1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
|
# Python test set -- math module
# XXXX Should not do tests around zero only
from test.support import run_unittest, verbose, requires_IEEE_754
from test import support
import unittest
import math
import os
import platform
import struct
import sys
import sysconfig
eps = 1E-05
NAN = float('nan')
INF = float('inf')
NINF = float('-inf')
FLOAT_MAX = sys.float_info.max
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
# locate file with test values
if __name__ == '__main__':
file = sys.argv[0]
else:
file = __file__
test_dir = os.path.dirname(file) or os.curdir
math_testcases = os.path.join(test_dir, 'math_testcases.txt')
test_file = os.path.join(test_dir, 'cmath_testcases.txt')
def to_ulps(x):
"""Convert a non-NaN float x to an integer, in such a way that
adjacent floats are converted to adjacent integers. Then
abs(ulps(x) - ulps(y)) gives the difference in ulps between two
floats.
The results from this function will only make sense on platforms
where native doubles are represented in IEEE 754 binary64 format.
Note: 0.0 and -0.0 are converted to 0 and -1, respectively.
"""
n = struct.unpack('<q', struct.pack('<d', x))[0]
if n < 0:
n = ~(n+2**63)
return n
def ulp(x):
"""Return the value of the least significant bit of a
float x, such that the first float bigger than x is x+ulp(x).
Then, given an expected result x and a tolerance of n ulps,
the result y should be such that abs(y-x) <= n * ulp(x).
The results from this function will only make sense on platforms
where native doubles are represented in IEEE 754 binary64 format.
"""
x = abs(float(x))
if math.isnan(x) or math.isinf(x):
return x
# Find next float up from x.
n = struct.unpack('<q', struct.pack('<d', x))[0]
x_next = struct.unpack('<d', struct.pack('<q', n + 1))[0]
if math.isinf(x_next):
# Corner case: x was the largest finite float. Then it's
# not an exact power of two, so we can take the difference
# between x and the previous float.
x_prev = struct.unpack('<d', struct.pack('<q', n - 1))[0]
return x - x_prev
else:
return x_next - x
# Here's a pure Python version of the math.factorial algorithm, for
# documentation and comparison purposes.
#
# Formula:
#
# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
#
# where
#
# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
#
# The outer product above is an infinite product, but once i >= n.bit_length,
# (n >> i) < 1 and the corresponding term of the product is empty. So only the
# finitely many terms for 0 <= i < n.bit_length() contribute anything.
#
# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner
# product in the formula above starts at 1 for i == n.bit_length(); for each i
# < n.bit_length() we get the inner product for i from that for i + 1 by
# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms,
# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
def count_set_bits(n):
"""Number of '1' bits in binary expansion of a nonnnegative integer."""
return 1 + count_set_bits(n & n - 1) if n else 0
def partial_product(start, stop):
"""Product of integers in range(start, stop, 2), computed recursively.
start and stop should both be odd, with start <= stop.
"""
numfactors = (stop - start) >> 1
if not numfactors:
return 1
elif numfactors == 1:
return start
else:
mid = (start + numfactors) | 1
return partial_product(start, mid) * partial_product(mid, stop)
def py_factorial(n):
"""Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
described at http://www.luschny.de/math/factorial/binarysplitfact.html
"""
inner = outer = 1
for i in reversed(range(n.bit_length())):
inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
outer *= inner
return outer << (n - count_set_bits(n))
def ulp_abs_check(expected, got, ulp_tol, abs_tol):
"""Given finite floats `expected` and `got`, check that they're
approximately equal to within the given number of ulps or the
given absolute tolerance, whichever is bigger.
Returns None on success and an error message on failure.
"""
ulp_error = abs(to_ulps(expected) - to_ulps(got))
abs_error = abs(expected - got)
# Succeed if either abs_error <= abs_tol or ulp_error <= ulp_tol.
if abs_error <= abs_tol or ulp_error <= ulp_tol:
return None
else:
fmt = ("error = {:.3g} ({:d} ulps); "
"permitted error = {:.3g} or {:d} ulps")
return fmt.format(abs_error, ulp_error, abs_tol, ulp_tol)
def parse_mtestfile(fname):
"""Parse a file with test values
-- starts a comment
blank lines, or lines containing only a comment, are ignored
other lines are expected to have the form
id fn arg -> expected [flag]*
"""
with open(fname) as fp:
for line in fp:
# strip comments, and skip blank lines
if '--' in line:
line = line[:line.index('--')]
if not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg = lhs.split()
rhs_pieces = rhs.split()
exp = rhs_pieces[0]
flags = rhs_pieces[1:]
yield (id, fn, float(arg), float(exp), flags)
def parse_testfile(fname):
"""Parse a file with test values
Empty lines or lines starting with -- are ignored
yields id, fn, arg_real, arg_imag, exp_real, exp_imag
"""
with open(fname) as fp:
for line in fp:
# skip comment lines and blank lines
if line.startswith('--') or not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg_real, arg_imag = lhs.split()
rhs_pieces = rhs.split()
exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1]
flags = rhs_pieces[2:]
yield (id, fn,
float(arg_real), float(arg_imag),
float(exp_real), float(exp_imag),
flags)
def result_check(expected, got, ulp_tol=5, abs_tol=0.0):
# Common logic of MathTests.(ftest, test_testcases, test_mtestcases)
"""Compare arguments expected and got, as floats, if either
is a float, using a tolerance expressed in multiples of
ulp(expected) or absolutely (if given and greater).
As a convenience, when neither argument is a float, and for
non-finite floats, exact equality is demanded. Also, nan==nan
as far as this function is concerned.
Returns None on success and an error message on failure.
"""
# Check exactly equal (applies also to strings representing exceptions)
if got == expected:
return None
failure = "not equal"
# Turn mixed float and int comparison (e.g. floor()) to all-float
if isinstance(expected, float) and isinstance(got, int):
got = float(got)
elif isinstance(got, float) and isinstance(expected, int):
expected = float(expected)
if isinstance(expected, float) and isinstance(got, float):
if math.isnan(expected) and math.isnan(got):
# Pass, since both nan
failure = None
elif math.isinf(expected) or math.isinf(got):
# We already know they're not equal, drop through to failure
pass
else:
# Both are finite floats (now). Are they close enough?
failure = ulp_abs_check(expected, got, ulp_tol, abs_tol)
# arguments are not equal, and if numeric, are too far apart
if failure is not None:
fail_fmt = "expected {!r}, got {!r}"
fail_msg = fail_fmt.format(expected, got)
fail_msg += ' ({})'.format(failure)
return fail_msg
else:
return None
# Class providing an __index__ method.
class MyIndexable(object):
def __init__(self, value):
self.value = value
def __index__(self):
return self.value
class MathTests(unittest.TestCase):
def ftest(self, name, got, expected, ulp_tol=5, abs_tol=0.0):
"""Compare arguments expected and got, as floats, if either
is a float, using a tolerance expressed in multiples of
ulp(expected) or absolutely, whichever is greater.
As a convenience, when neither argument is a float, and for
non-finite floats, exact equality is demanded. Also, nan==nan
in this function.
