summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_statistics.py
blob: b24fc3c3d077fe4c99319d05539985149f1c6d4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
x = """Test suite for statistics module, including helper NumericTestCase and
approx_equal function.

"""

import bisect
import collections
import collections.abc
import copy
import decimal
import doctest
import itertools
import math
import pickle
import random
import sys
import unittest
from test import support
from test.support import import_helper, requires_IEEE_754

from decimal import Decimal
from fractions import Fraction


# Module to be tested.
import statistics


# === Helper functions and class ===

# Test copied from Lib/test/test_math.py
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)

def sign(x):
    """Return -1.0 for negatives, including -0.0, otherwise +1.0."""
    return math.copysign(1, x)

def _nan_equal(a, b):
    """Return True if a and b are both the same kind of NAN.

    >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
    True
    >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
    True
    >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
    False
    >>> _nan_equal(Decimal(42), Decimal('NAN'))
    False

    >>> _nan_equal(float('NAN'), float('NAN'))
    True
    >>> _nan_equal(float('NAN'), 0.5)
    False

    >>> _nan_equal(float('NAN'), Decimal('NAN'))
    False

    NAN payloads are not compared.
    """
    if type(a) is not type(b):
        return False
    if isinstance(a, float):
        return math.isnan(a) and math.isnan(b)
    aexp = a.as_tuple()[2]
    bexp = b.as_tuple()[2]
    return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN.


def _calc_errors(actual, expected):
    """Return the absolute and relative errors between two numbers.

    >>> _calc_errors(100, 75)
    (25, 0.25)
    >>> _calc_errors(100, 100)
    (0, 0.0)

    Returns the (absolute error, relative error) between the two arguments.
    """
    base = max(abs(actual), abs(expected))
    abs_err = abs(actual - expected)
    rel_err = abs_err/base if base else float('inf')
    return (abs_err, rel_err)


def approx_equal(x, y, tol=1e-12, rel=1e-7):
    """approx_equal(x, y [, tol [, rel]]) => True|False

    Return True if numbers x and y are approximately equal, to within some
    margin of error, otherwise return False. Numbers which compare equal
    will also compare approximately equal.

    x is approximately equal to y if the difference between them is less than
    an absolute error tol or a relative error rel, whichever is bigger.

    If given, both tol and rel must be finite, non-negative numbers. If not
    given, default values are tol=1e-12 and rel=1e-7.

    >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
    True
    >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
    False

    Absolute error is defined as abs(x-y); if that is less than or equal to
    tol, x and y are considered approximately equal.

    Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
    smaller, provided x or y are not zero. If that figure is less than or
    equal to rel, x and y are considered approximately equal.

    Complex numbers are not directly supported. If you wish to compare to
    complex numbers, extract their real and imaginary parts and compare them
    individually.

    NANs always compare unequal, even with themselves. Infinities compare
    approximately equal if they have the same sign (both positive or both
    negative). Infinities with different signs compare unequal; so do
    comparisons of infinities with finite numbers.
    """
    if tol < 0 or rel < 0:
        raise ValueError('error tolerances must be non-negative')
    # NANs are never equal to anything, approximately or otherwise.
    if math.isnan(x) or math.isnan(y):
        return False
    # Numbers which compare equal also compare approximately equal.
    if x == y:
        # This includes the case of two infinities with the same sign.
        return True
    if math.isinf(x) or math.isinf(y):
        # This includes the case of two infinities of opposite sign, or
        # one infinity and one finite number.
        return False
    # Two finite numbers.
    actual_error = abs(x - y)
    allowed_error = max(tol, rel*max(abs(x), abs(y)))
    return actual_error <= allowed_error


# This class exists only as somewhere to stick a docstring containing
# doctests. The following docstring and tests were originally in a separate
# module. Now that it has been merged in here, I need somewhere to hang the.
# docstring. Ultimately, this class will die, and the information below will
# either become redundant, or be moved into more appropriate places.
class _DoNothing:
    """
    When doing numeric work, especially with floats, exact equality is often
    not what you want. Due to round-off error, it is often a bad idea to try
    to compare floats with equality. Instead the usual procedure is to test
    them with some (hopefully small!) allowance for error.

    The ``approx_equal`` function allows you to specify either an absolute
    error tolerance, or a relative error, or both.

    Absolute error tolerances are simple, but you need to know the magnitude
    of the quantities being compared:

    >>> approx_equal(12.345, 12.346, tol=1e-3)
    True
    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
    False

    Relative errors are more suitable when the values you are comparing can
    vary in magnitude:

    >>> approx_equal(12.345, 12.346, rel=1e-4)
    True
    >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
    True

    but a naive implementation of relative error testing can run into trouble
    around zero.

    If you supply both an absolute tolerance and a relative error, the
    comparison succeeds if either individual test succeeds:

    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
    True

    """
    pass



# We prefer this for testing numeric values that may not be exactly equal,
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)

py_statistics = import_helper.import_fresh_module('statistics',
                                                  blocked=['_statistics'])
c_statistics = import_helper.import_fresh_module('statistics',
                                                 fresh=['_statistics'])


class TestModules(unittest.TestCase):
    func_names = ['_normal_dist_inv_cdf']

    def test_py_functions(self):
        for fname in self.func_names:
            self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics')

    @unittest.skipUnless(c_statistics, 'requires _statistics')
    def test_c_functions(self):
        for fname in self.func_names:
            self.assertEqual(getattr(c_statistics, fname).__module__, '_statistics')


class NumericTestCase(unittest.TestCase):
    """Unit test class for numeric work.

    This subclasses TestCase. In addition to the standard method
    ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
    """
    # By default, we expect exact equality, unless overridden.
    tol = rel = 0

    def assertApproxEqual(
            self, first, second, tol=None, rel=None, msg=None
            ):
        """Test passes if ``first`` and ``second`` are approximately equal.

        This test passes if ``first`` and ``second`` are equal to
        within ``tol``, an absolute error, or ``rel``, a relative error.

        If either ``tol`` or ``rel`` are None or not given, they default to
        test attributes of the same name (by default, 0).

        The objects may be either numbers, or sequences of numbers. Sequences
        are tested element-by-element.

        >>> class MyTest(NumericTestCase):
        ...     def test_number(self):
        ...         x = 1.0/6
        ...         y = sum([x]*6)
        ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
        ...     def test_sequence(self):
        ...         a = [1.001, 1.001e-10, 1.001e10]
        ...         b = [1.0, 1e-10, 1e10]
        ...         self.assertApproxEqual(a, b, rel=1e-3)
        ...
        >>> import unittest
        >>> from io import StringIO  # Suppress test runner output.
        >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
        >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
        <unittest.runner.TextTestResult run=2 errors=0 failures=0>

        """
        if tol is None:
            tol = self.tol
        if rel is None:
            rel = self.rel
        if (
                isinstance(first, collections.abc.Sequence) and
                isinstance(second, collections.abc.Sequence)
            ):
            check = self._check_approx_seq
        else:
            check = self._check_approx_num
        check(first, second, tol, rel, msg)

    def _check_approx_seq(self, first, second, tol, rel, msg):
        if len(first) != len(second):
            standardMsg = (
                "sequences differ in length: %d items != %d items"
                % (len(first), len(second))
                )
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)
        for i, (a,e) in enumerate(zip(first, second)):
            self._check_approx_num(a, e, tol, rel, msg, i)

    def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
        if approx_equal(first, second, tol, rel):
            # Test passes. Return early, we are done.
            return None
        # Otherwise we failed.
        standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

    @staticmethod
    def _make_std_err_msg(first, second, tol, rel, idx):
        # Create the standard error message for approx_equal failures.
        assert first != second
        template = (
            '  %r != %r\n'
            '  values differ by more than tol=%r and rel=%r\n'
            '  -> absolute error = %r\n'
            '  -> relative error = %r'
            )
        if idx is not None:
            header = 'numeric sequences first differ at index %d.\n' % idx
            template = header + template
        # Calculate actual errors:
        abs_err, rel_err = _calc_errors(first, second)
        return template % (first, second, tol, rel, abs_err, rel_err)


# ========================
# === Test the helpers ===
# ========================

class TestSign(unittest.TestCase):
    """Test that the helper function sign() works correctly."""
    def testZeroes(self):
        # Test that signed zeroes report their sign correctly.
        self.assertEqual(sign(0.0), +1)
        self.assertEqual(sign(-0.0), -1)


# --- Tests for approx_equal ---

class ApproxEqualSymmetryTest(unittest.TestCase):
    # Test symmetry of approx_equal.

    def test_relative_symmetry(self):
        # Check that approx_equal treats relative error symmetrically.
        # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
        # doesn't matter.
        #
        #   Note: the reason for this test is that an early version
        #   of approx_equal was not symmetric. A relative error test
        #   would pass, or fail, depending on which value was passed
        #   as the first argument.
        #
        args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
        args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
        assert len(args1) == len(args2)
        for a, b in zip(args1, args2):
            self.do_relative_symmetry(a, b)

    def do_relative_symmetry(self, a, b):
        a, b = min(a, b), max(a, b)
        assert a < b
        delta = b - a  # The absolute difference between the values.
        rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
        # Choose an error margin halfway between the two.
        rel = (rel_err1 + rel_err2)/2
        # Now see that values a and b compare approx equal regardless of
        # which is given first.
        self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
        self.assertTrue(approx_equal(b, a, tol=0, rel=rel))

    def test_symmetry(self):
        # Test that approx_equal(a, b) == approx_equal(b, a)
        args = [-23, -2, 5, 107, 93568]
        delta = 2
        for a in args:
            for type_ in (int, float, Decimal, Fraction):
                x = type_(a)*100
                y = x + delta
                r = abs(delta/max(x, y))
                # There are five cases to check:
                # 1) actual error <= tol, <= rel
                self.do_symmetry_test(x, y, tol=delta, rel=r)
                self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
                # 2) actual error > tol, > rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
                # 3) actual error <= tol, > rel
                self.do_symmetry_test(x, y, tol=delta, rel=r/2)
                # 4) actual error > tol, <= rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r)
                self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
                # 5) exact equality test
                self.do_symmetry_test(x, x, tol=0, rel=0)
                self.do_symmetry_test(x, y, tol=0, rel=0)

    def do_symmetry_test(self, a, b, tol, rel):
        template = "approx_equal comparisons don't match for %r"
        flag1 = approx_equal(a, b, tol, rel)
        flag2 = approx_equal(b, a, tol, rel)
        self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))


class ApproxEqualExactTest(unittest.TestCase):
    # Test the approx_equal function with exactly equal values.
    # Equal values should compare as approximately equal.
    # Test cases for exactly equal values, which should compare approx
    # equal regardless of the error tolerances given.

    def do_exactly_equal_test(self, x, tol, rel):
        result = approx_equal(x, x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % x)
        result = approx_equal(-x, -x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % -x)

    def test_exactly_equal_ints(self):
        # Test that equal int values are exactly equal.
        for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
            self.do_exactly_equal_test(n, 0, 0)

    def test_exactly_equal_floats(self):
        # Test that equal float values are exactly equal.
        for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
            self.do_exactly_equal_test(x, 0, 0)

    def test_exactly_equal_fractions(self):
        # Test that equal Fraction values are exactly equal.
        F = Fraction
        for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
            self.do_exactly_equal_test(f, 0, 0)

    def test_exactly_equal_decimals(self):
        # Test that equal Decimal values are exactly equal.
        D = Decimal
        for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
            self.do_exactly_equal_test(d, 0, 0)

    def test_exactly_equal_absolute(self):
        # Test that equal values are exactly equal with an absolute error.
        for n in [16, 1013, 1372, 1198, 971, 4]:
            # Test as ints.
            self.do_exactly_equal_test(n, 0.01, 0)
            # Test as floats.
            self.do_exactly_equal_test(n/10, 0.01, 0)
            # Test as Fractions.
            f = Fraction(n, 1234)
            self.do_exactly_equal_test(f, 0.01, 0)

    def test_exactly_equal_absolute_decimals(self):
        # Test equal Decimal values are exactly equal with an absolute error.
        self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
        self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)

    def test_exactly_equal_relative(self):
        # Test that equal values are exactly equal with a relative error.
        for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
            self.do_exactly_equal_test(x, 0, 0.01)
        self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))

    def test_exactly_equal_both(self):
        # Test that equal values are equal when both tol and rel are given.
        for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
            self.do_exactly_equal_test(x, 0.1, 0.01)
        D = Decimal
        self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))


class ApproxEqualUnequalTest(unittest.TestCase):
    # Unequal values should compare unequal with zero error tolerances.
    # Test cases for unequal values, with exact equality test.

    def do_exactly_unequal_test(self, x):
        for a in (x, -x):
            result = approx_equal(a, a+1, tol=0, rel=0)
            self.assertFalse(result, 'inequality failure for x=%r' % a)

    def test_exactly_unequal_ints(self):
        # Test unequal int values are unequal with zero error tolerance.
        for n in [951, 572305, 478, 917, 17240]:
            self.do_exactly_unequal_test(n)

    def test_exactly_unequal_floats(self):
        # Test unequal float values are unequal with zero error tolerance.
        for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
            self.do_exactly_unequal_test(x)

    def test_exactly_unequal_fractions(self):
        # Test that unequal Fractions are unequal with zero error tolerance.
        F = Fraction
        for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
            self.do_exactly_unequal_test(f)

    def test_exactly_unequal_decimals(self):
        # Test that unequal Decimals are unequal with zero error tolerance.
        for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
            self.do_exactly_unequal_test(d)


class ApproxEqualInexactTest(unittest.TestCase):
    # Inexact test cases for approx_error.
    # Test cases when comparing two values that are not exactly equal.

