summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_urlparse.py
blob: 378a427bc56194f34b1d7bc76044f31a7d9cb651 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
#! /usr/bin/env python3

from test import support
import unittest
import urllib.parse

RFC1808_BASE = "http://a/b/c/d;p?q#f"
RFC2396_BASE = "http://a/b/c/d;p?q"
RFC3986_BASE = 'http://a/b/c/d;p?q'
SIMPLE_BASE  = 'http://a/b/c/d'

# A list of test cases.  Each test case is a two-tuple that contains
# a string with the query and a dictionary with the expected result.

parse_qsl_test_cases = [
    ("", []),
    ("&", []),
    ("&&", []),
    ("=", [('', '')]),
    ("=a", [('', 'a')]),
    ("a", [('a', '')]),
    ("a=", [('a', '')]),
    ("a=", [('a', '')]),
    ("&a=b", [('a', 'b')]),
    ("a=a+b&b=b+c", [('a', 'a b'), ('b', 'b c')]),
    ("a=1&a=2", [('a', '1'), ('a', '2')]),
    (b"", []),
    (b"&", []),
    (b"&&", []),
    (b"=", [(b'', b'')]),
    (b"=a", [(b'', b'a')]),
    (b"a", [(b'a', b'')]),
    (b"a=", [(b'a', b'')]),
    (b"a=", [(b'a', b'')]),
    (b"&a=b", [(b'a', b'b')]),
    (b"a=a+b&b=b+c", [(b'a', b'a b'), (b'b', b'b c')]),
    (b"a=1&a=2", [(b'a', b'1'), (b'a', b'2')]),
]

class UrlParseTestCase(unittest.TestCase):

    def checkRoundtrips(self, url, parsed, split):
        result = urllib.parse.urlparse(url)
        self.assertEqual(result, parsed)
        t = (result.scheme, result.netloc, result.path,
             result.params, result.query, result.fragment)
        self.assertEqual(t, parsed)
        # put it back together and it should be the same
        result2 = urllib.parse.urlunparse(result)
        self.assertEqual(result2, url)
        self.assertEqual(result2, result.geturl())

        # the result of geturl() is a fixpoint; we can always parse it
        # again to get the same result:
        result3 = urllib.parse.urlparse(result.geturl())
        self.assertEqual(result3.geturl(), result.geturl())
        self.assertEqual(result3,          result)
        self.assertEqual(result3.scheme,   result.scheme)
        self.assertEqual(result3.netloc,   result.netloc)
        self.assertEqual(result3.path,     result.path)
        self.assertEqual(result3.params,   result.params)
        self.assertEqual(result3.query,    result.query)
        self.assertEqual(result3.fragment, result.fragment)
        self.assertEqual(result3.username, result.username)
        self.assertEqual(result3.password, result.password)
        self.assertEqual(result3.hostname, result.hostname)
        self.assertEqual(result3.port,     result.port)

        # check the roundtrip using urlsplit() as well
        result = urllib.parse.urlsplit(url)
        self.assertEqual(result, split)
        t = (result.scheme, result.netloc, result.path,
             result.query, result.fragment)
        self.assertEqual(t, split)
        result2 = urllib.parse.urlunsplit(result)
        self.assertEqual(result2, url)
        self.assertEqual(result2, result.geturl())

        # check the fixpoint property of re-parsing the result of geturl()
        result3 = urllib.parse.urlsplit(result.geturl())
        self.assertEqual(result3.geturl(), result.geturl())
        self.assertEqual(result3,          result)
        self.assertEqual(result3.scheme,   result.scheme)
        self.assertEqual(result3.netloc,   result.netloc)
        self.assertEqual(result3.path,     result.path)
        self.assertEqual(result3.query,    result.query)
        self.assertEqual(result3.fragment, result.fragment)
        self.assertEqual(result3.username, result.username)
        self.assertEqual(result3.password, result.password)
        self.assertEqual(result3.hostname, result.hostname)
        self.assertEqual(result3.port,     result.port)