"""
failure = result_check(expected, got, ulp_tol, abs_tol)
if failure is not None:
self.fail("{}: {}".format(name, failure))
def testConstants(self):
# Ref: Abramowitz & Stegun (Dover, 1965)
self.ftest('pi', math.pi, 3.141592653589793238462643)
self.ftest('e', math.e, 2.718281828459045235360287)
self.assertEqual(math.tau, 2*math.pi)
def testAcos(self):
self.assertRaises(TypeError, math.acos)
self.ftest('acos(-1)', math.acos(-1), math.pi)
self.ftest('acos(0)', math.acos(0), math.pi/2)
self.ftest('acos(1)', math.acos(1), 0)
self.assertRaises(ValueError, math.acos, INF)
self.assertRaises(ValueError, math.acos, NINF)
self.assertRaises(ValueError, math.acos, 1 + eps)
self.assertRaises(ValueError, math.acos, -1 - eps)
self.assertTrue(math.isnan(math.acos(NAN)))
def testAcosh(self):
self.assertRaises(TypeError, math.acosh)
self.ftest('acosh(1)', math.acosh(1), 0)
self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168)
self.assertRaises(ValueError, math.acosh, 0)
self.assertRaises(ValueError, math.acosh, -1)
self.assertEqual(math.acosh(INF), INF)
self.assertRaises(ValueError, math.acosh, NINF)
self.assertTrue(math.isnan(math.acosh(NAN)))
def testAsin(self):
self.assertRaises(TypeError, math.asin)
self.ftest('asin(-1)', math.asin(-1), -math.pi/2)
self.ftest('asin(0)', math.asin(0), 0)
self.ftest('asin(1)', math.asin(1), math.pi/2)
self.assertRaises(ValueError, math.asin, INF)
self.assertRaises(ValueError, math.asin, NINF)
self.assertRaises(ValueError, math.asin, 1 + eps)
self.assertRaises(ValueError, math.asin, -1 - eps)
self.assertTrue(math.isnan(math.asin(NAN)))
def testAsinh(self):
self.assertRaises(TypeError, math.asinh)
self.ftest('asinh(0)', math.asinh(0), 0)
self.ftest('asinh(1)', math.asinh(1), 0.88137358701954305)
self.ftest('asinh(-1)', math.asinh(-1), -0.88137358701954305)
self.assertEqual(math.asinh(INF), INF)
self.assertEqual(math.asinh(NINF), NINF)
self.assertTrue(math.isnan(math.asinh(NAN)))
def testAtan(self):
self.assertRaises(TypeError, math.atan)
self.ftest('atan(-1)', math.atan(-1), -math.pi/4)
self.ftest('atan(0)', math.atan(0), 0)
self.ftest('atan(1)', math.atan(1), math.pi/4)
self.ftest('atan(inf)', math.atan(INF), math.pi/2)
self.ftest('atan(-inf)', math.atan(NINF), -math.pi/2)
self.assertTrue(math.isnan(math.atan(NAN)))
def testAtanh(self):
self.assertRaises(TypeError, math.atan)
self.ftest('atanh(0)', math.atanh(0), 0)
self.ftest('atanh(0.5)', math.atanh(0.5), 0.54930614433405489)
self.ftest('atanh(-0.5)', math.atanh(-0.5), -0.54930614433405489)
self.assertRaises(ValueError, math.atanh, 1)
self.assertRaises(ValueError, math.atanh, -1)
self.assertRaises(ValueError, math.atanh, INF)
self.assertRaises(ValueError, math.atanh, NINF)
self.assertTrue(math.isnan(math.atanh(NAN)))
def testAtan2(self):
self.assertRaises(TypeError, math.atan2)
self.ftest('atan2(-1, 0)', math.atan2(-1, 0), -math.pi/2)
self.ftest('atan2(-1, 1)', math.atan2(-1, 1), -math.pi/4)
self.ftest('atan2(0, 1)', math.atan2(0, 1), 0)
self.ftest('atan2(1, 1)', math.atan2(1, 1), math.pi/4)
self.ftest('atan2(1, 0)', math.atan2(1, 0), math.pi/2)
# math.atan2(0, x)
self.ftest('atan2(0., -inf)', math.atan2(0., NINF), math.pi)
self.ftest('atan2(0., -2.3)', math.atan2(0., -2.3), math.pi)
self.ftest('atan2(0., -0.)', math.atan2(0., -0.), math.pi)
self.assertEqual(math.atan2(0., 0.), 0.)
self.assertEqual(math.atan2(0., 2.3), 0.)
self.assertEqual(math.atan2(0., INF), 0.)
self.assertTrue(math.isnan(math.atan2(0., NAN)))
# math.atan2(-0, x)
self.ftest('atan2(-0., -inf)', math.atan2(-0., NINF), -math.pi)
self.ftest('atan2(-0., -2.3)', math.atan2(-0., -2.3), -math.pi)
self.ftest('atan2(-0., -0.)', math.atan2(-0., -0.), -math.pi)
self.assertEqual(math.atan2(-0., 0.), -0.)
self.assertEqual(math.atan2(-0., 2.3), -0.)
self.assertEqual(math.atan2(-0., INF), -0.)
self.assertTrue(math.isnan(math.atan2(-0., NAN)))
# math.atan2(INF, x)
self.ftest('atan2(inf, -inf)', math.atan2(INF, NINF), math.pi*3/4)
self.ftest('atan2(inf, -2.3)', math.atan2(INF, -2.3), math.pi/2)
self.ftest('atan2(inf, -0.)', math.atan2(INF, -0.0), math.pi/2)
self.ftest('atan2(inf, 0.)', math.atan2(INF, 0.0), math.pi/2)
self.ftest('atan2(inf, 2.3)', math.atan2(INF, 2.3), math.pi/2)
self.ftest('atan2(inf, inf)', math.atan2(INF, INF), math.pi/4)
self.assertTrue(math.isnan(math.atan2(INF, NAN)))
# math.atan2(NINF, x)
self.ftest('atan2(-inf, -inf)', math.atan2(NINF, NINF), -math.pi*3/4)
self.ftest('atan2(-inf, -2.3)', math.atan2(NINF, -2.3), -math.pi/2)
self.ftest('atan2(-inf, -0.)', math.atan2(NINF, -0.0), -math.pi/2)
self.ftest('atan2(-inf, 0.)', math.atan2(NINF, 0.0), -math.pi/2)
self.ftest('atan2(-inf, 2.3)', math.atan2(NINF, 2.3), -math.pi/2)
self.ftest('atan2(-inf, inf)', math.atan2(NINF, INF), -math.pi/4)
self.assertTrue(math.isnan(math.atan2(NINF, NAN)))
# math.atan2(+finite, x)
self.ftest('atan2(2.3, -inf)', math.atan2(2.3, NINF), math.pi)
self.ftest('atan2(2.3, -0.)', math.atan2(2.3, -0.), math.pi/2)
self.ftest('atan2(2.3, 0.)', math.atan2(2.3, 0.), math.pi/2)
self.assertEqual(math.atan2(2.3, INF), 0.)
self.assertTrue(math.isnan(math.atan2(2.3, NAN)))
# math.atan2(-finite, x)
self.ftest('atan2(-2.3, -inf)', math.atan2(-2.3, NINF), -math.pi)
self.ftest('atan2(-2.3, -0.)', math.atan2(-2.3, -0.), -math.pi/2)
self.ftest('atan2(-2.3, 0.)', math.atan2(-2.3, 0.), -math.pi/2)
self.assertEqual(math.atan2(-2.3, INF), -0.)
self.assertTrue(math.isnan(math.atan2(-2.3, NAN)))
# math.atan2(NAN, x)
self.assertTrue(math.isnan(math.atan2(NAN, NINF)))
self.assertTrue(math.isnan(math.atan2(NAN, -2.3)))
self.assertTrue(math.isnan(math.atan2(NAN, -0.)))
self.assertTrue(math.isnan(math.atan2(NAN, 0.)))