    # === Absolute error tests ===

    def do_approx_equal_abs_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x + delta, x - delta):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
            self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)

    def test_approx_equal_absolute_ints(self):
        # Test approximate equality of ints with an absolute error.
        for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
            self.do_approx_equal_abs_test(n, 10)
            self.do_approx_equal_abs_test(n, 2)

    def test_approx_equal_absolute_floats(self):
        # Test approximate equality of floats with an absolute error.
        for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
            self.do_approx_equal_abs_test(x, 1.5)
            self.do_approx_equal_abs_test(x, 0.01)
            self.do_approx_equal_abs_test(x, 0.0001)

    def test_approx_equal_absolute_fractions(self):
        # Test approximate equality of Fractions with an absolute error.
        delta = Fraction(1, 29)
        numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
        for f in (Fraction(n, 29) for n in numerators):
            self.do_approx_equal_abs_test(f, delta)
            self.do_approx_equal_abs_test(f, float(delta))

    def test_approx_equal_absolute_decimals(self):
        # Test approximate equality of Decimals with an absolute error.
        delta = Decimal("0.01")
        for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
            self.do_approx_equal_abs_test(d, delta)
            self.do_approx_equal_abs_test(-d, delta)

    def test_cross_zero(self):
        # Test for the case of the two values having opposite signs.
        self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))

    # === Relative error tests ===

    def do_approx_equal_rel_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x*(1+delta), x*(1-delta)):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
            self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)

    def test_approx_equal_relative_ints(self):
        # Test approximate equality of ints with a relative error.
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
        # ---
        self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
        self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
        self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))

    def test_approx_equal_relative_floats(self):
        # Test approximate equality of floats with a relative error.
        for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
            self.do_approx_equal_rel_test(x, 0.02)
            self.do_approx_equal_rel_test(x, 0.0001)

    def test_approx_equal_relative_fractions(self):
        # Test approximate equality of Fractions with a relative error.
        F = Fraction
        delta = Fraction(3, 8)
        for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
            for d in (delta, float(delta)):
                self.do_approx_equal_rel_test(f, d)
                self.do_approx_equal_rel_test(-f, d)

    def test_approx_equal_relative_decimals(self):
        # Test approximate equality of Decimals with a relative error.
        for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
            self.do_approx_equal_rel_test(d, Decimal("0.001"))
            self.do_approx_equal_rel_test(-d, Decimal("0.05"))

    # === Both absolute and relative error tests ===

    # There are four cases to consider:
    #   1) actual error <= both absolute and relative error
    #   2) actual error <= absolute error but > relative error
    #   3) actual error <= relative error but > absolute error
    #   4) actual error > both absolute and relative error

    def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
        check = self.assertTrue if tol_flag else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=0))
        check = self.assertTrue if rel_flag else self.assertFalse
        check(approx_equal(a, b, tol=0, rel=rel))
        check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=rel))

    def test_approx_equal_both1(self):
        # Test actual error <= both absolute and relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
        self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)

    def test_approx_equal_both2(self):
        # Test actual error <= absolute error but > relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)

    def test_approx_equal_both3(self):
        # Test actual error <= relative error but > absolute error.
        self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)

    def test_approx_equal_both4(self):
        # Test actual error > both absolute and relative error.
        self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
        self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)


class ApproxEqualSpecialsTest(unittest.TestCase):
    # Test approx_equal with NANs and INFs and zeroes.

    def test_inf(self):
        for type_ in (float, Decimal):
            inf = type_('inf')
            self.assertTrue(approx_equal(inf, inf))
            self.assertTrue(approx_equal(inf, inf, 0, 0))
            self.assertTrue(approx_equal(inf, inf, 1, 0.01))
            self.assertTrue(approx_equal(-inf, -inf))
            self.assertFalse(approx_equal(inf, -inf))
            self.assertFalse(approx_equal(inf, 1000))

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
            for other in (nan, type_('inf'), 1000):
                self.assertFalse(approx_equal(nan, other))

    def test_float_zeroes(self):
        nzero = math.copysign(0.0, -1)
        self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))

    def test_decimal_zeroes(self):
        nzero = Decimal("-0.0")
        self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))


class TestApproxEqualErrors(unittest.TestCase):
    # Test error conditions of approx_equal.

    def test_bad_tol(self):
        # Test negative tol raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)

    def test_bad_rel(self):
        # Test negative rel raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)


# --- Tests for NumericTestCase ---

# The formatting routine that generates the error messages is complex enough
# that it too needs testing.

class TestNumericTestCase(unittest.TestCase):
    # The exact wording of NumericTestCase error messages is *not* guaranteed,
    # but we need to give them some sort of test to ensure that they are
    # generated correctly. As a compromise, we look for specific substrings
    # that are expected to be found even if the overall error message changes.

    def do_test(self, args):
        actual_msg = NumericTestCase._make_std_err_msg(*args)
        expected = self.generate_substrings(*args)
        for substring in expected:
            self.assertIn(substring, actual_msg)

    def test_numerictestcase_is_testcase(self):
        # Ensure that NumericTestCase actually is a TestCase.
        self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))

    def test_error_msg_numeric(self):
        # Test the error message generated for numeric comparisons.
        args = (2.5, 4.0, 0.5, 0.25, None)
        self.do_test(args)

    def test_error_msg_sequence(self):
        # Test the error message generated for sequence comparisons.
        args = (3.75, 8.25, 1.25, 0.5, 7)
        self.do_test(args)

    def generate_substrings(self, first, second, tol, rel, idx):
        """Return substrings we expect to see in error messages."""
        abs_err, rel_err = _calc_errors(first, second)
        substrings = [
                'tol=%r' % tol,
                'rel=%r' % rel,
                'absolute error = %r' % abs_err,
                'relative error = %r' % rel_err,
                ]
        if idx is not None:
            substrings.append('differ at index %d' % idx)
        return substrings


# =======================================
# === Tests for the statistics module ===
# =======================================


class GlobalsTest(unittest.TestCase):
    module = statistics
    expected_metadata = ["__doc__", "__all__"]

    def test_meta(self):
        # Test for the existence of metadata.
        for meta in self.expected_metadata:
            self.assertTrue(hasattr(self.module, meta),
                            "%s not present" % meta)

    def test_check_all(self):
        # Check everything in __all__ exists and is public.
        module = self.module
        for name in module.__all__:
            # No private names in __all__:
            self.assertFalse(name.startswith("_"),
                             'private name "%s" in __all__' % name)
            # And anything in __all__ must exist:
            self.assertTrue(hasattr(module, name),
                            'missing name "%s" in __all__' % name)


class StatisticsErrorTest(unittest.TestCase):
    def test_has_exception(self):
        errmsg = (
                "Expected StatisticsError to be a ValueError, but got a"
                " subclass of %r instead."
                )
        self.assertTrue(hasattr(statistics, 'StatisticsError'))
        self.assertTrue(
                issubclass(statistics.StatisticsError, ValueError),
                errmsg % statistics.StatisticsError.__base__
                )


# === Tests for private utility functions ===

class ExactRatioTest(unittest.TestCase):
    # Test _exact_ratio utility.

    def test_int(self):
        for i in (-20, -3, 0, 5, 99, 10**20):
            self.assertEqual(statistics._exact_ratio(i), (i, 1))

    def test_fraction(self):
        numerators = (-5, 1, 12, 38)
        for n in numerators:
            f = Fraction(n, 37)
            self.assertEqual(statistics._exact_ratio(f), (n, 37))

    def test_float(self):
        self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
        self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
        data = [random.uniform(-100, 100) for _ in range(100)]
        for x in data:
            num, den = statistics._exact_ratio(x)
            self.assertEqual(x, num/den)

    def test_decimal(self):
        D = Decimal
        _exact_ratio = statistics._exact_ratio
        self.assertEqual(_exact_ratio(D("0.125")), (1, 8))
        self.assertEqual(_exact_ratio(D("12.345")), (2469, 200))
        self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50))

    def test_inf(self):
        INF = float("INF")
        class MyFloat(float):
            pass
        class MyDecimal(Decimal):
            pass
        for inf in (INF, -INF):
            for type_ in (float, MyFloat, Decimal, MyDecimal):
                x = type_(inf)
                ratio = statistics._exact_ratio(x)
                self.assertEqual(ratio, (x, None))
                self.assertEqual(type(ratio[0]), type_)
                self.assertTrue(math.isinf(ratio[0]))

    def test_float_nan(self):
        NAN = float("NAN")
        class MyFloat(float):
            pass
        for nan in (NAN, MyFloat(NAN)):
            ratio = statistics._exact_ratio(nan)
            self.assertTrue(math.isnan(ratio[0]))
            self.assertIs(ratio[1], None)
            self.assertEqual(type(ratio[0]), type(nan))

    def test_decimal_nan(self):
        NAN = Decimal("NAN")
        sNAN = Decimal("sNAN")
        class MyDecimal(Decimal):
            pass
        for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
            ratio = statistics._exact_ratio(nan)
            self.assertTrue(_nan_equal(ratio[0], nan))
            self.assertIs(ratio[1], None)
            self.assertEqual(type(ratio[0]), type(nan))


class DecimalToRatioTest(unittest.TestCase):
    # Test _exact_ratio private function.

    def test_infinity(self):
        # Test that INFs are handled correctly.
        inf = Decimal('INF')
        self.assertEqual(statistics._exact_ratio(inf), (inf, None))
        self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))

    def test_nan(self):
        # Test that NANs are handled correctly.
        for nan in (Decimal('NAN'), Decimal('sNAN')):
            num, den = statistics._exact_ratio(nan)
            # Because NANs always compare non-equal, we cannot use assertEqual.
            # Nor can we use an identity test, as we don't guarantee anything
            # about the object identity.
            self.assertTrue(_nan_equal(num, nan))
            self.assertIs(den, None)

    def test_sign(self):
        # Test sign is calculated correctly.
        numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
        for d in numbers:
            # First test positive decimals.
            assert d > 0
            num, den = statistics._exact_ratio(d)
            self.assertGreaterEqual(num, 0)
            self.assertGreater(den, 0)
            # Then test negative decimals.
            num, den = statistics._exact_ratio(-d)
            self.assertLessEqual(num, 0)
            self.assertGreater(den, 0)

    def test_negative_exponent(self):
        # Test result when the exponent is negative.
        t = statistics._exact_ratio(Decimal("0.1234"))
        self.assertEqual(t, (617, 5000))

    def test_positive_exponent(self):
        # Test results when the exponent is positive.
        t = statistics._exact_ratio(Decimal("1.234e7"))
        self.assertEqual(t, (12340000, 1))

    def test_regression_20536(self):
        # Regression test for issue 20536.
        # See http://bugs.python.org/issue20536
        t = statistics._exact_ratio(Decimal("1e2"))
        self.assertEqual(t, (100, 1))
        t = statistics._exact_ratio(Decimal("1.47e5"))
        self.assertEqual(t, (147000, 1))


class IsFiniteTest(unittest.TestCase):
    # Test _isfinite private function.

    def test_finite(self):
        # Test that finite numbers are recognised as finite.
        for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
            self.assertTrue(statistics._isfinite(x))

    def test_infinity(self):
        # Test that INFs are not recognised as finite.
        for x in (float("inf"), Decimal("inf")):
            self.assertFalse(statistics._isfinite(x))

    def test_nan(self):
        # Test that NANs are not recognised as finite.
        for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
            self.assertFalse(statistics._isfinite(x))


class CoerceTest(unittest.TestCase):
    # Test that private function _coerce correctly deals with types.

