summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_tuple.py
blob: 9ce80c5e8ea0093e00176c3c7078e0ad3123d4c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from test import support, seq_tests
import unittest

import gc
import pickle

# For tuple hashes, we normally only run a test to ensure that we get
# the same results across platforms in a handful of cases.  If that's
# so, there's no real point to running more.  Set RUN_ALL_HASH_TESTS to
# run more anyway.  That's usually of real interest only when analyzing,
# or changing, the hash algorithm.  In which case it's usually also
# most useful to set JUST_SHOW_HASH_RESULTS, to see all the results
# instead of wrestling with test "failures".  See the bottom of the
# file for extensive notes on what we're testing here and why.
RUN_ALL_HASH_TESTS = False
JUST_SHOW_HASH_RESULTS = False # if RUN_ALL_HASH_TESTS, just display

class TupleTest(seq_tests.CommonTest):
    type2test = tuple

    def test_getitem_error(self):
        t = ()
        msg = "tuple indices must be integers or slices"
        with self.assertRaisesRegex(TypeError, msg):
            t['a']

    def test_constructors(self):
        super().test_constructors()
        # calling built-in types without argument must return empty
        self.assertEqual(tuple(), ())
        t0_3 = (0, 1, 2, 3)
        t0_3_bis = tuple(t0_3)
        self.assertTrue(t0_3 is t0_3_bis)
        self.assertEqual(tuple([]), ())
        self.assertEqual(tuple([0, 1, 2, 3]), (0, 1, 2, 3))
        self.assertEqual(tuple(''), ())
        self.assertEqual(tuple('spam'), ('s', 'p', 'a', 'm'))
        self.assertEqual(tuple(x for x in range(10) if x % 2),
                         (1, 3, 5, 7, 9))

    def test_keyword_args(self):
        with self.assertRaisesRegex(TypeError, 'keyword argument'):
            tuple(sequence=())

    def test_keywords_in_subclass(self):
        class subclass(tuple):
            pass
        u = subclass([1, 2])
        self.assertIs(type(u), subclass)
        self.assertEqual(list(u), [1, 2])
        with self.assertRaises(TypeError):
            subclass(sequence=())

        class subclass_with_init(tuple):
            def __init__(self, arg, newarg=None):
                self.newarg = newarg
        u = subclass_with_init([1, 2], newarg=3)
        self.assertIs(type(u), subclass_with_init)
        self.assertEqual(list(u), [1, 2])
        self.assertEqual(u.newarg, 3)

        class subclass_with_new(tuple):
            def __new__(cls, arg, newarg=None):
                self = super().__new__(cls, arg)
                self.newarg = newarg
                return self
        u = subclass_with_new([1, 2], newarg=3)
        self.assertIs(type(u), subclass_with_new)
        self.assertEqual(list(u), [1, 2])
        self.assertEqual(u.newarg, 3)

    def test_truth(self):
        super().test_truth()
        self.assertTrue(not ())
        self.assertTrue((42, ))

    def test_len(self):
        super().test_len()
        self.assertEqual(len(()), 0)
        self.assertEqual(len((0,)), 1)
        self.assertEqual(len((0, 1, 2)), 3)

    def test_iadd(self):
        super().test_iadd()
        u = (0, 1)
        u2 = u
        u += (2, 3)
        self.assertTrue(u is not u2)

    def test_imul(self):
        super().test_imul()
        u = (0, 1)
        u2 = u
        u *= 3
        self.assertTrue(u is not u2)

    def test_tupleresizebug(self):
        # Check that a specific bug in _PyTuple_Resize() is squashed.
        def f():
            for i in range(1000):
                yield i
        self.assertEqual(list(tuple(f())), list(range(1000)))

