are errors
self.assertRaises(ValueError, format, 3, "1.3") # precision disallowed
self.assertRaises(ValueError, format, 3, "+c") # sign not allowed
# with 'c'
# ensure that only int and float type specifiers work
for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
[chr(x) for x in range(ord('A'), ord('Z')+1)]):
if not format_spec in 'bcdoxXeEfFgGn%':
self.assertRaises(ValueError, format, 0, format_spec)
self.assertRaises(ValueError, format, 1, format_spec)
self.assertRaises(ValueError, format, -1, format_spec)
self.assertRaises(ValueError, format, 2**100, format_spec)
self.assertRaises(ValueError, format, -(2**100), format_spec)
# ensure that float type specifiers work; format converts
# the int to a float
for format_spec in 'eEfFgG%':
for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]:
self.assertEqual(format(value, format_spec),
format(float(value), format_spec))
def test_nan_inf(self):
self.assertRaises(OverflowError, int, float('inf'))
self.assertRaises(OverflowError, int, float('-inf'))
self.assertRaises(ValueError, int, float('nan'))
def test_true_division(self):
huge = 1 << 40000
mhuge = -huge
self.assertEqual(huge / huge, 1.0)
self.assertEqual(mhuge / mhuge, 1.0)
self.assertEqual(huge / mhuge, -1.0)
self.assertEqual(mhuge / huge, -1.0)
self.assertEqual(1 / huge, 0.0)
self.assertEqual(1 / huge, 0.0)
self.assertEqual(1 / mhuge, 0.0)
self.assertEqual(1 / mhuge, 0.0)
self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
self.assertEqual(huge / (huge << 1), 0.5)
self.assertEqual((1000000 * huge) / huge, 1000000)
namespace = {'huge': huge, 'mhuge': mhuge}
for overflow in ["float(huge)", "float(mhuge)",
"huge / 1", "huge / 2", "huge / -1", "huge / -2",
"mhuge / 100", "mhuge / 200"]:
self.assertRaises(OverflowError, eval, overflow, namespace)
for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge",
"100 / mhuge", "200 / mhuge"]:
result = eval(underflow, namespace)
self.assertEqual(result, 0.0,
"expected underflow to 0 from %r" % underflow)
for zero in ["huge / 0", "mhuge / 0"]:
self.assertRaises(ZeroDivisionError, eval, zero, namespace)
def test_small_ints(self):
for i in range(-5, 257):
self.assertTrue(i is i + 0)
self.assertTrue(i is i * 1)
self.assertTrue(i is i - 0)
self.assertTrue(i is i // 1)
self.assertTrue(i is i & -1)
self.assertTrue(i is i | 0)
self.assertTrue(i is i ^ 0)
self.assertTrue(i is ~~i)
self.assertTrue(i is i**1)
self.assertTrue(i is int(str(i)))
self.assertTrue(i is i<<2>>2, str(i))
# corner cases
i = 1 << 70
self.assertTrue(i - i is 0)
self.assertTrue(0 * i is 0)
def test_bit_length(self):
tiny = 1e-10
for x in range(-65000, 65000):
k = x.bit_length()
# Check equivalence with Python version
self.assertEqual(k, len(bin(x).lstrip('-0b')))
# Behaviour as specified in the docs
if x != 0:
self.assertTrue(2**(k-1) <= abs(x) < 2**k)
else:
self.assertEqual(k, 0)
# Alternative definition: x.bit_length() == 1 + floor(log_2(x))
if x != 0:
# When x is an exact power of 2, numeric errors can
# cause floor(log(x)/log(2)) to be one too small; for
# small x this can be fixed by adding a small quantity
# to the quotient before taking the floor.
self.assertEqual(k, 1 + math.floor(
math.log(abs(x))/math.log(2) + tiny))
self.assertEqual((0).bit_length(), 0)
self.assertEqual((1).bit_length(), 1)
self.assertEqual((-1).bit_length(), 1)
self.assertEqual((2).bit_length(), 2)
self.assertEqual((-2).bit_length(), 2)
for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
a = 2**i
self.assertEqual((a-1).bit_length(), i)
self.assertEqual((1-a).bit_length(), i)
self.assertEqual((a).bit_length(), i+1)
self.assertEqual((-a).bit_length(), i+1)
self.assertEqual((a+1).bit_length(), i+1)
self.assertEqual((-a-1).bit_length(), i+1)
def test_round(self):
# check round-half-even algorithm. For round to nearest ten;
# rounding map is invariant under adding multiples of 20
test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0,
6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10,
15:20, 16:20, 17:20, 18:20, 19:20}
for offset in range(-520, 520, 20):
for k, v in test_dict.items():
got = round(k+offset, -1)
expected = v+offset
self.assertEqual(got, expected)
self.assertTrue(type(got) is int)
# larger second argument
self.assertEqual(round(-150, -2), -200)
self.assertEqual(round(-149, -2), -100)
self.assertEqual(round(-51, -2), -100)
self.assertEqual(round(-50, -2), 0)
self.assertEqual(round(-49, -2), 0)
self.assertEqual(round(-1, -2), 0)
self.assertEqual(round(0, -2), 0)
self.assertEqual(round(1, -2), 0)
self.assertEqual(round(49, -2), 0)
self.assertEqual(round(50, -2), 0)
self.assertEqual(round(51, -2), 100)
self.assertEqual(round(149, -2), 100)
self.assertEqual(round(150, -2), 200)
self.assertEqual(round(250, -2), 200)
self.assertEqual(round(251, -2), 300)
self.assertEqual(round(172500, -3), 172000)
self.assertEqual(round(173500, -3), 174000)
self.assertEqual(round(31415926535, -1), 31415926540)
self.assertEqual(round(31415926535, -2), 31415926500)
self.assertEqual(round(31415926535, -3), 31415927000)
self.assertEqual(round(31415926535, -4), 31415930000)
self.assertEqual(round(31415926535, -5), 31415900000)
self.assertEqual(round(31415926535, -6), 31416000000)
self.assertEqual(round(31415926535, -7), 31420000000)
self.assertEqual(round(31415926535, -8), 31400000000)
self.assertEqual(round(31415926535, -9), 31000000000)
self.assertEqual(round(31415926535, -10), 30000000000)
self.assertEqual(round(31415926535, -11), 0)
self.assertEqual(round(31415926535, -12), 0)
self.assertEqual(round(31415926535, -999), 0)
# should get correct results even for huge inputs
for k in range(10, 100):
got = round(10**k + 324678, -3)
expect = 10**k + 325000
self.assertEqual(got, expect)
self.assertTrue(type(got) is int)
# nonnegative second argument: round(x, n) should just return x
for n in range(5):
for i in range(100):
x = random.randrange(-10000, 10000)
got = round(x, n)
self.assertEqual(got, x)
self.assertTrue(type(got) is int)
for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100:
self.assertEqual(round(8979323, huge_n), 8979323)
# omitted second argument
for i in range(100):
x = random.randrange(-10000, 10000)
got = round(x)
self.assertEqual(got, x)
self.assertTrue(type(got) is int)
# bad second argument
bad_exponents = ('brian', 2.0, 0j, None)
for e in bad_exponents:
self.assertRaises(TypeError, round, 3, e)
def test_main():
support.run_unittest(LongTest)
if __name__ == "__main__":
test_main()
|