    # The coercion rules are currently an implementation detail, although at
    # some point that should change. The tests and comments here define the
    # correct implementation.

    # Pre-conditions of _coerce:
    #
    #   - The first time _sum calls _coerce, the
    #   - coerce(T, S) will never be called with bool as the first argument;
    #     this is a pre-condition, guarded with an assertion.

    #
    #   - coerce(T, T) will always return T; we assume T is a valid numeric
    #     type. Violate this assumption at your own risk.
    #
    #   - Apart from as above, bool is treated as if it were actually int.
    #
    #   - coerce(int, X) and coerce(X, int) return X.
    #   -
    def test_bool(self):
        # bool is somewhat special, due to the pre-condition that it is
        # never given as the first argument to _coerce, and that it cannot
        # be subclassed. So we test it specially.
        for T in (int, float, Fraction, Decimal):
            self.assertIs(statistics._coerce(T, bool), T)
            class MyClass(T): pass
            self.assertIs(statistics._coerce(MyClass, bool), MyClass)

    def assertCoerceTo(self, A, B):
        """Assert that type A coerces to B."""
        self.assertIs(statistics._coerce(A, B), B)
        self.assertIs(statistics._coerce(B, A), B)

    def check_coerce_to(self, A, B):
        """Checks that type A coerces to B, including subclasses."""
        # Assert that type A is coerced to B.
        self.assertCoerceTo(A, B)
        # Subclasses of A are also coerced to B.
        class SubclassOfA(A): pass
        self.assertCoerceTo(SubclassOfA, B)
        # A, and subclasses of A, are coerced to subclasses of B.
        class SubclassOfB(B): pass
        self.assertCoerceTo(A, SubclassOfB)
        self.assertCoerceTo(SubclassOfA, SubclassOfB)

    def assertCoerceRaises(self, A, B):
        """Assert that coercing A to B, or vice versa, raises TypeError."""
        self.assertRaises(TypeError, statistics._coerce, (A, B))
        self.assertRaises(TypeError, statistics._coerce, (B, A))

    def check_type_coercions(self, T):
        """Check that type T coerces correctly with subclasses of itself."""
        assert T is not bool
        # Coercing a type with itself returns the same type.
        self.assertIs(statistics._coerce(T, T), T)
        # Coercing a type with a subclass of itself returns the subclass.
        class U(T): pass
        class V(T): pass
        class W(U): pass
        for typ in (U, V, W):
            self.assertCoerceTo(T, typ)
        self.assertCoerceTo(U, W)
        # Coercing two subclasses that aren't parent/child is an error.
        self.assertCoerceRaises(U, V)
        self.assertCoerceRaises(V, W)

    def test_int(self):
        # Check that int coerces correctly.
        self.check_type_coercions(int)
        for typ in (float, Fraction, Decimal):
            self.check_coerce_to(int, typ)

    def test_fraction(self):
        # Check that Fraction coerces correctly.
        self.check_type_coercions(Fraction)
        self.check_coerce_to(Fraction, float)

    def test_decimal(self):
        # Check that Decimal coerces correctly.
        self.check_type_coercions(Decimal)

    def test_float(self):
        # Check that float coerces correctly.
        self.check_type_coercions(float)

    def test_non_numeric_types(self):
        for bad_type in (str, list, type(None), tuple, dict):
            for good_type in (int, float, Fraction, Decimal):
                self.assertCoerceRaises(good_type, bad_type)

    def test_incompatible_types(self):
        # Test that incompatible types raise.
        for T in (float, Fraction):
            class MySubclass(T): pass
            self.assertCoerceRaises(T, Decimal)
            self.assertCoerceRaises(MySubclass, Decimal)


class ConvertTest(unittest.TestCase):
    # Test private _convert function.

    def check_exact_equal(self, x, y):
        """Check that x equals y, and has the same type as well."""
        self.assertEqual(x, y)
        self.assertIs(type(x), type(y))

    def test_int(self):
        # Test conversions to int.
        x = statistics._convert(Fraction(71), int)
        self.check_exact_equal(x, 71)
        class MyInt(int): pass
        x = statistics._convert(Fraction(17), MyInt)
        self.check_exact_equal(x, MyInt(17))

    def test_fraction(self):
        # Test conversions to Fraction.
        x = statistics._convert(Fraction(95, 99), Fraction)
        self.check_exact_equal(x, Fraction(95, 99))
        class MyFraction(Fraction):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(71, 13), MyFraction)
        self.check_exact_equal(x, MyFraction(71, 13))

    def test_float(self):
        # Test conversions to float.
        x = statistics._convert(Fraction(-1, 2), float)
        self.check_exact_equal(x, -0.5)
        class MyFloat(float):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(9, 8), MyFloat)
        self.check_exact_equal(x, MyFloat(1.125))

    def test_decimal(self):
        # Test conversions to Decimal.
        x = statistics._convert(Fraction(1, 40), Decimal)
        self.check_exact_equal(x, Decimal("0.025"))
        class MyDecimal(Decimal):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(-15, 16), MyDecimal)
        self.check_exact_equal(x, MyDecimal("-0.9375"))

    def test_inf(self):
        for INF in (float('inf'), Decimal('inf')):
            for inf in (INF, -INF):
                x = statistics._convert(inf, type(inf))
                self.check_exact_equal(x, inf)

    def test_nan(self):
        for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
            x = statistics._convert(nan, type(nan))
            self.assertTrue(_nan_equal(x, nan))

    def test_invalid_input_type(self):
        with self.assertRaises(TypeError):
            statistics._convert(None, float)


class FailNegTest(unittest.TestCase):
    """Test _fail_neg private function."""

    def test_pass_through(self):
        # Test that values are passed through unchanged.
        values = [1, 2.0, Fraction(3), Decimal(4)]
        new = list(statistics._fail_neg(values))
        self.assertEqual(values, new)

    def test_negatives_raise(self):
        # Test that negatives raise an exception.
        for x in [1, 2.0, Fraction(3), Decimal(4)]:
            seq = [-x]
            it = statistics._fail_neg(seq)
            self.assertRaises(statistics.StatisticsError, next, it)

    def test_error_msg(self):
        # Test that a given error message is used.
        msg = "badness #%d" % random.randint(10000, 99999)
        try:
            next(statistics._fail_neg([-1], msg))
        except statistics.StatisticsError as e:
            errmsg = e.args[0]
        else:
            self.fail("expected exception, but it didn't happen")
        self.assertEqual(errmsg, msg)


# === Tests for public functions ===

class UnivariateCommonMixin:
    # Common tests for most univariate functions that take a data argument.

    def test_no_args(self):
        # Fail if given no arguments.
        self.assertRaises(TypeError, self.func)

    def test_empty_data(self):
        # Fail when the data argument (first argument) is empty.
        for empty in ([], (), iter([])):
            self.assertRaises(statistics.StatisticsError, self.func, empty)

    def prepare_data(self):
        """Return int data for various tests."""
        data = list(range(10))
        while data == sorted(data):
            random.shuffle(data)
        return data

    def test_no_inplace_modifications(self):
        # Test that the function does not modify its input data.
        data = self.prepare_data()
        assert len(data) != 1  # Necessary to avoid infinite loop.
        assert data != sorted(data)
        saved = data[:]
        assert data is not saved
        _ = self.func(data)
        self.assertListEqual(data, saved, "data has been modified")

    def test_order_doesnt_matter(self):
        # Test that the order of data points doesn't change the result.

        # CAUTION: due to floating point rounding errors, the result actually
        # may depend on the order. Consider this test representing an ideal.
        # To avoid this test failing, only test with exact values such as ints
        # or Fractions.
        data = [1, 2, 3, 3, 3, 4, 5, 6]*100
        expected = self.func(data)
        random.shuffle(data)
        actual = self.func(data)
        self.assertEqual(expected, actual)

    def test_type_of_data_collection(self):
        # Test that the type of iterable data doesn't effect the result.
        class MyList(list):
            pass
        class MyTuple(tuple):
            pass
        def generator(data):
            return (obj for obj in data)
        data = self.prepare_data()
        expected = self.func(data)
        for kind in (list, tuple, iter, MyList, MyTuple, generator):
            result = self.func(kind(data))
            self.assertEqual(result, expected)

    def test_range_data(self):
        # Test that functions work with range objects.
        data = range(20, 50, 3)
        expected = self.func(list(data))
        self.assertEqual(self.func(data), expected)

    def test_bad_arg_types(self):
        # Test that function raises when given data of the wrong type.

        # Don't roll the following into a loop like this:
        #   for bad in list_of_bad:
        #       self.check_for_type_error(bad)
        #
        # Since assertRaises doesn't show the arguments that caused the test
        # failure, it is very difficult to debug these test failures when the
        # following are in a loop.
        self.check_for_type_error(None)
        self.check_for_type_error(23)
        self.check_for_type_error(42.0)
        self.check_for_type_error(object())

    def check_for_type_error(self, *args):
        self.assertRaises(TypeError, self.func, *args)

    def test_type_of_data_element(self):
        # Check the type of data elements doesn't affect the numeric result.
        # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
        # because it checks the numeric result by equality, but not by type.
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__

        raw = self.prepare_data()
        expected = self.func(raw)
        for kind in (float, MyFloat, Decimal, Fraction):
            data = [kind(x) for x in raw]
            result = type(expected)(self.func(data))
            self.assertEqual(result, expected)


class UnivariateTypeMixin:
    """Mixin class for type-conserving functions.

    This mixin class holds test(s) for functions which conserve the type of
    individual data points. E.g. the mean of a list of Fractions should itself
    be a Fraction.

    Not all tests to do with types need go in this class. Only those that
    rely on the function returning the same type as its input data.
    """
    def prepare_types_for_conservation_test(self):
        """Return the types which are expected to be conserved."""
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
            def __rtruediv__(self, other):
                return type(self)(super().__rtruediv__(other))
            def __sub__(self, other):
                return type(self)(super().__sub__(other))
            def __rsub__(self, other):
                return type(self)(super().__rsub__(other))
            def __pow__(self, other):
                return type(self)(super().__pow__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__
            def __mul__(self, other):
                return type(self)(super().__mul__(other))
            __rmul__ = __mul__
        return (float, Decimal, Fraction, MyFloat)

    def test_types_conserved(self):
        # Test that functions keeps the same type as their data points.
        # (Excludes mixed data types.) This only tests the type of the return
        # result, not the value.
        data = self.prepare_data()
        for kind in self.prepare_types_for_conservation_test():
            d = [kind(x) for x in data]
            result = self.func(d)
            self.assertIs(type(result), kind)


class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
    # Common test cases for statistics._sum() function.

    # This test suite looks only at the numeric value returned by _sum,
    # after conversion to the appropriate type.
    def setUp(self):
        def simplified_sum(*args):
            T, value, n = statistics._sum(*args)
            return statistics._coerce(value, T)
        self.func = simplified_sum


class TestSum(NumericTestCase):
    # Test cases for statistics._sum() function.

    # These tests look at the entire three value tuple returned by _sum.

    def setUp(self):
        self.func = statistics._sum

    def test_empty_data(self):
        # Override test for empty data.
        for data in ([], (), iter([])):
            self.assertEqual(self.func(data), (int, Fraction(0), 0))

    def test_ints(self):
        self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
                         (int, Fraction(60), 8))

    def test_floats(self):
        self.assertEqual(self.func([0.25]*20),
                         (float, Fraction(5.0), 20))

    def test_fractions(self):
        self.assertEqual(self.func([Fraction(1, 1000)]*500),
                         (Fraction, Fraction(1, 2), 500))

    def test_decimals(self):
        D = Decimal
        data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
                D("3.974"), D("2.328"), D("4.617"), D("2.843"),
                ]
        self.assertEqual(self.func(data),
                         (Decimal, Decimal("20.686"), 8))

    def test_compare_with_math_fsum(self):
        # Compare with the math.fsum function.
        # Ideally we ought to get the exact same result, but sometimes
        # we differ by a very slight amount :-(
        data = [random.uniform(-100, 1000) for _ in range(1000)]
        self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)

    def test_strings_fail(self):
        # Sum of strings should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])

    def test_bytes_fail(self):
        # Sum of bytes should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])

    def test_mixed_sum(self):
        # Mixed input types are not (currently) allowed.
        # Check that mixed data types fail.
        self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
        # And so does mixed start argument.
        self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))


class SumTortureTest(NumericTestCase):
    def test_torture(self):
        # Tim Peters' torture test for sum, and variants of same.
        self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
                         (float, Fraction(20000.0), 40000))
        self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
                         (float, Fraction(20000.0), 40000))
        T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
        self.assertIs(T, float)
        self.assertEqual(count, 40000)
        self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)


class SumSpecialValues(NumericTestCase):
    # Test that sum works correctly with IEEE-754 special values.