    # We expect tuples whose base components have deterministic hashes to
    # have deterministic hashes too - and, indeed, the same hashes across
    # platforms with hash codes of the same bit width.
    def test_hash_exact(self):
        def check_one_exact(t, e32, e64):
            got = hash(t)
            expected = e32 if support.NHASHBITS == 32 else e64
            if got != expected:
                msg = f"FAIL hash({t!r}) == {got} != {expected}"
                self.fail(msg)

        check_one_exact((), 750394483, 5740354900026072187)
        check_one_exact((0,), 1214856301, -8753497827991233192)
        check_one_exact((0, 0), -168982784, -8458139203682520985)
        check_one_exact((0.5,), 2077348973, -408149959306781352)
        check_one_exact((0.5, (), (-2, 3, (4, 6))), 714642271,
                        -1845940830829704396)

    # Various tests for hashing of tuples to check that we get few collisions.
    # Does something only if RUN_ALL_HASH_TESTS is true.
    #
    # Earlier versions of the tuple hash algorithm had massive collisions
    # reported at:
    # - https://bugs.python.org/issue942952
    # - https://bugs.python.org/issue34751
    def test_hash_optional(self):
        from itertools import product

        if not RUN_ALL_HASH_TESTS:
            return

        # If specified, `expected` is a 2-tuple of expected
        # (number_of_collisions, pileup) values, and the test fails if
        # those aren't the values we get.  Also if specified, the test
        # fails if z > `zlimit`.
        def tryone_inner(tag, nbins, hashes, expected=None, zlimit=None):
            from collections import Counter

            nballs = len(hashes)
            mean, sdev = support.collision_stats(nbins, nballs)
            c = Counter(hashes)
            collisions = nballs - len(c)
            z = (collisions - mean) / sdev
            pileup = max(c.values()) - 1
            del c
            got = (collisions, pileup)
            failed = False
            prefix = ""
            if zlimit is not None and z > zlimit:
                failed = True
                prefix = f"FAIL z > {zlimit}; "
            if expected is not None and got != expected:
                failed = True
                prefix += f"FAIL {got} != {expected}; "
            if failed or JUST_SHOW_HASH_RESULTS:
                msg = f"{prefix}{tag}; pileup {pileup:,} mean {mean:.1f} "
                msg += f"coll {collisions:,} z {z:+.1f}"
                if JUST_SHOW_HASH_RESULTS:
                    import sys
                    print(msg, file=sys.__stdout__)
                else:
                    self.fail(msg)

        def tryone(tag, xs,
                   native32=None, native64=None, hi32=None, lo32=None,
                   zlimit=None):
            NHASHBITS = support.NHASHBITS
            hashes = list(map(hash, xs))
            tryone_inner(tag + f"; {NHASHBITS}-bit hash codes",
                         1 << NHASHBITS,
                         hashes,
                         native32 if NHASHBITS == 32 else native64,
                         zlimit)

            if NHASHBITS > 32:
                shift = NHASHBITS - 32
                tryone_inner(tag + "; 32-bit upper hash codes",
                             1 << 32,
                             [h >> shift for h in hashes],
                             hi32,
                             zlimit)

                mask = (1 << 32) - 1
                tryone_inner(tag + "; 32-bit lower hash codes",
                             1 << 32,
                             [h & mask for h in hashes],
                             lo32,
                             zlimit)

        # Tuples of smallish positive integers are common - nice if we
        # get "better than random" for these.
        tryone("range(100) by 3", list(product(range(100), repeat=3)),
               (0, 0), (0, 0), (4, 1), (0, 0))

        # A previous hash had systematic problems when mixing integers of
        # similar magnitude but opposite sign, obscurely related to that
        # j ^ -2 == -j when j is odd.
        cands = list(range(-10, -1)) + list(range(9))

        # Note:  -1 is omitted because hash(-1) == hash(-2) == -2, and
        # there's nothing the tuple hash can do to avoid collisions
        # inherited from collisions in the tuple components' hashes.
        tryone("-10 .. 8 by 4", list(product(cands, repeat=4)),
               (0, 0), (0, 0), (0, 0), (0, 0))
        del cands

