1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
# test interactions between int, float, Decimal and Fraction
import unittest
import random
import math
import sys
import operator
from decimal import Decimal as D
from fractions import Fraction as F
# Constants related to the hash implementation; hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
_PyHASH_INF = sys.hash_info.inf
class DummyIntegral(int):
"""Dummy Integral class to test conversion of the Rational to float."""
def __mul__(self, other):
return DummyIntegral(super().__mul__(other))
__rmul__ = __mul__
def __truediv__(self, other):
return NotImplemented
__rtruediv__ = __truediv__
@property
def numerator(self):
return DummyIntegral(self)
@property
def denominator(self):
return DummyIntegral(1)
class HashTest(unittest.TestCase):
def check_equal_hash(self, x, y):
# check both that x and y are equal and that their hashes are equal
self.assertEqual(hash(x), hash(y),
"got different hashes for {!r} and {!r}".format(x, y))
self.assertEqual(x, y)
def test_bools(self):
self.check_equal_hash(False, 0)
self.check_equal_hash(True, 1)
def test_integers(self):
# check that equal values hash equal
# exact integers
for i in range(-1000, 1000):
self.check_equal_hash(i, float(i))
self.check_equal_hash(i, D(i))
self.check_equal_hash(i, F(i))
# the current hash is based on reduction modulo 2**n-1 for some
# n, so pay special attention to numbers of the form 2**n and 2**n-1.
for i in range(100):
n = 2**i - 1
if n == int(float(n)):
self.check_equal_hash(n, float(n))
self.check_equal_hash(-n, -float(n))
self.check_equal_hash(n, D(n))
self.check_equal_hash(n, F(n))
self.check_equal_hash(-n, D(-n))
self.check_equal_hash(-n, F(-n))
n = 2**i
self.check_equal_hash(n, float(n))
self.check_equal_hash(-n, -float(n))
self.check_equal_hash(n, D(n))
self.check_equal_hash(n, F(n))
self.check_equal_hash(-n, D(-n))
self.check_equal_hash(-n, F(-n))
# random values of various sizes
for _ in range(1000):
e = random.randrange(300)
n = random.randrange(-10**e, 10**e)
self.check_equal_hash(n, D(n))
self.check_equal_hash(n, F(n))
if n == int(float(n)):
self.check_equal_hash(n, float(n))
def test_binary_floats(self):
# check that floats hash equal to corresponding Fractions and Decimals
# floats that are distinct but numerically equal should hash the same
self.check_equal_hash(0.0, -0.0)
# zeros
self.check_equal_hash(0.0, D(0))
self.check_equal_hash(-0.0, D(0))
self.check_equal_hash(-0.0, D('-0.0'))
self.check_equal_hash(0.0, F(0))
# infinities and nans
self.check_equal_hash(float('inf'), D('inf'))
self.check_equal_hash(float('-inf'), D('-inf'))
for _ in range(1000):
x = random.random() * math.exp(random.random()*200.0 - 100.0)
self.check_equal_hash(x, D.from_float(x))
self.check_equal_hash(x, F.from_float(x))
def test_complex(self):
# complex numbers with zero imaginary part should hash equal to
# the corresponding float
test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5,
float('inf'), float('-inf')]
for zero in -0.0, 0.0:
for value in test_values:
self.check_equal_hash(value, complex(value, zero))
def test_decimals(self):
# check that Decimal instances that have different representations
# but equal values give the same hash
zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10']
for zero in zeros:
self.check_equal_hash(D(zero), D(0))
self.check_equal_hash(D('1.00'), D(1))
self.check_equal_hash(D('1.00000'), D(1))
self.check_equal_hash(D('-1.00'), D(-1))
self.check_equal_hash(D('-1.00000'), D(-1))
self.check_equal_hash(D('123e2'), D(12300))
self.check_equal_hash(D('1230e1'), D(12300))
self.check_equal_hash(D('12300'), D(12300))
self.check_equal_hash(D('12300.0'), D(12300))
self.check_equal_hash(D('12300.00'), D(12300))
self.check_equal_hash(D('12300.000'), D(12300))
def test_fractions(self):
# check special case for fractions where either the numerator
# or the denominator is a multiple of _PyHASH_MODULUS
self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF)
self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF)
self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0)
self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0)
# The numbers ABC doesn't enforce that the "true" division
# of integers produces a float. This tests that the
# Rational.__float__() method has required type conversions.
x = F(DummyIntegral(1), DummyIntegral(2), _normalize=False)
self.assertRaises(TypeError, lambda: x.numerator/x.denominator)
self.assertEqual(float(x), 0.5)
def test_hash_normalization(self):
# Test for a bug encountered while changing long_hash.
#
# Given objects x and y, it should be possible for y's
# __hash__ method to return hash(x) in order to ensure that
# hash(x) == hash(y). But hash(x) is not exactly equal to the
# result of x.__hash__(): there's some internal normalization
# to make sure that the result fits in a C long, and is not
# equal to the invalid hash value -1. This internal
# normalization must therefore not change the result of
# hash(x) for any x.
class HalibutProxy:
def __hash__(self):
return hash('halibut')
def __eq__(self, other):
return other == 'halibut'
x = {'halibut', HalibutProxy()}
self.assertEqual(len(x), 1)
class ComparisonTest(unittest.TestCase):
def test_mixed_comparisons(self):
# ordered list of distinct test values of various types:
# int, float, Fraction, Decimal
test_values = [
float('-inf'),
D('-1e425000000'),
-1e308,
F(-22, 7),
-3.14,
-2,
0.0,
1e-320,
True,
F('1.2'),
D('1.3'),
float('1.4'),
F(275807, 195025),
D('1.414213562373095048801688724'),
F(114243, 80782),
F(473596569, 84615),
7e200,
D('infinity'),
]
for i, first in enumerate(test_values):
for second in test_values[i+1:]:
self.assertLess(first, second)
self.assertLessEqual(first, second)
self.assertGreater(second, first)
self.assertGreaterEqual(second, first)
def test_complex(self):
# comparisons with complex are special: equality and inequality
# comparisons should always succeed, but order comparisons should
# raise TypeError.
z = 1.0 + 0j
w = -3.14 + 2.7j
for v in 1, 1.0, F(1), D(1), complex(1):
self.assertEqual(z, v)
self.assertEqual(v, z)
for v in 2, 2.0, F(2), D(2), complex(2):
self.assertNotEqual(z, v)
self.assertNotEqual(v, z)
self.assertNotEqual(w, v)
self.assertNotEqual(v, w)
for v in (1, 1.0, F(1), D(1), complex(1),
2, 2.0, F(2), D(2), complex(2), w):
for op in operator.le, operator.lt, operator.ge, operator.gt:
self.assertRaises(TypeError, op, z, v)
self.assertRaises(TypeError, op, v, z)
if __name__ == '__main__':
unittest.main()
|