    def test_qsl(self):
        for orig, expect in parse_qsl_test_cases:
            result = urllib.parse.parse_qsl(orig, keep_blank_values=True)
            self.assertEqual(result, expect, "Error parsing %r" % orig)
            expect_without_blanks = [v for v in expect if len(v[1])]
            result = urllib.parse.parse_qsl(orig, keep_blank_values=False)
            self.assertEqual(result, expect_without_blanks,
                            "Error parsing %r" % orig)

    def test_roundtrips(self):
        str_cases = [
            ('file:///tmp/junk.txt',
             ('file', '', '/tmp/junk.txt', '', '', ''),
             ('file', '', '/tmp/junk.txt', '', '')),
            ('imap://mail.python.org/mbox1',
             ('imap', 'mail.python.org', '/mbox1', '', '', ''),
             ('imap', 'mail.python.org', '/mbox1', '', '')),
            ('mms://wms.sys.hinet.net/cts/Drama/09006251100.asf',
             ('mms', 'wms.sys.hinet.net', '/cts/Drama/09006251100.asf',
              '', '', ''),
             ('mms', 'wms.sys.hinet.net', '/cts/Drama/09006251100.asf',
              '', '')),
            ('nfs://server/path/to/file.txt',
             ('nfs', 'server', '/path/to/file.txt', '', '', ''),
             ('nfs', 'server', '/path/to/file.txt', '', '')),
            ('svn+ssh://svn.zope.org/repos/main/ZConfig/trunk/',
             ('svn+ssh', 'svn.zope.org', '/repos/main/ZConfig/trunk/',
              '', '', ''),
             ('svn+ssh', 'svn.zope.org', '/repos/main/ZConfig/trunk/',
              '', '')),
            ('git+ssh://git@github.com/user/project.git',
            ('git+ssh', 'git@github.com','/user/project.git',
             '','',''),
            ('git+ssh', 'git@github.com','/user/project.git',
             '', '')),
            ]
        def _encode(t):
            return (t[0].encode('ascii'),
                    tuple(x.encode('ascii') for x in t[1]),
                    tuple(x.encode('ascii') for x in t[2]))
        bytes_cases = [_encode(x) for x in str_cases]
        for url, parsed, split in str_cases + bytes_cases:
            self.checkRoundtrips(url, parsed, split)

    def test_http_roundtrips(self):
        # urllib.parse.urlsplit treats 'http:' as an optimized special case,
        # so we test both 'http:' and 'https:' in all the following.
        # Three cheers for white box knowledge!
        str_cases = [
            ('://www.python.org',
             ('www.python.org', '', '', '', ''),
             ('www.python.org', '', '', '')),
            ('://www.python.org#abc',
             ('www.python.org', '', '', '', 'abc'),
             ('www.python.org', '', '', 'abc')),
            ('://www.python.org?q=abc',
             ('www.python.org', '', '', 'q=abc', ''),
             ('www.python.org', '', 'q=abc', '')),
            ('://www.python.org/#abc',
             ('www.python.org', '/', '', '', 'abc'),
             ('www.python.org', '/', '', 'abc')),
            ('://a/b/c/d;p?q#f',
             ('a', '/b/c/d', 'p', 'q', 'f'),
             ('a', '/b/c/d;p', 'q', 'f')),
            ]
        def _encode(t):
            return (t[0].encode('ascii'),
                    tuple(x.encode('ascii') for x in t[1]),
                    tuple(x.encode('ascii') for x in t[2]))
        bytes_cases = [_encode(x) for x in str_cases]
        str_schemes = ('http', 'https')
        bytes_schemes = (b'http', b'https')
        str_tests = str_schemes, str_cases
        bytes_tests = bytes_schemes, bytes_cases
        for schemes, test_cases in (str_tests, bytes_tests):
            for scheme in schemes:
                for url, parsed, split in test_cases:
                    url = scheme + url
                    parsed = (scheme,) + parsed
                    split = (scheme,) + split
                    self.checkRoundtrips(url, parsed, split)