        # The hashes here are a weird mix of values where all the
        # variation is in the lowest bits and across a single high-order
        # bit - the middle bits are all zeroes. A decent hash has to
        # both propagate low bits to the left and high bits to the
        # right.  This is also complicated a bit in that there are
        # collisions among the hashes of the integers in L alone.
        L = [n << 60 for n in range(100)]
        tryone("0..99 << 60 by 3", list(product(L, repeat=3)),
               (0, 0), (0, 0), (0, 0), (324, 1))
        del L

        # Used to suffer a massive number of collisions.
        tryone("[-3, 3] by 18", list(product([-3, 3], repeat=18)),
               (7, 1), (0, 0), (7, 1), (6, 1))

        # And even worse.  hash(0.5) has only a single bit set, at the
        # high end. A decent hash needs to propagate high bits right.
        tryone("[0, 0.5] by 18", list(product([0, 0.5], repeat=18)),
               (5, 1), (0, 0), (9, 1), (12, 1))

        # Hashes of ints and floats are the same across platforms.
        # String hashes vary even on a single platform across runs, due
        # to hash randomization for strings.  So we can't say exactly
        # what this should do.  Instead we insist that the # of
        # collisions is no more than 4 sdevs above the theoretically
        # random mean.  Even if the tuple hash can't achieve that on its
        # own, the string hash is trying to be decently pseudo-random
        # (in all bit positions) on _its_ own.  We can at least test
        # that the tuple hash doesn't systematically ruin that.
        tryone("4-char tuples",
               list(product("abcdefghijklmnopqrstuvwxyz", repeat=4)),
               zlimit=4.0)

        # The "old tuple test".  See https://bugs.python.org/issue942952.
        # Ensures, for example, that the hash:
        #   is non-commutative
        #   spreads closely spaced values
        #   doesn't exhibit cancellation in tuples like (x,(x,y))
        N = 50
        base = list(range(N))
        xp = list(product(base, repeat=2))
        inps = base + list(product(base, xp)) + \
                     list(product(xp, base)) + xp + list(zip(base))
        tryone("old tuple test", inps,
               (2, 1), (0, 0), (52, 49), (7, 1))
        del base, xp, inps

        # The "new tuple test".  See https://bugs.python.org/issue34751.
        # Even more tortured nesting, and a mix of signed ints of very
        # small magnitude.
        n = 5
        A = [x for x in range(-n, n+1) if x != -1]
        B = A + [(a,) for a in A]
        L2 = list(product(A, repeat=2))
        L3 = L2 + list(product(A, repeat=3))
        L4 = L3 + list(product(A, repeat=4))
        # T = list of testcases. These consist of all (possibly nested
        # at most 2 levels deep) tuples containing at most 4 items from
        # the set A.
        T = A
        T += [(a,) for a in B + L4]
        T += product(L3, B)
        T += product(L2, repeat=2)
        T += product(B, L3)
        T += product(B, B, L2)
        T += product(B, L2, B)
        T += product(L2, B, B)
        T += product(B, repeat=4)
        assert len(T) == 345130
        tryone("new tuple test", T,
               (9, 1), (0, 0), (21, 5), (6, 1))

    def test_repr(self):
        l0 = tuple()
        l2 = (0, 1, 2)
        a0 = self.type2test(l0)
        a2 = self.type2test(l2)

        self.assertEqual(str(a0), repr(l0))
        self.assertEqual(str(a2), repr(l2))
        self.assertEqual(repr(a0), "()")
        self.assertEqual(repr(a2), "(0, 1, 2)")

    def _not_tracked(self, t):
        # Nested tuples can take several collections to untrack
        gc.collect()
        gc.collect()
        self.assertFalse(gc.is_tracked(t), t)

    def _tracked(self, t):
        self.assertTrue(gc.is_tracked(t), t)
        gc.collect()
        gc.collect()
        self.assertTrue(gc.is_tracked(t), t)

