1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
from test import support
import random
import unittest
from functools import cmp_to_key
verbose = support.verbose
nerrors = 0
def check(tag, expected, raw, compare=None):
global nerrors
if verbose:
print(" checking", tag)
orig = raw[:] # save input in case of error
if compare:
raw.sort(key=cmp_to_key(compare))
else:
raw.sort()
if len(expected) != len(raw):
print("error in", tag)
print("length mismatch;", len(expected), len(raw))
print(expected)
print(orig)
print(raw)
nerrors += 1
return
for i, good in enumerate(expected):
maybe = raw[i]
if good is not maybe:
print("error in", tag)
print("out of order at index", i, good, maybe)
print(expected)
print(orig)
print(raw)
nerrors += 1
return
class TestBase(unittest.TestCase):
def testStressfully(self):
# Try a variety of sizes at and around powers of 2, and at powers of 10.
sizes = [0]
for power in range(1, 10):
n = 2 ** power
sizes.extend(range(n-1, n+2))
sizes.extend([10, 100, 1000])
class Complains(object):
maybe_complain = True
def __init__(self, i):
self.i = i
def __lt__(self, other):
if Complains.maybe_complain and random.random() < 0.001:
if verbose:
print(" complaining at", self, other)
raise RuntimeError
return self.i < other.i
def __repr__(self):
return "Complains(%d)" % self.i
class Stable(object):
def __init__(self, key, i):
self.key = key
self.index = i
def __lt__(self, other):
return self.key < other.key
def __repr__(self):
return "Stable(%d, %d)" % (self.key, self.index)
for n in sizes:
x = list(range(n))
if verbose:
print("Testing size", n)
s = x[:]
check("identity", x, s)
s = x[:]
s.reverse()
check("reversed", x, s)
s = x[:]
random.shuffle(s)
check("random permutation", x, s)
y = x[:]
y.reverse()
s = x[:]
check("reversed via function", y, s, lambda a, b: (b>a)-(b<a))
if verbose:
print(" Checking against an insane comparison function.")
print(" If the implementation isn't careful, this may segfault.")
s = x[:]
s.sort(key=cmp_to_key(lambda a, b: int(random.random() * 3) - 1))
check("an insane function left some permutation", x, s)
if len(x) >= 2:
def bad_key(x):
raise RuntimeError
s = x[:]
self.assertRaises(RuntimeError, s.sort, key=bad_key)
x = [Complains(i) for i in x]
s = x[:]
random.shuffle(s)
Complains.maybe_complain = True
it_complained = False
try:
s.sort()
except RuntimeError:
it_complained = True
if it_complained:
Complains.maybe_complain = False
check("exception during sort left some permutation", x, s)
s = [Stable(random.randrange(10), i) for i in range(n)]
augmented = [(e, e.index) for e in s]
augmented.sort() # forced stable because ties broken by index
x = [e for e, i in augmented] # a stable sort of s
check("stability", x, s)
#==============================================================================
class TestBugs(unittest.TestCase):
def test_bug453523(self):
# bug 453523 -- list.sort() crasher.
# If this fails, the most likely outcome is a core dump.
# Mutations during a list sort should raise a ValueError.
class C:
def __lt__(self, other):
if L and random.random() < 0.75:
L.pop()
else:
L.append(3)
return random.random() < 0.5
L = [C() for i in range(50)]
self.assertRaises(ValueError, L.sort)
def test_undetected_mutation(self):
# Python 2.4a1 did not always detect mutation
memorywaster = []
for i in range(20):
def mutating_cmp(x, y):
L.append(3)
L.pop()
return (x > y) - (x < y)
L = [1,2]
self.assertRaises(ValueError, L.sort, key=cmp_to_key(mutating_cmp))
def mutating_cmp(x, y):
L.append(3)
del L[:]
return (x > y) - (x < y)
self.assertRaises(ValueError, L.sort, key=cmp_to_key(mutating_cmp))
memorywaster = [memorywaster]
#==============================================================================
class TestDecorateSortUndecorate(unittest.TestCase):
def test_decorated(self):
data = 'The quick Brown fox Jumped over The lazy Dog'.split()
copy = data[:]
random.shuffle(data)
data.sort(key=str.lower)
def my_cmp(x, y):
xlower, ylower = x.lower(), y.lower()
return (xlower > ylower) - (xlower < ylower)
copy.sort(key=cmp_to_key(my_cmp))
def test_baddecorator(self):
data = 'The quick Brown fox Jumped over The lazy Dog'.split()
self.assertRaises(TypeError, data.sort, key=lambda x,y: 0)
def test_stability(self):
data = [(random.randrange(100), i) for i in range(200)]
copy = data[:]
data.sort(key=lambda t: t[0]) # sort on the random first field
copy.sort() # sort using both fields
self.assertEqual(data, copy) # should get the same result
def test_key_with_exception(self):
# Verify that the wrapper has been removed
data = list(range(-2, 2))
dup = data[:]
self.assertRaises(ZeroDivisionError, data.sort, key=lambda x: 1/x)
self.assertEqual(data, dup)
def test_key_with_mutation(self):
data = list(range(10))
def k(x):
del data[:]
data[:] = range(20)
return x
self.assertRaises(ValueError, data.sort, key=k)
def test_key_with_mutating_del(self):
data = list(range(10))
class SortKiller(object):
def __init__(self, x):
pass
def __del__(self):
del data[:]
data[:] = range(20)
def __lt__(self, other):
return id(self) < id(other)
self.assertRaises(ValueError, data.sort, key=SortKiller)
def test_key_with_mutating_del_and_exception(self):
data = list(range(10))
## dup = data[:]
class SortKiller(object):
def __init__(self, x):
if x > 2:
raise RuntimeError
def __del__(self):
del data[:]
data[:] = list(range(20))
self.assertRaises(RuntimeError, data.sort, key=SortKiller)