self.assertTrue(math.isnan(math.atan2(NAN, 2.3)))
self.assertTrue(math.isnan(math.atan2(NAN, INF)))
self.assertTrue(math.isnan(math.atan2(NAN, NAN)))
def testCeil(self):
self.assertRaises(TypeError, math.ceil)
self.assertEqual(int, type(math.ceil(0.5)))
self.ftest('ceil(0.5)', math.ceil(0.5), 1)
self.ftest('ceil(1.0)', math.ceil(1.0), 1)
self.ftest('ceil(1.5)', math.ceil(1.5), 2)
self.ftest('ceil(-0.5)', math.ceil(-0.5), 0)
self.ftest('ceil(-1.0)', math.ceil(-1.0), -1)
self.ftest('ceil(-1.5)', math.ceil(-1.5), -1)
#self.assertEqual(math.ceil(INF), INF)
#self.assertEqual(math.ceil(NINF), NINF)
#self.assertTrue(math.isnan(math.ceil(NAN)))
class TestCeil:
def __ceil__(self):
return 42
class TestNoCeil:
pass
self.ftest('ceil(TestCeil())', math.ceil(TestCeil()), 42)
self.assertRaises(TypeError, math.ceil, TestNoCeil())
t = TestNoCeil()
t.__ceil__ = lambda *args: args
self.assertRaises(TypeError, math.ceil, t)
self.assertRaises(TypeError, math.ceil, t, 0)
@requires_IEEE_754
def testCopysign(self):
self.assertEqual(math.copysign(1, 42), 1.0)
self.assertEqual(math.copysign(0., 42), 0.0)
self.assertEqual(math.copysign(1., -42), -1.0)
self.assertEqual(math.copysign(3, 0.), 3.0)
self.assertEqual(math.copysign(4., -0.), -4.0)
self.assertRaises(TypeError, math.copysign)
# copysign should let us distinguish signs of zeros
self.assertEqual(math.copysign(1., 0.), 1.)
self.assertEqual(math.copysign(1., -0.), -1.)
self.assertEqual(math.copysign(INF, 0.), INF)
self.assertEqual(math.copysign(INF, -0.), NINF)
self.assertEqual(math.copysign(NINF, 0.), INF)
self.assertEqual(math.copysign(NINF, -0.), NINF)
# and of infinities
self.assertEqual(math.copysign(1., INF), 1.)
self.assertEqual(math.copysign(1., NINF), -1.)
self.assertEqual(math.copysign(INF, INF), INF)
self.assertEqual(math.copysign(INF, NINF), NINF)
self.assertEqual(math.copysign(NINF, INF), INF)
self.assertEqual(math.copysign(NINF, NINF), NINF)
self.assertTrue(math.isnan(math.copysign(NAN, 1.)))
self.assertTrue(math.isnan(math.copysign(NAN, INF)))
self.assertTrue(math.isnan(math.copysign(NAN, NINF)))
self.assertTrue(math.isnan(math.copysign(NAN, NAN)))
# copysign(INF, NAN) may be INF or it may be NINF, since
# we don't know whether the sign bit of NAN is set on any
# given platform.
self.assertTrue(math.isinf(math.copysign(INF, NAN)))
# similarly, copysign(2., NAN) could be 2. or -2.
self.assertEqual(abs(math.copysign(2., NAN)), 2.)
def testCos(self):
self.assertRaises(TypeError, math.cos)
self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=ulp(1))
self.ftest('cos(0)', math.cos(0), 1)
self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=ulp(1))
self.ftest('cos(pi)', math.cos(math.pi), -1)
try:
self.assertTrue(math.isnan(math.cos(INF)))
self.assertTrue(math.isnan(math.cos(NINF)))
except ValueError:
self.assertRaises(ValueError, math.cos, INF)
self.assertRaises(ValueError, math.cos, NINF)
self.assertTrue(math.isnan(math.cos(NAN)))
def testCosh(self):
self.assertRaises(TypeError, math.cosh)
self.ftest('cosh(0)', math.cosh(0), 1)
self.ftest('cosh(2)-2*cosh(1)**2', math.cosh(2)-2*math.cosh(1)**2, -1) # Thanks to Lambert
self.assertEqual(math.cosh(INF), INF)
self.assertEqual(math.cosh(NINF), INF)
self.assertTrue(math.isnan(math.cosh(NAN)))
def testDegrees(self):
self.assertRaises(TypeError, math.degrees)
self.ftest('degrees(pi)', math.degrees(math.pi), 180.0)
self.ftest('degrees(pi/2)', math.degrees(math.pi/2), 90.0)
self.ftest('degrees(-pi/4)', math.degrees(-math.pi/4), -45.0)
self.ftest('degrees(0)', math.degrees(0), 0)
def testExp(self):
self.assertRaises(TypeError, math.exp)
self.ftest('exp(-1)', math.exp(-1), 1/math.e)
self.ftest('exp(0)', math.exp(0), 1)
self.ftest('exp(1)', math.exp(1), math.e)
self.assertEqual(math.exp(INF), INF)
self.assertEqual(math.exp(NINF), 0.)
self.assertTrue(math.isnan(math.exp(NAN)))
self.assertRaises(OverflowError, math.exp, 1000000)
def testFabs(self):
self.assertRaises(TypeError, math.fabs)
self.ftest('fabs(-1)', math.fabs(-1), 1)
self.ftest('fabs(0)', math.fabs(0), 0)
self.ftest('fabs(1)', math.fabs(1), 1)
def testFactorial(self):
self.assertEqual(math.factorial(0), 1)
self.assertEqual(math.factorial(0.0), 1)
total = 1
for i in range(1, 1000):
total *= i
self.assertEqual(math.factorial(i), total)
self.assertEqual(math.factorial(float(i)), total)
self.assertEqual(math.factorial(i), py_factorial(i))
self.assertRaises(ValueError, math.factorial, -1)
self.assertRaises(ValueError, math.factorial, -1.0)
self.assertRaises(ValueError, math.factorial, -10**100)
self.assertRaises(ValueError, math.factorial, -1e100)
self.assertRaises(ValueError, math.factorial, math.pi)
# Other implementations may place different upper bounds.
@support.cpython_only
def testFactorialHugeInputs(self):
# Currently raises ValueError for inputs that are too large
# to fit into a C long.
self.assertRaises(OverflowError, math.factorial, 10**100)
self.assertRaises(OverflowError, math.factorial, 1e100)
def testFloor(self):
self.assertRaises(TypeError, math.floor)
self.assertEqual(int, type(math.floor(0.5)))
self.ftest('floor(0.5)', math.floor(0.5), 0)
self.ftest('floor(1.0)', math.floor(1.0), 1)
self.ftest('floor(1.5)', math.floor(1.5), 1)
self.ftest('floor(-0.5)', math.floor(-0.5), -1)
self.ftest('floor(-1.0)', math.floor(-1.0), -1)
self.ftest('floor(-1.5)', math.floor(-1.5), -2)
# pow() relies on floor() to check for integers
# This fails on some platforms - so check it here
self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167)
self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167)
#self.assertEqual(math.ceil(INF), INF)
#self.assertEqual(math.ceil(NINF), NINF)
#self.assertTrue(math.isnan(math.floor(NAN)))
class TestFloor:
def __floor__(self):
return 42
class TestNoFloor:
pass
self.ftest('floor(TestFloor())', math.floor(TestFloor()), 42)
self.assertRaises(TypeError, math.floor, TestNoFloor())
t = TestNoFloor()
t.__floor__ = lambda *args: args
self.assertRaises(TypeError, math.floor, t)
self.assertRaises(TypeError, math.floor, t, 0)
def testFmod(self):
self.assertRaises(TypeError, math.fmod)
self.ftest('fmod(10, 1)', math.fmod(10, 1), 0.0)
self.ftest('fmod(10, 0.5)', math.fmod(10, 0.5), 0.0)
self.ftest('fmod(10, 1.5)', math.fmod(10, 1.5), 1.0)
self.ftest('fmod(-10, 1)', math.fmod(-10, 1), -0.0)
self.ftest('fmod(-10, 0.5)', math.fmod(-10, 0.5), -0.0)
self.ftest('fmod(-10, 1.5)', math.fmod(-10, 1.5), -1.0)
self.assertTrue(math.isnan(math.fmod(NAN, 1.)))
self.assertTrue(math.isnan(math.fmod(1., NAN)))
self.assertTrue(math.isnan(math.fmod(NAN, NAN)))
self.assertRaises(ValueError, math.fmod, 1., 0.)
self.assertRaises(ValueError, math.fmod, INF, 1.)