    @support.cpython_only
    def test_track_literals(self):
        # Test GC-optimization of tuple literals
        x, y, z = 1.5, "a", []

        self._not_tracked(())
        self._not_tracked((1,))
        self._not_tracked((1, 2))
        self._not_tracked((1, 2, "a"))
        self._not_tracked((1, 2, (None, True, False, ()), int))
        self._not_tracked((object(),))
        self._not_tracked(((1, x), y, (2, 3)))

        # Tuples with mutable elements are always tracked, even if those
        # elements are not tracked right now.
        self._tracked(([],))
        self._tracked(([1],))
        self._tracked(({},))
        self._tracked((set(),))
        self._tracked((x, y, z))

    def check_track_dynamic(self, tp, always_track):
        x, y, z = 1.5, "a", []

        check = self._tracked if always_track else self._not_tracked
        check(tp())
        check(tp([]))
        check(tp(set()))
        check(tp([1, x, y]))
        check(tp(obj for obj in [1, x, y]))
        check(tp(set([1, x, y])))
        check(tp(tuple([obj]) for obj in [1, x, y]))
        check(tuple(tp([obj]) for obj in [1, x, y]))

        self._tracked(tp([z]))
        self._tracked(tp([[x, y]]))
        self._tracked(tp([{x: y}]))
        self._tracked(tp(obj for obj in [x, y, z]))
        self._tracked(tp(tuple([obj]) for obj in [x, y, z]))
        self._tracked(tuple(tp([obj]) for obj in [x, y, z]))

    @support.cpython_only
    def test_track_dynamic(self):
        # Test GC-optimization of dynamically constructed tuples.
        self.check_track_dynamic(tuple, False)

    @support.cpython_only
    def test_track_subtypes(self):
        # Tuple subtypes must always be tracked
        class MyTuple(tuple):
            pass
        self.check_track_dynamic(MyTuple, True)

    @support.cpython_only
    def test_bug7466(self):
        # Trying to untrack an unfinished tuple could crash Python
        self._not_tracked(tuple(gc.collect() for i in range(101)))

    def test_repr_large(self):
        # Check the repr of large list objects
        def check(n):
            l = (0,) * n
            s = repr(l)
            self.assertEqual(s,
                '(' + ', '.join(['0'] * n) + ')')
        check(10)       # check our checking code
        check(1000000)

    def test_iterator_pickle(self):
        # Userlist iterators don't support pickling yet since
        # they are based on generators.
        data = self.type2test([4, 5, 6, 7])
        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
            itorg = iter(data)
            d = pickle.dumps(itorg, proto)
            it = pickle.loads(d)
            self.assertEqual(type(itorg), type(it))
            self.assertEqual(self.type2test(it), self.type2test(data))

            it = pickle.loads(d)
            next(it)
            d = pickle.dumps(it, proto)
            self.assertEqual(self.type2test(it), self.type2test(data)[1:])

    def test_reversed_pickle(self):
        data = self.type2test([4, 5, 6, 7])
        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
            itorg = reversed(data)
            d = pickle.dumps(itorg, proto)
            it = pickle.loads(d)
            self.assertEqual(type(itorg), type(it))
            self.assertEqual(self.type2test(it), self.type2test(reversed(data)))

            it = pickle.loads(d)
            next(it)
            d = pickle.dumps(it, proto)
            self.assertEqual(self.type2test(it), self.type2test(reversed(data))[1:])

    def test_no_comdat_folding(self):
        # Issue 8847: In the PGO build, the MSVC linker's COMDAT folding
        # optimization causes failures in code that relies on distinct
        # function addresses.
        class T(tuple): pass
        with self.assertRaises(TypeError):
            [3,] + T((1,2))

    def test_lexicographic_ordering(self):
        # Issue 21100
        a = self.type2test([1, 2])
        b = self.type2test([1, 2, 0])
        c = self.type2test([1, 3])
        self.assertLess(a, b)
        self.assertLess(b, c)