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
            result = statistics._sum([1, nan, 2])[1]
            self.assertIs(type(result), type_)
            self.assertTrue(math.isnan(result))

    def check_infinity(self, x, inf):
        """Check x is an infinity of the same type and sign as inf."""
        self.assertTrue(math.isinf(x))
        self.assertIs(type(x), type(inf))
        self.assertEqual(x > 0, inf > 0)
        assert x == inf

    def do_test_inf(self, inf):
        # Adding a single infinity gives infinity.
        result = statistics._sum([1, 2, inf, 3])[1]
        self.check_infinity(result, inf)
        # Adding two infinities of the same sign also gives infinity.
        result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
        self.check_infinity(result, inf)

    def test_float_inf(self):
        inf = float('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_decimal_inf(self):
        inf = Decimal('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_float_mismatched_infs(self):
        # Test that adding two infinities of opposite sign gives a NAN.
        inf = float('inf')
        result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
        self.assertTrue(math.isnan(result))

    def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
        # Test adding Decimal INFs with opposite sign returns NAN.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.ExtendedContext):
            self.assertTrue(math.isnan(statistics._sum(data)[1]))

    def test_decimal_basiccontext_mismatched_infs_to_nan(self):
        # Test adding Decimal INFs with opposite sign raises InvalidOperation.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.BasicContext):
            self.assertRaises(decimal.InvalidOperation, statistics._sum, data)

    def test_decimal_snan_raises(self):
        # Adding sNAN should raise InvalidOperation.
        sNAN = Decimal('sNAN')
        data = [1, sNAN, 2]
        self.assertRaises(decimal.InvalidOperation, statistics._sum, data)


# === Tests for averages ===

class AverageMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for averages.

    def test_single_value(self):
        # Average of a single value is the value itself.
        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
            self.assertEqual(self.func([x]), x)

    def prepare_values_for_repeated_single_test(self):
        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712'))

    def test_repeated_single_value(self):
        # The average of a single repeated value is the value itself.
        for x in self.prepare_values_for_repeated_single_test():
            for count in (2, 5, 10, 20):
                with self.subTest(x=x, count=count):
                    data = [x]*count
                    self.assertEqual(self.func(data), x)


class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.mean

    def test_torture_pep(self):
        # "Torture Test" from PEP-450.
        self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)

    def test_ints(self):
        # Test mean with ints.
        data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
        random.shuffle(data)
        self.assertEqual(self.func(data), 4.8125)

    def test_floats(self):
        # Test mean with floats.
        data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
        random.shuffle(data)
        self.assertEqual(self.func(data), 22.015625)

    def test_decimals(self):
        # Test mean with Decimals.
        D = Decimal
        data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D("3.5896"))

    def test_fractions(self):
        # Test mean with Fractions.
        F = Fraction
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1479, 1960))

    def test_inf(self):
        # Test mean with infinities.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            for sign in (1, -1):
                inf = kind("inf")*sign
                data = raw + [inf]
                result = self.func(data)
                self.assertTrue(math.isinf(result))
                self.assertEqual(result, inf)

    def test_mismatched_infs(self):
        # Test mean with infinities of opposite sign.
        data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
        result = self.func(data)
        self.assertTrue(math.isnan(result))

    def test_nan(self):
        # Test mean with NANs.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            inf = kind("nan")
            data = raw + [inf]
            result = self.func(data)
            self.assertTrue(math.isnan(result))

    def test_big_data(self):
        # Test adding a large constant to every data point.
        c = 1e9
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
        expected = self.func(data) + c
        assert expected != c
        result = self.func([x+c for x in data])
        self.assertEqual(result, expected)

    def test_doubled_data(self):
        # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
        data = [random.uniform(-3, 5) for _ in range(1000)]
        expected = self.func(data)
        actual = self.func(data*2)
        self.assertApproxEqual(actual, expected)

    def test_regression_20561(self):
        # Regression test for issue 20561.
        # See http://bugs.python.org/issue20561
        d = Decimal('1e4')
        self.assertEqual(statistics.mean([d]), d)

    def test_regression_25177(self):
        # Regression test for issue 25177.
        # Ensure very big and very small floats don't overflow.
        # See http://bugs.python.org/issue25177.
        self.assertEqual(statistics.mean(
            [8.988465674311579e+307, 8.98846567431158e+307]),
            8.98846567431158e+307)
        big = 8.98846567431158e+307
        tiny = 5e-324
        for n in (2, 3, 5, 200):
            self.assertEqual(statistics.mean([big]*n), big)
            self.assertEqual(statistics.mean([tiny]*n), tiny)


class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.harmonic_mean

    def prepare_data(self):
        # Override mixin method.
        values = super().prepare_data()
        values.remove(0)
        return values

    def prepare_values_for_repeated_single_test(self):
        # Override mixin method.
        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125'))

    def test_zero(self):
        # Test that harmonic mean returns zero when given zero.
        values = [1, 0, 2]
        self.assertEqual(self.func(values), 0)

    def test_negative_error(self):
        # Test that harmonic mean raises when given a negative value.
        exc = statistics.StatisticsError
        for values in ([-1], [1, -2, 3]):
            with self.subTest(values=values):
                self.assertRaises(exc, self.func, values)

    def test_invalid_type_error(self):
        # Test error is raised when input contains invalid type(s)
        for data in [
            ['3.14'],               # single string
            ['1', '2', '3'],        # multiple strings
            [1, '2', 3, '4', 5],    # mixed strings and valid integers
            [2.3, 3.4, 4.5, '5.6']  # only one string and valid floats
        ]:
            with self.subTest(data=data):
                with self.assertRaises(TypeError):
                    self.func(data)

    def test_ints(self):
        # Test harmonic mean with ints.
        data = [2, 4, 4, 8, 16, 16]
        random.shuffle(data)
        self.assertEqual(self.func(data), 6*4/5)

    def test_floats_exact(self):
        # Test harmonic mean with some carefully chosen floats.
        data = [1/8, 1/4, 1/4, 1/2, 1/2]
        random.shuffle(data)
        self.assertEqual(self.func(data), 1/4)
        self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5)

    def test_singleton_lists(self):
        # Test that harmonic mean([x]) returns (approximately) x.
        for x in range(1, 101):
            self.assertEqual(self.func([x]), x)

    def test_decimals_exact(self):
        # Test harmonic mean with some carefully chosen Decimals.
        D = Decimal
        self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30))
        data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D("0.10"))
        data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D(66528)/70723)

    def test_fractions(self):
        # Test harmonic mean with Fractions.
        F = Fraction
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
        random.shuffle(data)
        self.assertEqual(self.func(data), F(7*420, 4029))

    def test_inf(self):
        # Test harmonic mean with infinity.
        values = [2.0, float('inf'), 1.0]
        self.assertEqual(self.func(values), 2.0)

    def test_nan(self):
        # Test harmonic mean with NANs.
        values = [2.0, float('nan'), 1.0]
        self.assertTrue(math.isnan(self.func(values)))

    def test_multiply_data_points(self):
        # Test multiplying every data point by a constant.
        c = 111
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
        expected = self.func(data)*c
        result = self.func([x*c for x in data])
        self.assertEqual(result, expected)

    def test_doubled_data(self):
        # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
        data = [random.uniform(1, 5) for _ in range(1000)]
        expected = self.func(data)
        actual = self.func(data*2)
        self.assertApproxEqual(actual, expected)

    def test_with_weights(self):
        self.assertEqual(self.func([40, 60], [5, 30]), 56.0)  # common case
        self.assertEqual(self.func([40, 60],
                                   weights=[5, 30]), 56.0)    # keyword argument
        self.assertEqual(self.func(iter([40, 60]),
                                   iter([5, 30])), 56.0)      # iterator inputs
        self.assertEqual(
            self.func([Fraction(10, 3), Fraction(23, 5), Fraction(7, 2)], [5, 2, 10]),
            self.func([Fraction(10, 3)] * 5 +
                      [Fraction(23, 5)] * 2 +
                      [Fraction(7, 2)] * 10))
        self.assertEqual(self.func([10], [7]), 10)            # n=1 fast path
        with self.assertRaises(TypeError):
            self.func([1, 2, 3], [1, (), 3])                  # non-numeric weight
        with self.assertRaises(statistics.StatisticsError):
            self.func([1, 2, 3], [1, 2])                      # wrong number of weights
        with self.assertRaises(statistics.StatisticsError):
            self.func([10], [0])                              # no non-zero weights
        with self.assertRaises(statistics.StatisticsError):
            self.func([10, 20], [0, 0])                       # no non-zero weights


class TestMedian(NumericTestCase, AverageMixin):
    # Common tests for median and all median.* functions.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        data = super().prepare_data()
        if len(data)%2 != 1:
            data.append(2)
        return data

    def test_even_ints(self):
        # Test median with an even number of int data points.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3.5)

    def test_odd_ints(self):
        # Test median with an odd number of int data points.
        data = [1, 2, 3, 4, 5, 6, 9]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 4)

    def test_odd_fractions(self):
        # Test median works with an odd number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_fractions(self):
        # Test median works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1, 2))

    def test_odd_decimals(self):
        # Test median works with an odd number of Decimals.
        D = Decimal
        data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.2'))

    def test_even_decimals(self):
        # Test median works with an even number of Decimals.
        D = Decimal
        data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.65'))


class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
    # Test conservation of data element type for median.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        data = list(range(15))
        assert len(data)%2 == 1
        while data == sorted(data):
            random.shuffle(data)
        return data


class TestMedianLow(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_low

    def test_even_ints(self):
        # Test median_low with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3)

    def test_even_fractions(self):
        # Test median_low works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_decimals(self):
        # Test median_low works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.3'))


class TestMedianHigh(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_high

    def test_even_ints(self):
        # Test median_high with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4)

    def test_even_fractions(self):
        # Test median_high works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(4, 7))

    def test_even_decimals(self):
        # Test median_high works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.4'))


class TestMedianGrouped(TestMedian):
    # Test median_grouped.
    # Doesn't conserve data element types, so don't use TestMedianType.
    def setUp(self):
        self.func = statistics.median_grouped

    def test_odd_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [12, 13, 14, 14, 14, 15, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 14)
        #---
        data = [12, 13, 14, 14, 14, 14, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 13.875)
        #---
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data, 5), 19.375)
        #---
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
        assert len(data)%2 == 1
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)

    def test_even_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
        #---
        data = [2, 3, 4, 4, 4, 5]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
        #---
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.5)
        #---
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.75)

    def test_repeated_single_value(self):
        # Override method from AverageMixin.
        # Yet again, failure of median_grouped to conserve the data type
        # causes me headaches :-(
        for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
            for count in (2, 5, 10, 20):
                data = [x]*count
                self.assertEqual(self.func(data), float(x))

    def test_single_value(self):
        # Override method from AverageMixin.
        # Average of a single value is the value as a float.
        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
            self.assertEqual(self.func([x]), float(x))

    def test_odd_fractions(self):
        # Test median_grouped works with an odd number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.0)

    def test_even_fractions(self):
        # Test median_grouped works with an even number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.25)

    def test_odd_decimals(self):
        # Test median_grouped works with an odd number of Decimals.
        D = Decimal
        data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.75)

    def test_even_decimals(self):
        # Test median_grouped works with an even number of Decimals.
        D = Decimal
        data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.5)
        #---
        data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 7.0)

    def test_interval(self):
        # Test median_grouped with interval argument.
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertEqual(self.func(data, 0.25), 2.875)
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
        data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
        self.assertEqual(self.func(data, 20), 265.0)

    def test_data_type_error(self):
        # Test median_grouped with str, bytes data types for data and interval
        data = ["", "", ""]
        self.assertRaises(TypeError, self.func, data)
        #---
        data = [b"", b"", b""]
        self.assertRaises(TypeError, self.func, data)
        #---
        data = [1, 2, 3]
        interval = ""
        self.assertRaises(TypeError, self.func, data, interval)
        #---
        data = [1, 2, 3]
        interval = b""
        self.assertRaises(TypeError, self.func, data, interval)


class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    # Test cases for the discrete version of mode.
    def setUp(self):
        self.func = statistics.mode

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        # Make sure test data has exactly one mode.
        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]

    def test_range_data(self):
        # Override test from UnivariateCommonMixin.
        data = range(20, 50, 3)
        self.assertEqual(self.func(data), 20)

    def test_nominal_data(self):
        # Test mode with nominal data.
        data = 'abcbdb'
        self.assertEqual(self.func(data), 'b')
        data = 'fe fi fo fum fi fi'.split()
        self.assertEqual(self.func(data), 'fi')

    def test_discrete_data(self):
        # Test mode with discrete numeric data.
        data = list(range(10))
        for i in range(10):
            d = data + [i]
            random.shuffle(d)
            self.assertEqual(self.func(d), i)

    def test_bimodal_data(self):
        # Test mode with bimodal data.
        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
        assert data.count(2) == data.count(6) == 4
        # mode() should return 2, the first encountered mode
        self.assertEqual(self.func(data), 2)

    def test_unique_data(self):
        # Test mode when data points are all unique.
        data = list(range(10))
        # mode() should return 0, the first encountered mode
        self.assertEqual(self.func(data), 0)

    def test_none_data(self):
        # Test that mode raises TypeError if given None as data.