self.assertRaises(ValueError, math.fmod, NINF, 1.)
self.assertRaises(ValueError, math.fmod, INF, 0.)
self.assertEqual(math.fmod(3.0, INF), 3.0)
self.assertEqual(math.fmod(-3.0, INF), -3.0)
self.assertEqual(math.fmod(3.0, NINF), 3.0)
self.assertEqual(math.fmod(-3.0, NINF), -3.0)
self.assertEqual(math.fmod(0.0, 3.0), 0.0)
self.assertEqual(math.fmod(0.0, NINF), 0.0)
def testFrexp(self):
self.assertRaises(TypeError, math.frexp)
def testfrexp(name, result, expected):
(mant, exp), (emant, eexp) = result, expected
if abs(mant-emant) > eps or exp != eexp:
self.fail('%s returned %r, expected %r'%\
(name, result, expected))
testfrexp('frexp(-1)', math.frexp(-1), (-0.5, 1))
testfrexp('frexp(0)', math.frexp(0), (0, 0))
testfrexp('frexp(1)', math.frexp(1), (0.5, 1))
testfrexp('frexp(2)', math.frexp(2), (0.5, 2))
self.assertEqual(math.frexp(INF)[0], INF)
self.assertEqual(math.frexp(NINF)[0], NINF)
self.assertTrue(math.isnan(math.frexp(NAN)[0]))
@requires_IEEE_754
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
"fsum is not exact on machines with double rounding")
def testFsum(self):
# math.fsum relies on exact rounding for correct operation.
# There's a known problem with IA32 floating-point that causes
# inexact rounding in some situations, and will cause the
# math.fsum tests below to fail; see issue #2937. On non IEEE
# 754 platforms, and on IEEE 754 platforms that exhibit the
# problem described in issue #2937, we simply skip the whole
# test.
# Python version of math.fsum, for comparison. Uses a
# different algorithm based on frexp, ldexp and integer
# arithmetic.
from sys import float_info
mant_dig = float_info.mant_dig
etiny = float_info.min_exp - mant_dig
def msum(iterable):
"""Full precision summation. Compute sum(iterable) without any
intermediate accumulation of error. Based on the 'lsum' function
at http://code.activestate.com/recipes/393090/
"""
tmant, texp = 0, 0
for x in iterable:
mant, exp = math.frexp(x)
mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
if texp > exp:
tmant <<= texp-exp
texp = exp
else:
mant <<= exp-texp
tmant += mant
# Round tmant * 2**texp to a float. The original recipe
# used float(str(tmant)) * 2.0**texp for this, but that's
# a little unsafe because str -> float conversion can't be
# relied upon to do correct rounding on all platforms.
tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
if tail > 0:
h = 1 << (tail-1)
tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
texp += tail
return math.ldexp(tmant, texp)
test_values = [
([], 0.0),
([0.0], 0.0),
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
([1./n for n in range(1, 1001)],
float.fromhex('0x1.df11f45f4e61ap+2')),
([(-1.)**n/n for n in range(1, 1001)],
float.fromhex('-0x1.62a2af1bd3624p-1')),
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
([1e16, 1., 1e-16], 10000000000000002.0),
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
# exercise code for resizing partials array
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
[-2.**1022],
float.fromhex('0x1.5555555555555p+970')),
]
for i, (vals, expected) in enumerate(test_values):
try:
actual = math.fsum(vals)
except OverflowError:
self.fail("test %d failed: got OverflowError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
except ValueError:
self.fail("test %d failed: got ValueError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
self.assertEqual(actual, expected)
from random import random, gauss, shuffle
for j in range(1000):
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
s = 0
for i in range(200):
v = gauss(0, random()) ** 7 - s
s += v
vals.append(v)
shuffle(vals)
s = msum(vals)
self.assertEqual(msum(vals), math.fsum(vals))
def testGcd(self):
gcd = math.gcd
self.assertEqual(gcd(0, 0), 0)
self.assertEqual(gcd(1, 0), 1)
self.assertEqual(gcd(-1, 0), 1)
self.assertEqual(gcd(0, 1), 1)
self.assertEqual(gcd(0, -1), 1)
self.assertEqual(gcd(7, 1), 1)
self.assertEqual(gcd(7, -1), 1)
self.assertEqual(gcd(-23, 15), 1)
self.assertEqual(gcd(120, 84), 12)
self.assertEqual(gcd(84, -120), 12)
self.assertEqual(gcd(1216342683557601535506311712,
436522681849110124616458784), 32)
c = 652560
x = 434610456570399902378880679233098819019853229470286994367836600566
y = 1064502245825115327754847244914921553977
a = x * c
b = y * c
self.assertEqual(gcd(a, b), c)
self.assertEqual(gcd(b, a), c)
self.assertEqual(gcd(-a, b), c)
self.assertEqual(gcd(b, -a), c)
self.assertEqual(gcd(a, -b), c)
self.assertEqual(gcd(-b, a), c)
self.assertEqual(gcd(-a, -b), c)
self.assertEqual(gcd(-b, -a), c)
c = 576559230871654959816130551884856912003141446781646602790216406874
a = x * c
b = y * c
self.assertEqual(gcd(a, b), c)
self.assertEqual(gcd(b, a), c)
self.assertEqual(gcd(-a, b), c)
self.assertEqual(gcd(b, -a), c)
self.assertEqual(gcd(a, -b), c)
self.assertEqual(gcd(-b, a), c)
self.assertEqual(gcd(-a, -b), c)
self.assertEqual(gcd(-b, -a), c)
self.assertRaises(TypeError, gcd, 120.0, 84)
self.assertRaises(TypeError, gcd, 120, 84.0)
self.assertEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)
def testHypot(self):
self.assertRaises(TypeError, math.hypot)
self.ftest('hypot(0,0)', math.hypot(0,0), 0)
self.ftest('hypot(3,4)', math.hypot(3,4), 5)
self.assertEqual(math.hypot(NAN, INF), INF)
self.assertEqual(math.hypot(INF, NAN), INF)
self.assertEqual(math.hypot(NAN, NINF), INF)
self.assertEqual(math.hypot(NINF, NAN), INF)
self.assertRaises(OverflowError, math.hypot, FLOAT_MAX, FLOAT_MAX)
self.assertTrue(math.isnan(math.hypot(1.0, NAN)))
self.assertTrue(math.isnan(math.hypot(NAN, -2.0)))
def testLdexp(self):
self.assertRaises(TypeError, math.ldexp)
self.ftest('ldexp(0,1)', math.ldexp(0,1), 0)
self.ftest('ldexp(1,1)', math.ldexp(1,1), 2)
self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5)
self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2)
self.assertRaises(OverflowError, math.ldexp, 1., 1000000)
self.assertRaises(OverflowError, math.ldexp, -1., 1000000)
self.assertEqual(math.ldexp(1., -1000000), 0.)
self.assertEqual(math.ldexp(-1., -1000000), -0.)
self.assertEqual(math.ldexp(INF, 30), INF)
self.assertEqual(math.ldexp(NINF, -213), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, 0)))
# large second argument
for n in [10**5, 10**10, 10**20, 10**40]:
self.assertEqual(math.ldexp(INF, -n), INF)
self.assertEqual(math.ldexp(NINF, -n), NINF)
self.assertEqual(math.ldexp(1., -n), 0.)
self.assertEqual(math.ldexp(-1., -n), -0.)
self.assertEqual(math.ldexp(0., -n), 0.)
self.assertEqual(math.ldexp(-0., -n), -0.)
self.assertTrue(math.isnan(math.ldexp(NAN, -n)))
self.assertRaises(OverflowError, math.ldexp, 1., n)
self.assertRaises(OverflowError, math.ldexp, -1., n)
self.assertEqual(math.ldexp(0., n), 0.)
self.assertEqual(math.ldexp(-0., n), -0.)