# Notes on testing hash codes.  The primary thing is that Python doesn't
# care about "random" hash codes.  To the contrary, we like them to be
# very regular when possible, so that the low-order bits are as evenly
# distributed as possible.  For integers this is easy: hash(i) == i for
# all not-huge i except i==-1.
#
# For tuples of mixed type there's really no hope of that, so we want
# "randomish" here instead.  But getting close to pseudo-random in all
# bit positions is more expensive than we've been willing to pay for.
#
# We can tolerate large deviations from random - what we don't want is
# catastrophic pileups on a relative handful of hash codes.  The dict
# and set lookup routines remain effective provided that full-width hash
# codes for not-equal objects are distinct.
#
# So we compute various statistics here based on what a "truly random"
# hash would do, but don't automate "pass or fail" based on those
# results.  Instead those are viewed as inputs to human judgment, and the
# automated tests merely ensure we get the _same_ results across
# platforms.  In fact, we normally don't bother to run them at all -
# set RUN_ALL_HASH_TESTS to force it.
#
# When global JUST_SHOW_HASH_RESULTS is True, the tuple hash statistics
# are just displayed to stdout.  A typical output line looks like:
#
# old tuple test; 32-bit upper hash codes; \
#             pileup 49 mean 7.4 coll 52 z +16.4
#
# "old tuple test" is just a string name for the test being run.
#
# "32-bit upper hash codes" means this was run under a 64-bit build and
# we've shifted away the lower 32 bits of the hash codes.
#
# "pileup" is 0 if there were no collisions across those hash codes.
# It's 1 less than the maximum number of times any single hash code was
# seen.  So in this case, there was (at least) one hash code that was
# seen 50 times:  that hash code "piled up" 49 more times than ideal.
#
# "mean" is the number of collisions a perfectly random hash function
# would have yielded, on average.
#
# "coll" is the number of collisions actually seen.
#
# "z" is "coll - mean" divided by the standard deviation of the number
# of collisions a perfectly random hash function would suffer.  A
# positive value is "worse than random", and negative value "better than
# random".  Anything of magnitude greater than 3 would be highly suspect
# for a hash function that claimed to be random.  It's essentially
# impossible that a truly random function would deliver a result 16.4
# sdevs "worse than random".
#
# But we don't care here!  That's why the test isn't coded to fail.
# Knowing something about how the high-order hash code bits behave
# provides insight, but is irrelevant to how the dict and set lookup
# code performs.  The low-order bits are much more important to that,
# and on the same test those did "just like random":
#
# old tuple test; 32-bit lower hash codes; \
#            pileup 1 mean 7.4 coll 7 z -0.2
#
# So there are always tradeoffs to consider.  For another:
#
# 0..99 << 60 by 3; 32-bit hash codes; \
#            pileup 0 mean 116.4 coll 0 z -10.8
#
# That was run under a 32-bit build, and is spectacularly "better than
# random".  On a 64-bit build the wider hash codes are fine too:
#
# 0..99 << 60 by 3; 64-bit hash codes; \
#             pileup 0 mean 0.0 coll 0 z -0.0
#
# but their lower 32 bits are poor:
#
# 0..99 << 60 by 3; 32-bit lower hash codes; \
#             pileup 1 mean 116.4 coll 324 z +19.2
#
# In a statistical sense that's waaaaay too many collisions, but (a) 324
# collisions out of a million hash codes isn't anywhere near being a
# real problem; and, (b) the worst pileup on a single hash code is a measly
# 1 extra.  It's a relatively poor case for the tuple hash, but still
# fine for practical use.
#
# This isn't, which is what Python 3.7.1 produced for the hashes of
# itertools.product([0, 0.5], repeat=18).  Even with a fat 64-bit
# hashcode, the highest pileup was over 16,000 - making a dict/set
# lookup on one of the colliding values thousands of times slower (on
# average) than we expect.
#
# [0, 0.5] by 18; 64-bit hash codes; \
#            pileup 16,383 mean 0.0 coll 262,128 z +6073641856.9
# [0, 0.5] by 18; 32-bit lower hash codes; \
#            pileup 262,143 mean 8.0 coll 262,143 z +92683.6

if __name__ == "__main__":
    unittest.main()