        # This test is necessary because the implementation of mode uses
        # collections.Counter, which accepts None and returns an empty dict.
        self.assertRaises(TypeError, self.func, None)

    def test_counter_data(self):
        # Test that a Counter is treated like any other iterable.
        # We're making sure mode() first calls iter() on its input.
        # The concern is that a Counter of a Counter returns the original
        # unchanged rather than counting its keys.
        c = collections.Counter(a=1, b=2)
        # If iter() is called, mode(c) loops over the keys, ['a', 'b'],
        # all the counts will be 1, and the first encountered mode is 'a'.
        self.assertEqual(self.func(c), 'a')


class TestMultiMode(unittest.TestCase):

    def test_basics(self):
        multimode = statistics.multimode
        self.assertEqual(multimode('aabbbbbbbbcc'), ['b'])
        self.assertEqual(multimode('aabbbbccddddeeffffgg'), ['b', 'd', 'f'])
        self.assertEqual(multimode(''), [])


class TestFMean(unittest.TestCase):

    def test_basics(self):
        fmean = statistics.fmean
        D = Decimal
        F = Fraction
        for data, expected_mean, kind in [
            ([3.5, 4.0, 5.25], 4.25, 'floats'),
            ([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'),
            ([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'),
            ([True, False, True, True, False], 0.60, 'booleans'),
            ([3.5, 4, F(21, 4)], 4.25, 'mixed types'),
            ((3.5, 4.0, 5.25), 4.25, 'tuple'),
            (iter([3.5, 4.0, 5.25]), 4.25, 'iterator'),
                ]:
            actual_mean = fmean(data)
            self.assertIs(type(actual_mean), float, kind)
            self.assertEqual(actual_mean, expected_mean, kind)

    def test_error_cases(self):
        fmean = statistics.fmean
        StatisticsError = statistics.StatisticsError
        with self.assertRaises(StatisticsError):
            fmean([])                               # empty input
        with self.assertRaises(StatisticsError):
            fmean(iter([]))                         # empty iterator
        with self.assertRaises(TypeError):
            fmean(None)                             # non-iterable input
        with self.assertRaises(TypeError):
            fmean([10, None, 20])                   # non-numeric input
        with self.assertRaises(TypeError):
            fmean()                                 # missing data argument
        with self.assertRaises(TypeError):
            fmean([10, 20, 60], 70)                 # too many arguments

    def test_special_values(self):
        # Rules for special values are inherited from math.fsum()
        fmean = statistics.fmean
        NaN = float('Nan')
        Inf = float('Inf')
        self.assertTrue(math.isnan(fmean([10, NaN])), 'nan')
        self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity')
        self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity')
        with self.assertRaises(ValueError):
            fmean([Inf, -Inf])

    def test_weights(self):
        fmean = statistics.fmean
        StatisticsError = statistics.StatisticsError
        self.assertEqual(
            fmean([10, 10, 10, 50], [0.25] * 4),
            fmean([10, 10, 10, 50]))
        self.assertEqual(
            fmean([10, 10, 20], [0.25, 0.25, 0.50]),
            fmean([10, 10, 20, 20]))
        self.assertEqual(                           # inputs are iterators
            fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
            fmean([10, 10, 20, 20]))
        with self.assertRaises(StatisticsError):
            fmean([10, 20, 30], [1, 2])             # unequal lengths
        with self.assertRaises(StatisticsError):
            fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
        with self.assertRaises(StatisticsError):
            fmean([10, 20], [-1, 1])                # sum of weights is zero
        with self.assertRaises(StatisticsError):
            fmean(iter([10, 20]), iter([-1, 1]))    # sum of weights is zero


# === Tests for variances and standard deviations ===

class VarianceStdevMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for variance and std dev.

    # Subclasses should inherit from this before NumericTestClass, in order
    # to see the rel attribute below. See testShiftData for an explanation.

    rel = 1e-12

    def test_single_value(self):
        # Deviation of a single value is zero.
        for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
            self.assertEqual(self.func([x]), 0)

    def test_repeated_single_value(self):
        # The deviation of a single repeated value is zero.
        for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
            for count in (2, 3, 5, 15):
                data = [x]*count
                self.assertEqual(self.func(data), 0)

    def test_domain_error_regression(self):
        # Regression test for a domain error exception.
        # (Thanks to Geremy Condra.)
        data = [0.123456789012345]*10000
        # All the items are identical, so variance should be exactly zero.
        # We allow some small round-off error, but not much.
        result = self.func(data)
        self.assertApproxEqual(result, 0.0, tol=5e-17)
        self.assertGreaterEqual(result, 0)  # A negative result must fail.

    def test_shift_data(self):
        # Test that shifting the data by a constant amount does not affect
        # the variance or stdev. Or at least not much.

        # Due to rounding, this test should be considered an ideal. We allow
        # some tolerance away from "no change at all" by setting tol and/or rel
        # attributes. Subclasses may set tighter or looser error tolerances.
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
        expected = self.func(raw)
        # Don't set shift too high, the bigger it is, the more rounding error.
        shift = 1e5
        data = [x + shift for x in raw]
        self.assertApproxEqual(self.func(data), expected)

    def test_shift_data_exact(self):
        # Like test_shift_data, but result is always exact.
        raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
        assert all(x==int(x) for x in raw)
        expected = self.func(raw)
        shift = 10**9
        data = [x + shift for x in raw]
        self.assertEqual(self.func(data), expected)

    def test_iter_list_same(self):
        # Test that iter data and list data give the same result.

        # This is an explicit test that iterators and lists are treated the
        # same; justification for this test over and above the similar test
        # in UnivariateCommonMixin is that an earlier design had variance and
        # friends swap between one- and two-pass algorithms, which would
        # sometimes give different results.
        data = [random.uniform(-3, 8) for _ in range(1000)]
        expected = self.func(data)
        self.assertEqual(self.func(iter(data)), expected)


class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for population variance.
    def setUp(self):
        self.func = statistics.pvariance

    def test_exact_uniform(self):
        # Test the variance against an exact result for uniform data.
        data = list(range(10000))
        random.shuffle(data)
        expected = (10000**2 - 1)/12  # Exact value.
        self.assertEqual(self.func(data), expected)

    def test_ints(self):
        # Test population variance with int data.
        data = [4, 7, 13, 16]
        exact = 22.5
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test population variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(3, 8)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test population variance with Decimal data.
        D = Decimal
        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
        exact = D('0.096875')
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)

    def test_accuracy_bug_20499(self):
        data = [0, 0, 1]
        exact = 2 / 9
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, float)


class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for sample variance.
    def setUp(self):
        self.func = statistics.variance

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_ints(self):
        # Test sample variance with int data.
        data = [4, 7, 13, 16]
        exact = 30
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test sample variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(1, 2)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test sample variance with Decimal data.
        D = Decimal
        data = [D(2), D(2), D(7), D(9)]
        exact = 4*D('9.5')/D(3)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)

    def test_center_not_at_mean(self):
        data = (1.0, 2.0)
        self.assertEqual(self.func(data), 0.5)
        self.assertEqual(self.func(data, xbar=2.0), 1.0)

    def test_accuracy_bug_20499(self):
        data = [0, 0, 2]
        exact = 4 / 3
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, float)

class TestPStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for population standard deviation.
    def setUp(self):
        self.func = statistics.pstdev

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-17, 24) for _ in range(1000)]
        expected = math.sqrt(statistics.pvariance(data))
        self.assertEqual(self.func(data), expected)

    def test_center_not_at_mean(self):
        # See issue: 40855
        data = (3, 6, 7, 10)
        self.assertEqual(self.func(data), 2.5)
        self.assertEqual(self.func(data, mu=0.5), 6.5)

class TestSqrtHelpers(unittest.TestCase):

    def test_integer_sqrt_of_frac_rto(self):
        for n, m in itertools.product(range(100), range(1, 1000)):
            r = statistics._integer_sqrt_of_frac_rto(n, m)
            self.assertIsInstance(r, int)
            if r*r*m == n:
                # Root is exact
                continue
            # Inexact, so the root should be odd
            self.assertEqual(r&1, 1)
            # Verify correct rounding
            self.assertTrue(m * (r - 1)**2 < n < m * (r + 1)**2)

    @requires_IEEE_754
    @support.requires_resource('cpu')
    def test_float_sqrt_of_frac(self):

        def is_root_correctly_rounded(x: Fraction, root: float) -> bool:
            if not x:
                return root == 0.0

            # Extract adjacent representable floats
            r_up: float = math.nextafter(root, math.inf)
            r_down: float = math.nextafter(root, -math.inf)
            assert r_down < root < r_up

            # Convert to fractions for exact arithmetic
            frac_root: Fraction = Fraction(root)
            half_way_up: Fraction = (frac_root + Fraction(r_up)) / 2
            half_way_down: Fraction = (frac_root + Fraction(r_down)) / 2

            # Check a closed interval.
            # Does not test for a midpoint rounding rule.
            return half_way_down ** 2 <= x <= half_way_up ** 2

        randrange = random.randrange

        for i in range(60_000):
            numerator: int = randrange(10 ** randrange(50))
            denonimator: int = randrange(10 ** randrange(50)) + 1
            with self.subTest(numerator=numerator, denonimator=denonimator):
                x: Fraction = Fraction(numerator, denonimator)
                root: float = statistics._float_sqrt_of_frac(numerator, denonimator)
                self.assertTrue(is_root_correctly_rounded(x, root))

        # Verify that corner cases and error handling match math.sqrt()
        self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0)
        with self.assertRaises(ValueError):
            statistics._float_sqrt_of_frac(-1, 1)
        with self.assertRaises(ValueError):
            statistics._float_sqrt_of_frac(1, -1)

        # Error handling for zero denominator matches that for Fraction(1, 0)
        with self.assertRaises(ZeroDivisionError):
            statistics._float_sqrt_of_frac(1, 0)

        # The result is well defined if both inputs are negative
        self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1))

    def test_decimal_sqrt_of_frac(self):
        root: Decimal
        numerator: int
        denominator: int

        for root, numerator, denominator in [
            (Decimal('0.4481904599041192673635338663'), 200874688349065940678243576378, 1000000000000000000000000000000),  # No adj
            (Decimal('0.7924949131383786609961759598'), 628048187350206338833590574929, 1000000000000000000000000000000),  # Adj up
            (Decimal('0.8500554152289934068192208727'), 722594208960136395984391238251, 1000000000000000000000000000000),  # Adj down
        ]:
            with decimal.localcontext(decimal.DefaultContext):
                self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root)

            # Confirm expected root with a quad precision decimal computation
            with decimal.localcontext(decimal.DefaultContext) as ctx:
                ctx.prec *= 4
                high_prec_ratio = Decimal(numerator) / Decimal(denominator)
                ctx.rounding = decimal.ROUND_05UP
                high_prec_root = high_prec_ratio.sqrt()
            with decimal.localcontext(decimal.DefaultContext):
                target_root = +high_prec_root
            self.assertEqual(root, target_root)