self.assertEqual(math.ldexp(INF, n), INF)
self.assertEqual(math.ldexp(NINF, n), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, n)))
def testLog(self):
self.assertRaises(TypeError, math.log)
self.ftest('log(1/e)', math.log(1/math.e), -1)
self.ftest('log(1)', math.log(1), 0)
self.ftest('log(e)', math.log(math.e), 1)
self.ftest('log(32,2)', math.log(32,2), 5)
self.ftest('log(10**40, 10)', math.log(10**40, 10), 40)
self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
self.ftest('log(10**1000)', math.log(10**1000),
2302.5850929940457)
self.assertRaises(ValueError, math.log, -1.5)
self.assertRaises(ValueError, math.log, -10**1000)
self.assertRaises(ValueError, math.log, NINF)
self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log(NAN)))
def testLog1p(self):
self.assertRaises(TypeError, math.log1p)
for n in [2, 2**90, 2**300]:
self.assertAlmostEqual(math.log1p(n), math.log1p(float(n)))
self.assertRaises(ValueError, math.log1p, -1)
self.assertEqual(math.log1p(INF), INF)
@requires_IEEE_754
def testLog2(self):
self.assertRaises(TypeError, math.log2)
# Check some integer values
self.assertEqual(math.log2(1), 0.0)
self.assertEqual(math.log2(2), 1.0)
self.assertEqual(math.log2(4), 2.0)
# Large integer values
self.assertEqual(math.log2(2**1023), 1023.0)
self.assertEqual(math.log2(2**1024), 1024.0)
self.assertEqual(math.log2(2**2000), 2000.0)
self.assertRaises(ValueError, math.log2, -1.5)
self.assertRaises(ValueError, math.log2, NINF)
self.assertTrue(math.isnan(math.log2(NAN)))
@requires_IEEE_754
# log2() is not accurate enough on Mac OS X Tiger (10.4)
@support.requires_mac_ver(10, 5)
def testLog2Exact(self):
# Check that we get exact equality for log2 of powers of 2.
actual = [math.log2(math.ldexp(1.0, n)) for n in range(-1074, 1024)]
expected = [float(n) for n in range(-1074, 1024)]
self.assertEqual(actual, expected)
def testLog10(self):
self.assertRaises(TypeError, math.log10)
self.ftest('log10(0.1)', math.log10(0.1), -1)
self.ftest('log10(1)', math.log10(1), 0)
self.ftest('log10(10)', math.log10(10), 1)
self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0)
self.assertRaises(ValueError, math.log10, -1.5)
self.assertRaises(ValueError, math.log10, -10**1000)
self.assertRaises(ValueError, math.log10, NINF)
self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log10(NAN)))
def testModf(self):
self.assertRaises(TypeError, math.modf)
def testmodf(name, result, expected):
(v1, v2), (e1, e2) = result, expected
if abs(v1-e1) > eps or abs(v2-e2):
self.fail('%s returned %r, expected %r'%\
(name, result, expected))
testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0))
testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0))
self.assertEqual(math.modf(INF), (0.0, INF))
self.assertEqual(math.modf(NINF), (-0.0, NINF))
modf_nan = math.modf(NAN)
self.assertTrue(math.isnan(modf_nan[0]))
self.assertTrue(math.isnan(modf_nan[1]))
def testPow(self):
self.assertRaises(TypeError, math.pow)
self.ftest('pow(0,1)', math.pow(0,1), 0)
self.ftest('pow(1,0)', math.pow(1,0), 1)
self.ftest('pow(2,1)', math.pow(2,1), 2)
self.ftest('pow(2,-1)', math.pow(2,-1), 0.5)
self.assertEqual(math.pow(INF, 1), INF)
self.assertEqual(math.pow(NINF, 1), NINF)
self.assertEqual((math.pow(1, INF)), 1.)
self.assertEqual((math.pow(1, NINF)), 1.)
self.assertTrue(math.isnan(math.pow(NAN, 1)))
self.assertTrue(math.isnan(math.pow(2, NAN)))
self.assertTrue(math.isnan(math.pow(0, NAN)))
self.assertEqual(math.pow(1, NAN), 1)
# pow(0., x)
self.assertEqual(math.pow(0., INF), 0.)
self.assertEqual(math.pow(0., 3.), 0.)
self.assertEqual(math.pow(0., 2.3), 0.)
self.assertEqual(math.pow(0., 2.), 0.)
self.assertEqual(math.pow(0., 0.), 1.)
self.assertEqual(math.pow(0., -0.), 1.)
self.assertRaises(ValueError, math.pow, 0., -2.)
self.assertRaises(ValueError, math.pow, 0., -2.3)
self.assertRaises(ValueError, math.pow, 0., -3.)
self.assertRaises(ValueError, math.pow, 0., NINF)
self.assertTrue(math.isnan(math.pow(0., NAN)))
# pow(INF, x)
self.assertEqual(math.pow(INF, INF), INF)
self.assertEqual(math.pow(INF, 3.), INF)
self.assertEqual(math.pow(INF, 2.3), INF)
self.assertEqual(math.pow(INF, 2.), INF)
self.assertEqual(math.pow(INF, 0.), 1.)
self.assertEqual(math.pow(INF, -0.), 1.)
self.assertEqual(math.pow(INF, -2.), 0.)
self.assertEqual(math.pow(INF, -2.3), 0.)
self.assertEqual(math.pow(INF, -3.), 0.)
self.assertEqual(math.pow(INF, NINF), 0.)
self.assertTrue(math.isnan(math.pow(INF, NAN)))
# pow(-0., x)
self.assertEqual(math.pow(-0., INF), 0.)
self.assertEqual(math.pow(-0., 3.), -0.)
self.assertEqual(math.pow(-0., 2.3), 0.)
self.assertEqual(math.pow(-0., 2.), 0.)
self.assertEqual(math.pow(-0., 0.), 1.)
self.assertEqual(math.pow(-0., -0.), 1.)
self.assertRaises(ValueError, math.pow, -0., -2.)
self.assertRaises(ValueError, math.pow, -0., -2.3)
self.assertRaises(ValueError, math.pow, -0., -3.)
self.assertRaises(ValueError, math.pow, -0., NINF)
self.assertTrue(math.isnan(math.pow(-0., NAN)))
# pow(NINF, x)
self.assertEqual(math.pow(NINF, INF), INF)
self.assertEqual(math.pow(NINF, 3.), NINF)
self.assertEqual(math.pow(NINF, 2.3), INF)
self.assertEqual(math.pow(NINF, 2.), INF)
self.assertEqual(math.pow(NINF, 0.), 1.)
self.assertEqual(math.pow(NINF, -0.), 1.)
self.assertEqual(math.pow(NINF, -2.), 0.)
self.assertEqual(math.pow(NINF, -2.3), 0.)
self.assertEqual(math.pow(NINF, -3.), -0.)
self.assertEqual(math.pow(NINF, NINF), 0.)
self.assertTrue(math.isnan(math.pow(NINF, NAN)))
# pow(-1, x)
self.assertEqual(math.pow(-1., INF), 1.)
self.assertEqual(math.pow(-1., 3.), -1.)
self.assertRaises(ValueError, math.pow, -1., 2.3)
self.assertEqual(math.pow(-1., 2.), 1.)
self.assertEqual(math.pow(-1., 0.), 1.)
self.assertEqual(math.pow(-1., -0.), 1.)
self.assertEqual(math.pow(-1., -2.), 1.)
self.assertRaises(ValueError, math.pow, -1., -2.3)
self.assertEqual(math.pow(-1., -3.), -1.)
self.assertEqual(math.pow(-1., NINF), 1.)
self.assertTrue(math.isnan(math.pow(-1., NAN)))
# pow(1, x)
self.assertEqual(math.pow(1., INF), 1.)
self.assertEqual(math.pow(1., 3.), 1.)
self.assertEqual(math.pow(1., 2.3), 1.)
self.assertEqual(math.pow(1., 2.), 1.)
self.assertEqual(math.pow(1., 0.), 1.)
self.assertEqual(math.pow(1., -0.), 1.)
self.assertEqual(math.pow(1., -2.), 1.)
self.assertEqual(math.pow(1., -2.3), 1.)
self.assertEqual(math.pow(1., -3.), 1.)
self.assertEqual(math.pow(1., NINF), 1.)
self.assertEqual(math.pow(1., NAN), 1.)