## major honking subtlety: we *can't* do:
##
## self.assertEqual(data, dup)
##
## because there is a reference to a SortKiller in the
## traceback and by the time it dies we're outside the call to
## .sort() and so the list protection gimmicks are out of
## date (this cost some brain cells to figure out...).
def test_reverse(self):
data = list(range(100))
random.shuffle(data)
data.sort(reverse=True)
self.assertEqual(data, list(range(99,-1,-1)))
def test_reverse_stability(self):
data = [(random.randrange(100), i) for i in range(200)]
copy1 = data[:]
copy2 = data[:]
def my_cmp(x, y):
x0, y0 = x[0], y[0]
return (x0 > y0) - (x0 < y0)
def my_cmp_reversed(x, y):
x0, y0 = x[0], y[0]
return (y0 > x0) - (y0 < x0)
data.sort(key=cmp_to_key(my_cmp), reverse=True)
copy1.sort(key=cmp_to_key(my_cmp_reversed))
self.assertEqual(data, copy1)
copy2.sort(key=lambda x: x[0], reverse=True)
self.assertEqual(data, copy2)
#==============================================================================
def check_against_PyObject_RichCompareBool(self, L):
## The idea here is to exploit the fact that unsafe_tuple_compare uses
## PyObject_RichCompareBool for the second elements of tuples. So we have,
## for (most) L, sorted(L) == [y[1] for y in sorted([(0,x) for x in L])]
## This will work as long as __eq__ => not __lt__ for all the objects in L,
## which holds for all the types used below.
##
## Testing this way ensures that the optimized implementation remains consistent
## with the naive implementation, even if changes are made to any of the
## richcompares.
##
## This function tests sorting for three lists (it randomly shuffles each one):
## 1. L
## 2. [(x,) for x in L]
## 3. [((x,),) for x in L]
random.seed(0)
random.shuffle(L)
L_1 = L[:]
L_2 = [(x,) for x in L]
L_3 = [((x,),) for x in L]
for L in [L_1, L_2, L_3]:
optimized = sorted(L)
reference = [y[1] for y in sorted([(0,x) for x in L])]
for (opt, ref) in zip(optimized, reference):
self.assertIs(opt, ref)
#note: not assertEqual! We want to ensure *identical* behavior.
class TestOptimizedCompares(unittest.TestCase):
def test_safe_object_compare(self):
heterogeneous_lists = [[0, 'foo'],
[0.0, 'foo'],
[('foo',), 'foo']]
for L in heterogeneous_lists:
self.assertRaises(TypeError, L.sort)
self.assertRaises(TypeError, [(x,) for x in L].sort)
self.assertRaises(TypeError, [((x,),) for x in L].sort)
float_int_lists = [[1,1.1],
[1<<70,1.1],
[1.1,1],
[1.1,1<<70]]
for L in float_int_lists:
check_against_PyObject_RichCompareBool(self, L)
def test_unsafe_object_compare(self):
# This test is by ppperry. It ensures that unsafe_object_compare is
# verifying ms->key_richcompare == tp->richcompare before comparing.
class WackyComparator(int):
def __lt__(self, other):
elem.__class__ = WackyList2
return int.__lt__(self, other)
class WackyList1(list):
pass
class WackyList2(list):
def __lt__(self, other):
raise ValueError
L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
elem = L[-1]
with self.assertRaises(ValueError):
L.sort()
L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
elem = L[-1]
with self.assertRaises(ValueError):
[(x,) for x in L].sort()
# The following test is also by ppperry. It ensures that
# unsafe_object_compare handles Py_NotImplemented appropriately.
class PointlessComparator:
def __lt__(self, other):
return NotImplemented
L = [PointlessComparator(), PointlessComparator()]
self.assertRaises(TypeError, L.sort)
self.assertRaises(TypeError, [(x,) for x in L].sort)
# The following tests go through various types that would trigger
# ms->key_compare = unsafe_object_compare
lists = [list(range(100)) + [(1<<70)],
[str(x) for x in range(100)] + ['\uffff'],
[bytes(x) for x in range(100)],
[cmp_to_key(lambda x,y: x<y)(x) for x in range(100)]]
for L in lists:
check_against_PyObject_RichCompareBool(self, L)
def test_unsafe_latin_compare(self):
check_against_PyObject_RichCompareBool(self, [str(x) for
x in range(100)])
def test_unsafe_long_compare(self):
check_against_PyObject_RichCompareBool(self, [x for
x in range(100)])
def test_unsafe_float_compare(self):
check_against_PyObject_RichCompareBool(self, [float(x) for
x in range(100)])
def test_unsafe_tuple_compare(self):
# This test was suggested by Tim Peters. It verifies that the tuple
# comparison respects the current tuple compare semantics, which do not
# guarantee that x < x <=> (x,) < (x,)
#
# Note that we don't have to put anything in tuples here, because
# the check function does a tuple test automatically.
check_against_PyObject_RichCompareBool(self, [float('nan')]*100)
check_against_PyObject_RichCompareBool(self, [float('nan') for
_ in range(100)])
#==============================================================================
if __name__ == "__main__":
unittest.main()
|