        # Verify that corner cases and error handling match Decimal.sqrt()
        self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0)
        with self.assertRaises(decimal.InvalidOperation):
            statistics._decimal_sqrt_of_frac(-1, 1)
        with self.assertRaises(decimal.InvalidOperation):
            statistics._decimal_sqrt_of_frac(1, -1)

        # Error handling for zero denominator matches that for Fraction(1, 0)
        with self.assertRaises(ZeroDivisionError):
            statistics._decimal_sqrt_of_frac(1, 0)

        # The result is well defined if both inputs are negative
        self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1))


class TestStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for sample standard deviation.
    def setUp(self):
        self.func = statistics.stdev

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-2, 9) for _ in range(1000)]
        expected = math.sqrt(statistics.variance(data))
        self.assertAlmostEqual(self.func(data), expected)

    def test_center_not_at_mean(self):
        data = (1.0, 2.0)
        self.assertEqual(self.func(data, xbar=2.0), 1.0)

class TestGeometricMean(unittest.TestCase):

    def test_basics(self):
        geometric_mean = statistics.geometric_mean
        self.assertAlmostEqual(geometric_mean([54, 24, 36]), 36.0)
        self.assertAlmostEqual(geometric_mean([4.0, 9.0]), 6.0)
        self.assertAlmostEqual(geometric_mean([17.625]), 17.625)

        random.seed(86753095551212)
        for rng in [
                range(1, 100),
                range(1, 1_000),
                range(1, 10_000),
                range(500, 10_000, 3),
                range(10_000, 500, -3),
                [12, 17, 13, 5, 120, 7],
                [random.expovariate(50.0) for i in range(1_000)],
                [random.lognormvariate(20.0, 3.0) for i in range(2_000)],
                [random.triangular(2000, 3000, 2200) for i in range(3_000)],
            ]:
            gm_decimal = math.prod(map(Decimal, rng)) ** (Decimal(1) / len(rng))
            gm_float = geometric_mean(rng)
            self.assertTrue(math.isclose(gm_float, float(gm_decimal)))

    def test_various_input_types(self):
        geometric_mean = statistics.geometric_mean
        D = Decimal
        F = Fraction
        # https://www.wolframalpha.com/input/?i=geometric+mean+3.5,+4.0,+5.25
        expected_mean = 4.18886
        for data, kind in [
            ([3.5, 4.0, 5.25], 'floats'),
            ([D('3.5'), D('4.0'), D('5.25')], 'decimals'),
            ([F(7, 2), F(4, 1), F(21, 4)], 'fractions'),
            ([3.5, 4, F(21, 4)], 'mixed types'),
            ((3.5, 4.0, 5.25), 'tuple'),
            (iter([3.5, 4.0, 5.25]), 'iterator'),
                ]:
            actual_mean = geometric_mean(data)
            self.assertIs(type(actual_mean), float, kind)
            self.assertAlmostEqual(actual_mean, expected_mean, places=5)

    def test_big_and_small(self):
        geometric_mean = statistics.geometric_mean

        # Avoid overflow to infinity
        large = 2.0 ** 1000
        big_gm = geometric_mean([54.0 * large, 24.0 * large, 36.0 * large])
        self.assertTrue(math.isclose(big_gm, 36.0 * large))
        self.assertFalse(math.isinf(big_gm))

        # Avoid underflow to zero
        small = 2.0 ** -1000
        small_gm = geometric_mean([54.0 * small, 24.0 * small, 36.0 * small])
        self.assertTrue(math.isclose(small_gm, 36.0 * small))
        self.assertNotEqual(small_gm, 0.0)

    def test_error_cases(self):
        geometric_mean = statistics.geometric_mean
        StatisticsError = statistics.StatisticsError
        with self.assertRaises(StatisticsError):
            geometric_mean([])                      # empty input
        with self.assertRaises(StatisticsError):
            geometric_mean([3.5, 0.0, 5.25])        # zero input
        with self.assertRaises(StatisticsError):
            geometric_mean([3.5, -4.0, 5.25])       # negative input
        with self.assertRaises(StatisticsError):
            geometric_mean(iter([]))                # empty iterator
        with self.assertRaises(TypeError):
            geometric_mean(None)                    # non-iterable input
        with self.assertRaises(TypeError):
            geometric_mean([10, None, 20])          # non-numeric input
        with self.assertRaises(TypeError):
            geometric_mean()                        # missing data argument
        with self.assertRaises(TypeError):
            geometric_mean([10, 20, 60], 70)        # too many arguments

    def test_special_values(self):
        # Rules for special values are inherited from math.fsum()
        geometric_mean = statistics.geometric_mean
        NaN = float('Nan')
        Inf = float('Inf')
        self.assertTrue(math.isnan(geometric_mean([10, NaN])), 'nan')
        self.assertTrue(math.isnan(geometric_mean([NaN, Inf])), 'nan and infinity')
        self.assertTrue(math.isinf(geometric_mean([10, Inf])), 'infinity')
        with self.assertRaises(ValueError):
            geometric_mean([Inf, -Inf])

    def test_mixed_int_and_float(self):
        # Regression test for b.p.o. issue #28327
        geometric_mean = statistics.geometric_mean
        expected_mean = 3.80675409583932
        values = [
            [2, 3, 5, 7],
            [2, 3, 5, 7.0],
            [2, 3, 5.0, 7.0],
            [2, 3.0, 5.0, 7.0],
            [2.0, 3.0, 5.0, 7.0],
        ]
        for v in values:
            with self.subTest(v=v):
                actual_mean = geometric_mean(v)
                self.assertAlmostEqual(actual_mean, expected_mean, places=5)


class TestQuantiles(unittest.TestCase):

    def test_specific_cases(self):
        # Match results computed by hand and cross-checked
        # against the PERCENTILE.EXC function in MS Excel.
        quantiles = statistics.quantiles
        data = [120, 200, 250, 320, 350]
        random.shuffle(data)
        for n, expected in [
            (1, []),
            (2, [250.0]),
            (3, [200.0, 320.0]),
            (4, [160.0, 250.0, 335.0]),
            (5, [136.0, 220.0, 292.0, 344.0]),
            (6, [120.0, 200.0, 250.0, 320.0, 350.0]),
            (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]),
            (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]),
            (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0,
                  350.0, 365.0]),
            (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0,
                  320.0, 332.0, 344.0, 356.0, 368.0]),
                ]:
            self.assertEqual(expected, quantiles(data, n=n))
            self.assertEqual(len(quantiles(data, n=n)), n - 1)
            # Preserve datatype when possible
            for datatype in (float, Decimal, Fraction):
                result = quantiles(map(datatype, data), n=n)
                self.assertTrue(all(type(x) == datatype) for x in result)
                self.assertEqual(result, list(map(datatype, expected)))
            # Quantiles should be idempotent
            if len(expected) >= 2:
                self.assertEqual(quantiles(expected, n=n), expected)
            # Cross-check against method='inclusive' which should give
            # the same result after adding in minimum and maximum values
            # extrapolated from the two lowest and two highest points.
            sdata = sorted(data)
            lo = 2 * sdata[0] - sdata[1]
            hi = 2 * sdata[-1] - sdata[-2]
            padded_data = data + [lo, hi]
            self.assertEqual(
                quantiles(data, n=n),
                quantiles(padded_data, n=n, method='inclusive'),
                (n, data),
            )
            # Invariant under translation and scaling
            def f(x):
                return 3.5 * x - 1234.675
            exp = list(map(f, expected))
            act = quantiles(map(f, data), n=n)
            self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
        # Q2 agrees with median()
        for k in range(2, 60):
            data = random.choices(range(100), k=k)
            q1, q2, q3 = quantiles(data)
            self.assertEqual(q2, statistics.median(data))

    def test_specific_cases_inclusive(self):
        # Match results computed by hand and cross-checked
        # against the PERCENTILE.INC function in MS Excel
        # and against the quantile() function in SciPy.
        quantiles = statistics.quantiles
        data = [100, 200, 400, 800]
        random.shuffle(data)
        for n, expected in [
            (1, []),
            (2, [300.0]),
            (3, [200.0, 400.0]),
            (4, [175.0, 300.0, 500.0]),
            (5, [160.0, 240.0, 360.0, 560.0]),
            (6, [150.0, 200.0, 300.0, 400.0, 600.0]),
            (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]),
            (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]),
            (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0,
                  500.0, 600.0, 700.0]),
            (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0,
                  400.0, 480.0, 560.0, 640.0, 720.0]),
                ]:
            self.assertEqual(expected, quantiles(data, n=n, method="inclusive"))
            self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1)
            # Preserve datatype when possible
            for datatype in (float, Decimal, Fraction):
                result = quantiles(map(datatype, data), n=n, method="inclusive")
                self.assertTrue(all(type(x) == datatype) for x in result)
                self.assertEqual(result, list(map(datatype, expected)))
            # Invariant under translation and scaling
            def f(x):
                return 3.5 * x - 1234.675
            exp = list(map(f, expected))
            act = quantiles(map(f, data), n=n, method="inclusive")
            self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
        # Natural deciles
        self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
                         [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
        self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'),
                         [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
        # Whenever n is smaller than the number of data points, running
        # method='inclusive' should give the same result as method='exclusive'
        # after the two included extreme points are removed.
        data = [random.randrange(10_000) for i in range(501)]
        actual = quantiles(data, n=32, method='inclusive')
        data.remove(min(data))
        data.remove(max(data))
        expected = quantiles(data, n=32)
        self.assertEqual(expected, actual)
        # Q2 agrees with median()
        for k in range(2, 60):
            data = random.choices(range(100), k=k)
            q1, q2, q3 = quantiles(data, method='inclusive')
            self.assertEqual(q2, statistics.median(data))
        # Base case with a single data point:  When estimating quantiles from
        # a sample, we want to be able to add one sample point at a time,
        # getting increasingly better estimates.
        self.assertEqual(quantiles([10], n=4), [10.0, 10.0, 10.0])
        self.assertEqual(quantiles([10], n=4, method='exclusive'), [10.0, 10.0, 10.0])

    def test_equal_inputs(self):
        quantiles = statistics.quantiles
        for n in range(2, 10):
            data = [10.0] * n
            self.assertEqual(quantiles(data), [10.0, 10.0, 10.0])
            self.assertEqual(quantiles(data, method='inclusive'),
                            [10.0, 10.0, 10.0])

    def test_equal_sized_groups(self):
        quantiles = statistics.quantiles
        total = 10_000
        data = [random.expovariate(0.2) for i in range(total)]
        while len(set(data)) != total:
            data.append(random.expovariate(0.2))
        data.sort()

        # Cases where the group size exactly divides the total
        for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000):
            group_size = total // n
            self.assertEqual(
                [bisect.bisect(data, q) for q in quantiles(data, n=n)],
                list(range(group_size, total, group_size)))