# pow(x, 0) should be 1 for any x
self.assertEqual(math.pow(2.3, 0.), 1.)
self.assertEqual(math.pow(-2.3, 0.), 1.)
self.assertEqual(math.pow(NAN, 0.), 1.)
self.assertEqual(math.pow(2.3, -0.), 1.)
self.assertEqual(math.pow(-2.3, -0.), 1.)
self.assertEqual(math.pow(NAN, -0.), 1.)
# pow(x, y) is invalid if x is negative and y is not integral
self.assertRaises(ValueError, math.pow, -1., 2.3)
self.assertRaises(ValueError, math.pow, -15., -3.1)
# pow(x, NINF)
self.assertEqual(math.pow(1.9, NINF), 0.)
self.assertEqual(math.pow(1.1, NINF), 0.)
self.assertEqual(math.pow(0.9, NINF), INF)
self.assertEqual(math.pow(0.1, NINF), INF)
self.assertEqual(math.pow(-0.1, NINF), INF)
self.assertEqual(math.pow(-0.9, NINF), INF)
self.assertEqual(math.pow(-1.1, NINF), 0.)
self.assertEqual(math.pow(-1.9, NINF), 0.)
# pow(x, INF)
self.assertEqual(math.pow(1.9, INF), INF)
self.assertEqual(math.pow(1.1, INF), INF)
self.assertEqual(math.pow(0.9, INF), 0.)
self.assertEqual(math.pow(0.1, INF), 0.)
self.assertEqual(math.pow(-0.1, INF), 0.)
self.assertEqual(math.pow(-0.9, INF), 0.)
self.assertEqual(math.pow(-1.1, INF), INF)
self.assertEqual(math.pow(-1.9, INF), INF)
# pow(x, y) should work for x negative, y an integer
self.ftest('(-2.)**3.', math.pow(-2.0, 3.0), -8.0)
self.ftest('(-2.)**2.', math.pow(-2.0, 2.0), 4.0)
self.ftest('(-2.)**1.', math.pow(-2.0, 1.0), -2.0)
self.ftest('(-2.)**0.', math.pow(-2.0, 0.0), 1.0)
self.ftest('(-2.)**-0.', math.pow(-2.0, -0.0), 1.0)
self.ftest('(-2.)**-1.', math.pow(-2.0, -1.0), -0.5)
self.ftest('(-2.)**-2.', math.pow(-2.0, -2.0), 0.25)
self.ftest('(-2.)**-3.', math.pow(-2.0, -3.0), -0.125)
self.assertRaises(ValueError, math.pow, -2.0, -0.5)
self.assertRaises(ValueError, math.pow, -2.0, 0.5)
# the following tests have been commented out since they don't
# really belong here: the implementation of ** for floats is
# independent of the implementation of math.pow
#self.assertEqual(1**NAN, 1)
#self.assertEqual(1**INF, 1)
#self.assertEqual(1**NINF, 1)
#self.assertEqual(1**0, 1)
#self.assertEqual(1.**NAN, 1)
#self.assertEqual(1.**INF, 1)
#self.assertEqual(1.**NINF, 1)
#self.assertEqual(1.**0, 1)
def testRadians(self):
self.assertRaises(TypeError, math.radians)
self.ftest('radians(180)', math.radians(180), math.pi)
self.ftest('radians(90)', math.radians(90), math.pi/2)
self.ftest('radians(-45)', math.radians(-45), -math.pi/4)
self.ftest('radians(0)', math.radians(0), 0)
@requires_IEEE_754
def testRemainder(self):
from fractions import Fraction
def validate_spec(x, y, r):
"""
Check that r matches remainder(x, y) according to the IEEE 754
specification. Assumes that x, y and r are finite and y is nonzero.
"""
fx, fy, fr = Fraction(x), Fraction(y), Fraction(r)
# r should not exceed y/2 in absolute value
self.assertLessEqual(abs(fr), abs(fy/2))
# x - r should be an exact integer multiple of y
n = (fx - fr) / fy
self.assertEqual(n, int(n))
if abs(fr) == abs(fy/2):
# If |r| == |y/2|, n should be even.
self.assertEqual(n/2, int(n/2))