        # When the group sizes can't be exactly equal, they should
        # differ by no more than one
        for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769):
            group_sizes = {total // n, total // n + 1}
            pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)]
            sizes = {q - p for p, q in zip(pos, pos[1:])}
            self.assertTrue(sizes <= group_sizes)

    def test_error_cases(self):
        quantiles = statistics.quantiles
        StatisticsError = statistics.StatisticsError
        with self.assertRaises(TypeError):
            quantiles()                         # Missing arguments
        with self.assertRaises(TypeError):
            quantiles([10, 20, 30], 13, n=4)    # Too many arguments
        with self.assertRaises(TypeError):
            quantiles([10, 20, 30], 4)          # n is a positional argument
        with self.assertRaises(StatisticsError):
            quantiles([10, 20, 30], n=0)        # n is zero
        with self.assertRaises(StatisticsError):
            quantiles([10, 20, 30], n=-1)       # n is negative
        with self.assertRaises(TypeError):
            quantiles([10, 20, 30], n=1.5)      # n is not an integer
        with self.assertRaises(ValueError):
            quantiles([10, 20, 30], method='X') # method is unknown
        with self.assertRaises(StatisticsError):
            quantiles([], n=4)                  # not enough data points
        with self.assertRaises(TypeError):
            quantiles([10, None, 30], n=4)      # data is non-numeric


class TestBivariateStatistics(unittest.TestCase):

    def test_unequal_size_error(self):
        for x, y in [
            ([1, 2, 3], [1, 2]),
            ([1, 2], [1, 2, 3]),
        ]:
            with self.assertRaises(statistics.StatisticsError):
                statistics.covariance(x, y)
            with self.assertRaises(statistics.StatisticsError):
                statistics.correlation(x, y)
            with self.assertRaises(statistics.StatisticsError):
                statistics.linear_regression(x, y)

    def test_small_sample_error(self):
        for x, y in [
            ([], []),
            ([], [1, 2,]),
            ([1, 2,], []),
            ([1,], [1,]),
            ([1,], [1, 2,]),
            ([1, 2,], [1,]),
        ]:
            with self.assertRaises(statistics.StatisticsError):
                statistics.covariance(x, y)
            with self.assertRaises(statistics.StatisticsError):
                statistics.correlation(x, y)
            with self.assertRaises(statistics.StatisticsError):
                statistics.linear_regression(x, y)


class TestCorrelationAndCovariance(unittest.TestCase):

    def test_results(self):
        for x, y, result in [
            ([1, 2, 3], [1, 2, 3], 1),
            ([1, 2, 3], [-1, -2, -3], -1),
            ([1, 2, 3], [3, 2, 1], -1),
            ([1, 2, 3], [1, 2, 1], 0),
            ([1, 2, 3], [1, 3, 2], 0.5),
        ]:
            self.assertAlmostEqual(statistics.correlation(x, y), result)
            self.assertAlmostEqual(statistics.covariance(x, y), result)

    def test_different_scales(self):
        x = [1, 2, 3]
        y = [10, 30, 20]
        self.assertAlmostEqual(statistics.correlation(x, y), 0.5)
        self.assertAlmostEqual(statistics.covariance(x, y), 5)

        y = [.1, .2, .3]
        self.assertAlmostEqual(statistics.correlation(x, y), 1)
        self.assertAlmostEqual(statistics.covariance(x, y), 0.1)

    def test_sqrtprod_helper_function_fundamentals(self):
        # Verify that results are close to sqrt(x * y)
        for i in range(100):
            x = random.expovariate()
            y = random.expovariate()
            expected = math.sqrt(x * y)
            actual = statistics._sqrtprod(x, y)
            with self.subTest(x=x, y=y, expected=expected, actual=actual):
                self.assertAlmostEqual(expected, actual)

        x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661
        self.assertEqual(statistics._sqrtprod(x, y), target)
        self.assertNotEqual(math.sqrt(x * y), target)

        # Test that range extremes avoid underflow and overflow
        smallest = sys.float_info.min * sys.float_info.epsilon
        self.assertEqual(statistics._sqrtprod(smallest, smallest), smallest)
        biggest = sys.float_info.max
        self.assertEqual(statistics._sqrtprod(biggest, biggest), biggest)

        # Check special values and the sign of the result
        special_values = [0.0, -0.0, 1.0, -1.0, 4.0, -4.0,
                          math.nan, -math.nan, math.inf, -math.inf]
        for x, y in itertools.product(special_values, repeat=2):
            try:
                expected = math.sqrt(x * y)
            except ValueError:
                expected = 'ValueError'
            try:
                actual = statistics._sqrtprod(x, y)
            except ValueError:
                actual = 'ValueError'
            with self.subTest(x=x, y=y, expected=expected, actual=actual):
                if isinstance(expected, str) and expected == 'ValueError':
                    self.assertEqual(actual, 'ValueError')
                    continue
                self.assertIsInstance(actual, float)
                if math.isnan(expected):
                    self.assertTrue(math.isnan(actual))
                    continue
                self.assertEqual(actual, expected)
                self.assertEqual(sign(actual), sign(expected))

    @requires_IEEE_754
    @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
                     "accuracy not guaranteed on machines with double rounding")
    @support.cpython_only    # Allow for a weaker sumprod() implmentation
    def test_sqrtprod_helper_function_improved_accuracy(self):
        # Test a known example where accuracy is improved
        x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661
        self.assertEqual(statistics._sqrtprod(x, y), target)
        self.assertNotEqual(math.sqrt(x * y), target)

        def reference_value(x: float, y: float) -> float:
            x = decimal.Decimal(x)
            y = decimal.Decimal(y)
            with decimal.localcontext() as ctx:
                ctx.prec = 200
                return float((x * y).sqrt())

        # Verify that the new function with improved accuracy
        # agrees with a reference value more often than old version.
        new_agreements = 0
        old_agreements = 0
        for i in range(10_000):
            x = random.expovariate()
            y = random.expovariate()
            new = statistics._sqrtprod(x, y)
            old = math.sqrt(x * y)
            ref = reference_value(x, y)
            new_agreements += (new == ref)
            old_agreements += (old == ref)
        self.assertGreater(new_agreements, old_agreements)

    def test_correlation_spearman(self):
        # https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide-2.php
        # Compare with:
        #     >>> import scipy.stats.mstats
        #     >>> scipy.stats.mstats.spearmanr(reading, mathematics)
        #     SpearmanrResult(correlation=0.6686960980480712, pvalue=0.03450954165178532)
        # And Wolfram Alpha gives: 0.668696
        #     https://www.wolframalpha.com/input?i=SpearmanRho%5B%7B56%2C+75%2C+45%2C+71%2C+61%2C+64%2C+58%2C+80%2C+76%2C+61%7D%2C+%7B66%2C+70%2C+40%2C+60%2C+65%2C+56%2C+59%2C+77%2C+67%2C+63%7D%5D
        reading = [56, 75, 45, 71, 61, 64, 58, 80, 76, 61]
        mathematics = [66, 70, 40, 60, 65, 56, 59, 77, 67, 63]
        self.assertAlmostEqual(statistics.correlation(reading, mathematics, method='ranked'),
                               0.6686960980480712)

        with self.assertRaises(ValueError):
            statistics.correlation(reading, mathematics, method='bad_method')

class TestLinearRegression(unittest.TestCase):

    def test_constant_input_error(self):
        x = [1, 1, 1,]
        y = [1, 2, 3,]
        with self.assertRaises(statistics.StatisticsError):
            statistics.linear_regression(x, y)

    def test_results(self):
        for x, y, true_intercept, true_slope in [
            ([1, 2, 3], [0, 0, 0], 0, 0),
            ([1, 2, 3], [1, 2, 3], 0, 1),
            ([1, 2, 3], [100, 100, 100], 100, 0),
            ([1, 2, 3], [12, 14, 16], 10, 2),
            ([1, 2, 3], [-1, -2, -3], 0, -1),
            ([1, 2, 3], [21, 22, 23], 20, 1),
            ([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1),
        ]:
            slope, intercept = statistics.linear_regression(x, y)
            self.assertAlmostEqual(intercept, true_intercept)
            self.assertAlmostEqual(slope, true_slope)

    def test_proportional(self):
        x = [10, 20, 30, 40]
        y = [180, 398, 610, 799]
        slope, intercept = statistics.linear_regression(x, y, proportional=True)
        self.assertAlmostEqual(slope, 20 + 1/150)
        self.assertEqual(intercept, 0.0)

    def test_float_output(self):
        x = [Fraction(2, 3), Fraction(3, 4)]
        y = [Fraction(4, 5), Fraction(5, 6)]
        slope, intercept = statistics.linear_regression(x, y)
        self.assertTrue(isinstance(slope, float))
        self.assertTrue(isinstance(intercept, float))
        slope, intercept = statistics.linear_regression(x, y, proportional=True)
        self.assertTrue(isinstance(slope, float))
        self.assertTrue(isinstance(intercept, float))

class TestNormalDist:

    # General note on precision: The pdf(), cdf(), and overlap() methods
    # depend on functions in the math libraries that do not make
    # explicit accuracy guarantees.  Accordingly, some of the accuracy
    # tests below may fail if the underlying math functions are
    # inaccurate.  There isn't much we can do about this short of
    # implementing our own implementations from scratch.

    def test_slots(self):
        nd = self.module.NormalDist(300, 23)
        with self.assertRaises(TypeError):
            vars(nd)
        self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma'))

    def test_instantiation_and_attributes(self):
        nd = self.module.NormalDist(500, 17)
        self.assertEqual(nd.mean, 500)
        self.assertEqual(nd.stdev, 17)
        self.assertEqual(nd.variance, 17**2)

        # default arguments
        nd = self.module.NormalDist()
        self.assertEqual(nd.mean, 0)
        self.assertEqual(nd.stdev, 1)
        self.assertEqual(nd.variance, 1**2)

        # error case: negative sigma
        with self.assertRaises(self.module.StatisticsError):
            self.module.NormalDist(500, -10)

        # verify that subclass type is honored
        class NewNormalDist(self.module.NormalDist):
            pass
        nnd = NewNormalDist(200, 5)
        self.assertEqual(type(nnd), NewNormalDist)

    def test_alternative_constructor(self):
        NormalDist = self.module.NormalDist
        data = [96, 107, 90, 92, 110]
        # list input
        self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
        # tuple input
        self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9))
        # iterator input
        self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
        # error cases
        with self.assertRaises(self.module.StatisticsError):
            NormalDist.from_samples([])                      # empty input
        with self.assertRaises(self.module.StatisticsError):
            NormalDist.from_samples([10])                    # only one input

        # verify that subclass type is honored
        class NewNormalDist(NormalDist):
            pass
        nnd = NewNormalDist.from_samples(data)
        self.assertEqual(type(nnd), NewNormalDist)

    def test_sample_generation(self):
        NormalDist = self.module.NormalDist
        mu, sigma = 10_000, 3.0
        X = NormalDist(mu, sigma)
        n = 1_000
        data = X.samples(n)
        self.assertEqual(len(data), n)
        self.assertEqual(set(map(type, data)), {float})
        # mean(data) expected to fall within 8 standard deviations
        xbar = self.module.mean(data)
        self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)

        # verify that seeding makes reproducible sequences
        n = 100
        data1 = X.samples(n, seed='happiness and joy')
        data2 = X.samples(n, seed='trouble and despair')
        data3 = X.samples(n, seed='happiness and joy')
        data4 = X.samples(n, seed='trouble and despair')
        self.assertEqual(data1, data3)
        self.assertEqual(data2, data4)
        self.assertNotEqual(data1, data2)

    def test_pdf(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 15)
        # Verify peak around center
        self.assertLess(X.pdf(99), X.pdf(100))
        self.assertLess(X.pdf(101), X.pdf(100))
        # Test symmetry
        for i in range(50):
            self.assertAlmostEqual(X.pdf(100 - i), X.pdf(100 + i))
        # Test vs CDF
        dx = 2.0 ** -10
        for x in range(90, 111):
            est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx
            self.assertAlmostEqual(X.pdf(x), est_pdf, places=4)
        # Test vs table of known values -- CRC 26th Edition
        Z = NormalDist()
        for x, px in enumerate([
            0.3989, 0.3989, 0.3989, 0.3988, 0.3986,
            0.3984, 0.3982, 0.3980, 0.3977, 0.3973,
            0.3970, 0.3965, 0.3961, 0.3956, 0.3951,
            0.3945, 0.3939, 0.3932, 0.3925, 0.3918,
            0.3910, 0.3902, 0.3894, 0.3885, 0.3876,
            0.3867, 0.3857, 0.3847, 0.3836, 0.3825,
            0.3814, 0.3802, 0.3790, 0.3778, 0.3765,
            0.3752, 0.3739, 0.3725, 0.3712, 0.3697,
            0.3683, 0.3668, 0.3653, 0.3637, 0.3621,
            0.3605, 0.3589, 0.3572, 0.3555, 0.3538,
        ]):
            self.assertAlmostEqual(Z.pdf(x / 100.0), px, places=4)
            self.assertAlmostEqual(Z.pdf(-x / 100.0), px, places=4)
        # Error case: variance is zero
        Y = NormalDist(100, 0)
        with self.assertRaises(self.module.StatisticsError):
            Y.pdf(90)
        # Special values
        self.assertEqual(X.pdf(float('-Inf')), 0.0)
        self.assertEqual(X.pdf(float('Inf')), 0.0)
        self.assertTrue(math.isnan(X.pdf(float('NaN'))))

    def test_cdf(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 15)
        cdfs = [X.cdf(x) for x in range(1, 200)]
        self.assertEqual(set(map(type, cdfs)), {float})
        # Verify montonic
        self.assertEqual(cdfs, sorted(cdfs))
        # Verify center (should be exact)
        self.assertEqual(X.cdf(100), 0.50)
        # Check against a table of known values
        # https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative
        Z = NormalDist()
        for z, cum_prob in [
            (0.00, 0.50000), (0.01, 0.50399), (0.02, 0.50798),
            (0.14, 0.55567), (0.29, 0.61409), (0.33, 0.62930),
            (0.54, 0.70540), (0.60, 0.72575), (1.17, 0.87900),
            (1.60, 0.94520), (2.05, 0.97982), (2.89, 0.99807),
            (3.52, 0.99978), (3.98, 0.99997), (4.07, 0.99998),
            ]:
            self.assertAlmostEqual(Z.cdf(z), cum_prob, places=5)
            self.assertAlmostEqual(Z.cdf(-z), 1.0 - cum_prob, places=5)
        # Error case: variance is zero
        Y = NormalDist(100, 0)
        with self.assertRaises(self.module.StatisticsError):
            Y.cdf(90)
        # Special values
        self.assertEqual(X.cdf(float('-Inf')), 0.0)
        self.assertEqual(X.cdf(float('Inf')), 1.0)
        self.assertTrue(math.isnan(X.cdf(float('NaN'))))

    @support.skip_if_pgo_task
    @support.requires_resource('cpu')
    def test_inv_cdf(self):
        NormalDist = self.module.NormalDist

        # Center case should be exact.
        iq = NormalDist(100, 15)
        self.assertEqual(iq.inv_cdf(0.50), iq.mean)

        # Test versus a published table of known percentage points.
        # See the second table at the bottom of the page here:
        # http://people.bath.ac.uk/masss/tables/normaltable.pdf
        Z = NormalDist()
        pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891,
                    4.417, 4.892, 5.327, 5.731, 6.109),
              2.5: (0.674, 1.960, 2.807, 3.481, 4.056,
                    4.565, 5.026, 5.451, 5.847, 6.219),
              1.0: (1.282, 2.326, 3.090, 3.719, 4.265,
                    4.753, 5.199, 5.612, 5.998, 6.361)}
        for base, row in pp.items():
            for exp, x in enumerate(row, start=1):
                p = base * 10.0 ** (-exp)
                self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3)
                p = 1.0 - p
                self.assertAlmostEqual(Z.inv_cdf(p), x, places=3)

        # Match published example for MS Excel
        # https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
        self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002)

        # One million equally spaced probabilities
        n = 2**20
        for p in range(1, n):
            p /= n
            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)

        # One hundred ever smaller probabilities to test tails out to
        # extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
        for e in range(1, 51):
            p = 2.0 ** (-e)
            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
            p = 1.0 - p
            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)

        # Now apply cdf() first.  Near the tails, the round-trip loses
        # precision and is ill-conditioned (small changes in the inputs
        # give large changes in the output), so only check to 5 places.
        for x in range(200):
            self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=5)

        # Error cases:
        with self.assertRaises(self.module.StatisticsError):
            iq.inv_cdf(0.0)                         # p is zero
        with self.assertRaises(self.module.StatisticsError):
            iq.inv_cdf(-0.1)                        # p under zero
        with self.assertRaises(self.module.StatisticsError):
            iq.inv_cdf(1.0)                         # p is one
        with self.assertRaises(self.module.StatisticsError):
            iq.inv_cdf(1.1)                         # p over one

        # Supported case:
        iq = NormalDist(100, 0)                     # sigma is zero
        self.assertEqual(iq.inv_cdf(0.5), 100)

        # Special values
        self.assertTrue(math.isnan(Z.inv_cdf(float('NaN'))))

    def test_quantiles(self):
        # Quartiles of a standard normal distribution
        Z = self.module.NormalDist()
        for n, expected in [
            (1, []),
            (2, [0.0]),
            (3, [-0.4307, 0.4307]),
            (4 ,[-0.6745, 0.0, 0.6745]),
                ]:
            actual = Z.quantiles(n=n)
            self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
                            for e, a in zip(expected, actual)))

    def test_overlap(self):
        NormalDist = self.module.NormalDist

        # Match examples from Imman and Bradley
        for X1, X2, published_result in [
                (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0), 0.80258),
                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0), 0.60993),
            ]:
            self.assertAlmostEqual(X1.overlap(X2), published_result, places=4)
            self.assertAlmostEqual(X2.overlap(X1), published_result, places=4)

        # Check against integration of the PDF
        def overlap_numeric(X, Y, *, steps=8_192, z=5):
            'Numerical integration cross-check for overlap() '
            fsum = math.fsum
            center = (X.mean + Y.mean) / 2.0
            width = z * max(X.stdev, Y.stdev)
            start = center - width
            dx = 2.0 * width / steps
            x_arr = [start + i*dx for i in range(steps)]
            xp = list(map(X.pdf, x_arr))
            yp = list(map(Y.pdf, x_arr))
            total = max(fsum(xp), fsum(yp))
            return fsum(map(min, xp, yp)) / total

        for X1, X2 in [
                # Examples from Imman and Bradley
                (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0)),
                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
                # Example from https://www.rasch.org/rmt/rmt101r.htm
                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
                # Gender heights from http://www.usablestats.com/lessons/normal
                (NormalDist(70, 4), NormalDist(65, 3.5)),
                # Misc cases with equal standard deviations
                (NormalDist(100, 15), NormalDist(110, 15)),
                (NormalDist(-100, 15), NormalDist(110, 15)),
                (NormalDist(-100, 15), NormalDist(-110, 15)),
                # Misc cases with unequal standard deviations
                (NormalDist(100, 12), NormalDist(100, 15)),
                (NormalDist(100, 12), NormalDist(110, 15)),
                (NormalDist(100, 12), NormalDist(150, 15)),
                (NormalDist(100, 12), NormalDist(150, 35)),
                # Misc cases with small values
                (NormalDist(1.000, 0.002), NormalDist(1.001, 0.003)),
                (NormalDist(1.000, 0.002), NormalDist(1.006, 0.0003)),
                (NormalDist(1.000, 0.002), NormalDist(1.001, 0.099)),
            ]:
            self.assertAlmostEqual(X1.overlap(X2), overlap_numeric(X1, X2), places=5)
            self.assertAlmostEqual(X2.overlap(X1), overlap_numeric(X1, X2), places=5)

        # Error cases
        X = NormalDist()
        with self.assertRaises(TypeError):
            X.overlap()                             # too few arguments
        with self.assertRaises(TypeError):
            X.overlap(X, X)                         # too may arguments
        with self.assertRaises(TypeError):
            X.overlap(None)                         # right operand not a NormalDist
        with self.assertRaises(self.module.StatisticsError):
            X.overlap(NormalDist(1, 0))             # right operand sigma is zero
        with self.assertRaises(self.module.StatisticsError):
            NormalDist(1, 0).overlap(X)             # left operand sigma is zero

    def test_zscore(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 15)
        self.assertEqual(X.zscore(142), 2.8)
        self.assertEqual(X.zscore(58), -2.8)
        self.assertEqual(X.zscore(100), 0.0)
        with self.assertRaises(TypeError):
            X.zscore()                              # too few arguments
        with self.assertRaises(TypeError):
            X.zscore(1, 1)                          # too may arguments
        with self.assertRaises(TypeError):
            X.zscore(None)                          # non-numeric type
        with self.assertRaises(self.module.StatisticsError):
            NormalDist(1, 0).zscore(100)            # sigma is zero

    def test_properties(self):
        X = self.module.NormalDist(100, 15)
        self.assertEqual(X.mean, 100)
        self.assertEqual(X.median, 100)
        self.assertEqual(X.mode, 100)
        self.assertEqual(X.stdev, 15)
        self.assertEqual(X.variance, 225)

    def test_same_type_addition_and_subtraction(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 12)
        Y = NormalDist(40, 5)
        self.assertEqual(X + Y, NormalDist(140, 13))        # __add__
        self.assertEqual(X - Y, NormalDist(60, 13))         # __sub__

    def test_translation_and_scaling(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 15)
        y = 10
        self.assertEqual(+X, NormalDist(100, 15))           # __pos__
        self.assertEqual(-X, NormalDist(-100, 15))          # __neg__
        self.assertEqual(X + y, NormalDist(110, 15))        # __add__
        self.assertEqual(y + X, NormalDist(110, 15))        # __radd__
        self.assertEqual(X - y, NormalDist(90, 15))         # __sub__
        self.assertEqual(y - X, NormalDist(-90, 15))        # __rsub__
        self.assertEqual(X * y, NormalDist(1000, 150))      # __mul__
        self.assertEqual(y * X, NormalDist(1000, 150))      # __rmul__
        self.assertEqual(X / y, NormalDist(10, 1.5))        # __truediv__
        with self.assertRaises(TypeError):                  # __rtruediv__
            y / X

    def test_unary_operations(self):
        NormalDist = self.module.NormalDist
        X = NormalDist(100, 12)
        Y = +X
        self.assertIsNot(X, Y)
        self.assertEqual(X.mean, Y.mean)
        self.assertEqual(X.stdev, Y.stdev)
        Y = -X
        self.assertIsNot(X, Y)
        self.assertEqual(X.mean, -Y.mean)
        self.assertEqual(X.stdev, Y.stdev)

    def test_equality(self):
        NormalDist = self.module.NormalDist
        nd1 = NormalDist()
        nd2 = NormalDist(2, 4)
        nd3 = NormalDist()
        nd4 = NormalDist(2, 4)
        nd5 = NormalDist(2, 8)
        nd6 = NormalDist(8, 4)
        self.assertNotEqual(nd1, nd2)
        self.assertEqual(nd1, nd3)
        self.assertEqual(nd2, nd4)
        self.assertNotEqual(nd2, nd5)
        self.assertNotEqual(nd2, nd6)

        # Test NotImplemented when types are different
        class A:
            def __eq__(self, other):
                return 10
        a = A()
        self.assertEqual(nd1.__eq__(a), NotImplemented)
        self.assertEqual(nd1 == a, 10)
        self.assertEqual(a == nd1, 10)

        # All subclasses to compare equal giving the same behavior
        # as list, tuple, int, float, complex, str, dict, set, etc.
        class SizedNormalDist(NormalDist):
            def __init__(self, mu, sigma, n):
                super().__init__(mu, sigma)
                self.n = n
        s = SizedNormalDist(100, 15, 57)
        nd4 = NormalDist(100, 15)
        self.assertEqual(s, nd4)

        # Don't allow duck type equality because we wouldn't
        # want a lognormal distribution to compare equal
        # to a normal distribution with the same parameters
        class LognormalDist:
            def __init__(self, mu, sigma):
                self.mu = mu
                self.sigma = sigma
        lnd = LognormalDist(100, 15)
        nd = NormalDist(100, 15)
        self.assertNotEqual(nd, lnd)

    def test_copy(self):
        nd = self.module.NormalDist(37.5, 5.625)
        nd1 = copy.copy(nd)
        self.assertEqual(nd, nd1)
        nd2 = copy.deepcopy(nd)
        self.assertEqual(nd, nd2)

    def test_pickle(self):
        nd = self.module.NormalDist(37.5, 5.625)
        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
            with self.subTest(proto=proto):
                pickled = pickle.loads(pickle.dumps(nd, protocol=proto))
                self.assertEqual(nd, pickled)

    def test_hashability(self):
        ND = self.module.NormalDist
        s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)}
        self.assertEqual(len(s), 3)

    def test_repr(self):
        nd = self.module.NormalDist(37.5, 5.625)
        self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')

# Swapping the sys.modules['statistics'] is to solving the
# _pickle.PicklingError:
# Can't pickle <class 'statistics.NormalDist'>:
# it's not the same object as statistics.NormalDist
class TestNormalDistPython(unittest.TestCase, TestNormalDist):
    module = py_statistics
    def setUp(self):
        sys.modules['statistics'] = self.module

    def tearDown(self):
        sys.modules['statistics'] = statistics


@unittest.skipUnless(c_statistics, 'requires _statistics')
class TestNormalDistC(unittest.TestCase, TestNormalDist):
    module = c_statistics
    def setUp(self):
        sys.modules['statistics'] = self.module

    def tearDown(self):
        sys.modules['statistics'] = statistics


# === Run tests ===

def load_tests(loader, tests, ignore):
    """Used for doctest/unittest integration."""
    tests.addTests(doctest.DocTestSuite())
    tests.addTests(doctest.DocTestSuite(statistics))
    return tests


if __name__ == "__main__":
    unittest.main()