# triples (x, y, remainder(x, y)) in hexadecimal form.
testcases = [
# Remainders modulo 1, showing the ties-to-even behaviour.
'-4.0 1 -0.0',
'-3.8 1 0.8',
'-3.0 1 -0.0',
'-2.8 1 -0.8',
'-2.0 1 -0.0',
'-1.8 1 0.8',
'-1.0 1 -0.0',
'-0.8 1 -0.8',
'-0.0 1 -0.0',
' 0.0 1 0.0',
' 0.8 1 0.8',
' 1.0 1 0.0',
' 1.8 1 -0.8',
' 2.0 1 0.0',
' 2.8 1 0.8',
' 3.0 1 0.0',
' 3.8 1 -0.8',
' 4.0 1 0.0',
# Reductions modulo 2*pi
'0x0.0p+0 0x1.921fb54442d18p+2 0x0.0p+0',
'0x1.921fb54442d18p+0 0x1.921fb54442d18p+2 0x1.921fb54442d18p+0',
'0x1.921fb54442d17p+1 0x1.921fb54442d18p+2 0x1.921fb54442d17p+1',
'0x1.921fb54442d18p+1 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1',
'0x1.921fb54442d19p+1 0x1.921fb54442d18p+2 -0x1.921fb54442d17p+1',
'0x1.921fb54442d17p+2 0x1.921fb54442d18p+2 -0x0.0000000000001p+2',
'0x1.921fb54442d18p+2 0x1.921fb54442d18p+2 0x0p0',
'0x1.921fb54442d19p+2 0x1.921fb54442d18p+2 0x0.0000000000001p+2',
'0x1.2d97c7f3321d1p+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1',
'0x1.2d97c7f3321d2p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d18p+1',
'0x1.2d97c7f3321d3p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
'0x1.921fb54442d17p+3 0x1.921fb54442d18p+2 -0x0.0000000000001p+3',
'0x1.921fb54442d18p+3 0x1.921fb54442d18p+2 0x0p0',
'0x1.921fb54442d19p+3 0x1.921fb54442d18p+2 0x0.0000000000001p+3',
'0x1.f6a7a2955385dp+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1',
'0x1.f6a7a2955385ep+3 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1',
'0x1.f6a7a2955385fp+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
'0x1.1475cc9eedf00p+5 0x1.921fb54442d18p+2 0x1.921fb54442d10p+1',
'0x1.1475cc9eedf01p+5 0x1.921fb54442d18p+2 -0x1.921fb54442d10p+1',
# Symmetry with respect to signs.
' 1 0.c 0.4',
'-1 0.c -0.4',
' 1 -0.c 0.4',
'-1 -0.c -0.4',
' 1.4 0.c -0.4',
'-1.4 0.c 0.4',
' 1.4 -0.c -0.4',
'-1.4 -0.c 0.4',
# Huge modulus, to check that the underlying algorithm doesn't
# rely on 2.0 * modulus being representable.
'0x1.dp+1023 0x1.4p+1023 0x0.9p+1023',
'0x1.ep+1023 0x1.4p+1023 -0x0.ap+1023',
'0x1.fp+1023 0x1.4p+1023 -0x0.9p+1023',
]
for case in testcases:
with self.subTest(case=case):
x_hex, y_hex, expected_hex = case.split()
x = float.fromhex(x_hex)
y = float.fromhex(y_hex)
expected = float.fromhex(expected_hex)
validate_spec(x, y, expected)
actual = math.remainder(x, y)
# Cheap way of checking that the floats are
# as identical as we need them to be.
self.assertEqual(actual.hex(), expected.hex())
# Test tiny subnormal modulus: there's potential for
# getting the implementation wrong here (for example,
# by assuming that modulus/2 is exactly representable).
tiny = float.fromhex('1p-1074') # min +ve subnormal
for n in range(-25, 25):
if n == 0:
continue
y = n * tiny
for m in range(100):
x = m * tiny
actual = math.remainder(x, y)
validate_spec(x, y, actual)
actual = math.remainder(-x, y)
validate_spec(-x, y, actual)
# Special values.
# NaNs should propagate as usual.
for value in [NAN, 0.0, -0.0, 2.0, -2.3, NINF, INF]:
self.assertIsNaN(math.remainder(NAN, value))
self.assertIsNaN(math.remainder(value, NAN))
# remainder(x, inf) is x, for non-nan non-infinite x.
for value in [-2.3, -0.0, 0.0, 2.3]:
self.assertEqual(math.remainder(value, INF), value)
self.assertEqual(math.remainder(value, NINF), value)
# remainder(x, 0) and remainder(infinity, x) for non-NaN x are invalid
# operations according to IEEE 754-2008 7.2(f), and should raise.
for value in [NINF, -2.3, -0.0, 0.0, 2.3, INF]:
with self.assertRaises(ValueError):
math.remainder(INF, value)
with self.assertRaises(ValueError):
math.remainder(NINF, value)
with self.assertRaises(ValueError):
math.remainder(value, 0.0)
with self.assertRaises(ValueError):
math.remainder(value, -0.0)
def testSin(self):
self.assertRaises(TypeError, math.sin)
self.ftest('sin(0)', math.sin(0), 0)
self.ftest('sin(pi/2)', math.sin(math.pi/2), 1)
self.ftest('sin(-pi/2)', math.sin(-math.pi/2), -1)
try:
self.assertTrue(math.isnan(math.sin(INF)))
self.assertTrue(math.isnan(math.sin(NINF)))
except ValueError:
self.assertRaises(ValueError, math.sin, INF)
self.assertRaises(ValueError, math.sin, NINF)
self.assertTrue(math.isnan(math.sin(NAN)))
def testSinh(self):
self.assertRaises(TypeError, math.sinh)
self.ftest('sinh(0)', math.sinh(0), 0)
self.ftest('sinh(1)**2-cosh(1)**2', math.sinh(1)**2-math.cosh(1)**2, -1)
self.ftest('sinh(1)+sinh(-1)', math.sinh(1)+math.sinh(-1), 0)
self.assertEqual(math.sinh(INF), INF)
self.assertEqual(math.sinh(NINF), NINF)
self.assertTrue(math.isnan(math.sinh(NAN)))
def testSqrt(self):
self.assertRaises(TypeError, math.sqrt)
self.ftest('sqrt(0)', math.sqrt(0), 0)
self.ftest('sqrt(1)', math.sqrt(1), 1)
self.ftest('sqrt(4)', math.sqrt(4), 2)
self.assertEqual(math.sqrt(INF), INF)
self.assertRaises(ValueError, math.sqrt, -1)
self.assertRaises(ValueError, math.sqrt, NINF)
self.assertTrue(math.isnan(math.sqrt(NAN)))
def testTan(self):
self.assertRaises(TypeError, math.tan)
self.ftest('tan(0)', math.tan(0), 0)
self.ftest('tan(pi/4)', math.tan(math.pi/4), 1)
self.ftest('tan(-pi/4)', math.tan(-math.pi/4), -1)
try:
self.assertTrue(math.isnan(math.tan(INF)))
self.assertTrue(math.isnan(math.tan(NINF)))
except:
self.assertRaises(ValueError, math.tan, INF)
self.assertRaises(ValueError, math.tan, NINF)
self.assertTrue(math.isnan(math.tan(NAN)))
def testTanh(self):
self.assertRaises(TypeError, math.tanh)
self.ftest('tanh(0)', math.tanh(0), 0)
self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0,
abs_tol=ulp(1))
self.ftest('tanh(inf)', math.tanh(INF), 1)
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
self.assertTrue(math.isnan(math.tanh(NAN)))
@requires_IEEE_754
@unittest.skipIf(sysconfig.get_config_var('TANH_PRESERVES_ZERO_SIGN') == 0,
"system tanh() function doesn't copy the sign")
def testTanhSign(self):
# check that tanh(-0.) == -0. on IEEE 754 systems
self.assertEqual(math.tanh(-0.), -0.)
self.assertEqual(math.copysign(1., math.tanh(-0.)),
math.copysign(1., -0.))
def test_trunc(self):
self.assertEqual(math.trunc(1), 1)
self.assertEqual(math.trunc(-1), -1)
self.assertEqual(type(math.trunc(1)), int)
self.assertEqual(type(math.trunc(1.5)), int)
self.assertEqual(math.trunc(1.5), 1)
self.assertEqual(math.trunc(-1.5), -1)
self.assertEqual(math.trunc(1.999999), 1)
self.assertEqual(math.trunc(-1.999999), -1)
self.assertEqual(math.trunc(-0.999999), -0)
self.assertEqual(math.trunc(-100.999), -100)
class TestTrunc(object):
def __trunc__(self):
return 23
class TestNoTrunc(object):
pass
self.assertEqual(math.trunc(TestTrunc()), 23)
self.assertRaises(TypeError, math.trunc)
self.assertRaises(TypeError, math.trunc, 1, 2)
self.assertRaises(TypeError, math.trunc, TestNoTrunc())
def testIsfinite(self):
self.assertTrue(math.isfinite(0.0))
self.assertTrue(math.isfinite(-0.0))
self.assertTrue(math.isfinite(1.0))
self.assertTrue(math.isfinite(-1.0))
self.assertFalse(math.isfinite(float("nan")))
self.assertFalse(math.isfinite(float("inf")))
self.assertFalse(math.isfinite(float("-inf")))
def testIsnan(self):
self.assertTrue(math.isnan(float("nan")))
self.assertTrue(math.isnan(float("-nan")))
self.assertTrue(math.isnan(float("inf") * 0.))
self.assertFalse(math.isnan(float("inf")))
self.assertFalse(math.isnan(0.))
self.assertFalse(math.isnan(1.))
def testIsinf(self):
self.assertTrue(math.isinf(float("inf")))
self.assertTrue(math.isinf(float("-inf")))
self.assertTrue(math.isinf(1E400))
self.assertTrue(math.isinf(-1E400))
self.assertFalse(math.isinf(float("nan")))
self.assertFalse(math.isinf(0.))
self.assertFalse(math.isinf(1.))
@requires_IEEE_754
def test_nan_constant(self):
self.assertTrue(math.isnan(math.nan))
@requires_IEEE_754
def test_inf_constant(self):
self.assertTrue(math.isinf(math.inf))
self.assertGreater(math.inf, 0.0)
self.assertEqual(math.inf, float("inf"))
self.assertEqual(-math.inf, float("-inf"))
# RED_FLAG 16-Oct-2000 Tim
# While 2.0 is more consistent about exceptions than previous releases, it
# still fails this part of the test on some platforms. For now, we only
# *run* test_exceptions() in verbose mode, so that this isn't normally
# tested.
@unittest.skipUnless(verbose, 'requires verbose mode')
def test_exceptions(self):
try:
x = math.exp(-1000000000)
except:
# mathmodule.c is failing to weed out underflows from libm, or
# we've got an fp format with huge dynamic range
self.fail("underflowing exp() should not have raised "
"an exception")
if x != 0:
self.fail("underflowing exp() should have returned 0")
# If this fails, probably using a strict IEEE-754 conforming libm, and x
# is +Inf afterwards. But Python wants overflows detected by default.
try:
x = math.exp(1000000000)
except OverflowError:
pass
else:
self.fail("overflowing exp() didn't trigger OverflowError")
# If this fails, it could be a puzzle. One odd possibility is that
# mathmodule.c's macros are getting confused while comparing
# Inf (HUGE_VAL) to a NaN, and artificially setting errno to ERANGE
# as a result (and so raising OverflowError instead).
try:
x = math.sqrt(-1.0)
except ValueError:
pass
else:
self.fail("sqrt(-1) didn't raise ValueError")
@requires_IEEE_754
def test_testfile(self):
# Some tests need to be skipped on ancient OS X versions.
# See issue #27953.
SKIP_ON_TIGER = {'tan0064'}
osx_version = None
if sys.platform == 'darwin':
version_txt = platform.mac_ver()[0]
try:
osx_version = tuple(map(int, version_txt.split('.')))
except ValueError:
pass
fail_fmt = "{}: {}({!r}): {}"
failures = []
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
# Skip if either the input or result is complex
if ai != 0.0 or ei != 0.0:
continue
if fn in ['rect', 'polar']:
# no real versions of rect, polar
continue
# Skip certain tests on OS X 10.4.
if osx_version is not None and osx_version < (10, 5):
if id in SKIP_ON_TIGER:
continue
func = getattr(math, fn)
if 'invalid' in flags or 'divide-by-zero' in flags:
er = 'ValueError'
elif 'overflow' in flags:
er = 'OverflowError'
try:
result = func(ar)
except ValueError:
result = 'ValueError'
except OverflowError:
result = 'OverflowError'
# Default tolerances
ulp_tol, abs_tol = 5, 0.0
failure = result_check(er, result, ulp_tol, abs_tol)
if failure is None:
continue
msg = fail_fmt.format(id, fn, ar, failure)
failures.append(msg)
if failures:
self.fail('Failures in test_testfile:\n ' +
'\n '.join(failures))
@requires_IEEE_754
def test_mtestfile(self):
fail_fmt = "{}: {}({!r}): {}"
failures = []
for id, fn, arg, expected, flags in parse_mtestfile(math_testcases):
func = getattr(math, fn)
if 'invalid' in flags or 'divide-by-zero' in flags:
expected = 'ValueError'
elif 'overflow' in flags:
expected = 'OverflowError'
try:
got = func(arg)
except ValueError:
got = 'ValueError'
except OverflowError:
got = 'OverflowError'
# Default tolerances
ulp_tol, abs_tol = 5, 0.0
# Exceptions to the defaults
if fn == 'gamma':
# Experimental results on one platform gave
# an accuracy of <= 10 ulps across the entire float
# domain. We weaken that to require 20 ulp accuracy.
ulp_tol = 20
elif fn == 'lgamma':
# we use a weaker accuracy test for lgamma;
# lgamma only achieves an absolute error of
# a few multiples of the machine accuracy, in
# general.
abs_tol = 1e-15
elif fn == 'erfc' and arg >= 0.0:
# erfc has less-than-ideal accuracy for large
# arguments (x ~ 25 or so), mainly due to the
# error involved in computing exp(-x*x).
#
# Observed between CPython and mpmath at 25 dp:
# x < 0 : err <= 2 ulp
# 0 <= x < 1 : err <= 10 ulp
# 1 <= x < 10 : err <= 100 ulp
# 10 <= x < 20 : err <= 300 ulp
# 20 <= x : < 600 ulp
#
if arg < 1.0:
ulp_tol = 10
elif arg < 10.0:
ulp_tol = 100
else:
ulp_tol = 1000
failure = result_check(expected, got, ulp_tol, abs_tol)
if failure is None:
continue
msg = fail_fmt.format(id, fn, arg, failure)
failures.append(msg)
if failures:
self.fail('Failures in test_mtestfile:\n ' +
'\n '.join(failures))
# Custom assertions.
def assertIsNaN(self, value):
if not math.isnan(value):
self.fail("Expected a NaN, got {!r}.".format(value))
class IsCloseTests(unittest.TestCase):
isclose = math.isclose # sublcasses should override this
def assertIsClose(self, a, b, *args, **kwargs):
self.assertTrue(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should be close!" % (a, b))
def assertIsNotClose(self, a, b, *args, **kwargs):
self.assertFalse(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should not be close!" % (a, b))
def assertAllClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsClose(a, b, *args, **kwargs)
def assertAllNotClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsNotClose(a, b, *args, **kwargs)
def test_negative_tolerances(self):
# ValueError should be raised if either tolerance is less than zero
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=-1e-100)
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10)
def test_identical(self):
# identical values must test as close
identical_examples = [(2.0, 2.0),
(0.1e200, 0.1e200),
(1.123e-300, 1.123e-300),
(12345, 12345.0),
(0.0, -0.0),
(345678, 345678)]
self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0)
def test_eight_decimal_places(self):
# examples that are close to 1e-8, but not 1e-9
eight_decimal_places_examples = [(1e8, 1e8 + 1),
(-1e-8, -1.000000009e-8),
(1.12345678, 1.12345679)]
self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8)
self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9)
def test_near_zero(self):
# values close to zero
near_zero_examples = [(1e-9, 0.0),
(-1e-9, 0.0),
(-1e-150, 0.0)]
# these should not be close to any rel_tol
self.assertAllNotClose(near_zero_examples, rel_tol=0.9)
# these should be close to abs_tol=1e-8
self.assertAllClose(near_zero_examples, abs_tol=1e-8)
def test_identical_infinite(self):
# these are close regardless of tolerance -- i.e. they are equal
self.assertIsClose(INF, INF)
self.assertIsClose(INF, INF, abs_tol=0.0)
self.assertIsClose(NINF, NINF)
self.assertIsClose(NINF, NINF, abs_tol=0.0)
def test_inf_ninf_nan(self):
# these should never be close (following IEEE 754 rules for equality)
not_close_examples = [(NAN, NAN),
(NAN, 1e-100),
(1e-100, NAN),
(INF, NAN),
(NAN, INF),
(INF, NINF),
(INF, 1.0),
(1.0, INF),
(INF, 1e308),
(1e308, INF)]
# use largest reasonable tolerance
self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999)
def test_zero_tolerance(self):
# test with zero tolerance
zero_tolerance_close_examples = [(1.0, 1.0),
(-3.4, -3.4),
(-1e-300, -1e-300)]
self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0)
zero_tolerance_not_close_examples = [(1.0, 1.000000000000001),
(0.99999999999999, 1.0),
(1.0e200, .999999999999999e200)]
self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0)
def test_asymmetry(self):
# test the asymmetry example from PEP 485
self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1)
def test_integers(self):
# test with integer values
integer_examples = [(100000001, 100000000),
(123456789, 123456788)]
self.assertAllClose(integer_examples, rel_tol=1e-8)
self.assertAllNotClose(integer_examples, rel_tol=1e-9)
def test_decimals(self):
# test with Decimal values
from decimal import Decimal
decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')),
(Decimal('1.00000001e-20'), Decimal('1.0e-20')),
(Decimal('1.00000001e-100'), Decimal('1.0e-100')),
(Decimal('1.00000001e20'), Decimal('1.0e20'))]
self.assertAllClose(decimal_examples, rel_tol=1e-8)
self.assertAllNotClose(decimal_examples, rel_tol=1e-9)
def test_fractions(self):
# test with Fraction values
from fractions import Fraction
fraction_examples = [
(Fraction(1, 100000000) + 1, Fraction(1)),
(Fraction(100000001), Fraction(100000000)),
(Fraction(10**8 + 1, 10**28), Fraction(1, 10**20))]
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
def test_main():
from doctest import DocFileSuite
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(MathTests))
suite.addTest(unittest.makeSuite(IsCloseTests))
suite.addTest(DocFileSuite("ieee754.txt"))
run_unittest(suite)
if __name__ == '__main__':
test_main()
|