    def checkJoin(self, base, relurl, expected):
        str_components = (base, relurl, expected)
        self.assertEqual(urllib.parse.urljoin(base, relurl), expected)
        bytes_components = baseb, relurlb, expectedb = [
                            x.encode('ascii') for x in str_components]
        self.assertEqual(urllib.parse.urljoin(baseb, relurlb), expectedb)

    def test_unparse_parse(self):
        str_cases = ['Python', './Python','x-newscheme://foo.com/stuff','x://y','x:/y','x:/','/',]
        bytes_cases = [x.encode('ascii') for x in str_cases]
        for u in str_cases + bytes_cases:
            self.assertEqual(urllib.parse.urlunsplit(urllib.parse.urlsplit(u)), u)
            self.assertEqual(urllib.parse.urlunparse(urllib.parse.urlparse(u)), u)

    def test_RFC1808(self):
        # "normal" cases from RFC 1808:
        self.checkJoin(RFC1808_BASE, 'g:h', 'g:h')
        self.checkJoin(RFC1808_BASE, 'g', 'http://a/b/c/g')
        self.checkJoin(RFC1808_BASE, './g', 'http://a/b/c/g')
        self.checkJoin(RFC1808_BASE, 'g/', 'http://a/b/c/g/')
        self.checkJoin(RFC1808_BASE, '/g', 'http://a/g')
        self.checkJoin(RFC1808_BASE, '//g', 'http://g')
        self.checkJoin(RFC1808_BASE, 'g?y', 'http://a/b/c/g?y')
        self.checkJoin(RFC1808_BASE, 'g?y/./x', 'http://a/b/c/g?y/./x')
        self.checkJoin(RFC1808_BASE, '#s', 'http://a/b/c/d;p?q#s')
        self.checkJoin(RFC1808_BASE, 'g#s', 'http://a/b/c/g#s')
        self.checkJoin(RFC1808_BASE, 'g#s/./x', 'http://a/b/c/g#s/./x')
        self.checkJoin(RFC1808_BASE, 'g?y#s', 'http://a/b/c/g?y#s')
        self.checkJoin(RFC1808_BASE, 'g;x', 'http://a/b/c/g;x')
        self.checkJoin(RFC1808_BASE, 'g;x?y#s', 'http://a/b/c/g;x?y#s')
        self.checkJoin(RFC1808_BASE, '.', 'http://a/b/c/')
        self.checkJoin(RFC1808_BASE, './', 'http://a/b/c/')
        self.checkJoin(RFC1808_BASE, '..', 'http://a/b/')
        self.checkJoin(RFC1808_BASE, '../', 'http://a/b/')
        self.checkJoin(RFC1808_BASE, '../g', 'http://a/b/g')
        self.checkJoin(RFC1808_BASE, '../..', 'http://a/')
        self.checkJoin(RFC1808_BASE, '../../', 'http://a/')
        self.checkJoin(RFC1808_BASE, '../../g', 'http://a/g')

        # "abnormal" cases from RFC 1808:
        self.checkJoin(RFC1808_BASE, '', 'http://a/b/c/d;p?q#f')
        self.checkJoin(RFC1808_BASE, '../../../g', 'http://a/../g')
        self.checkJoin(RFC1808_BASE, '../../../../g', 'http://a/../../g')
        self.checkJoin(RFC1808_BASE, '/./g', 'http://a/./g')
        self.checkJoin(RFC1808_BASE, '/../g', 'http://a/../g')
        self.checkJoin(RFC1808_BASE, 'g.', 'http://a/b/c/g.')
        self.checkJoin(RFC1808_BASE, '.g', 'http://a/b/c/.g')
        self.checkJoin(RFC1808_BASE, 'g..', 'http://a/b/c/g..')
        self.checkJoin(RFC1808_BASE, '..g', 'http://a/b/c/..g')
        self.checkJoin(RFC1808_BASE, './../g', 'http://a/b/g')
        self.checkJoin(RFC1808_BASE, './g/.', 'http://a/b/c/g/')
        self.checkJoin(RFC1808_BASE, 'g/./h', 'http://a/b/c/g/h')
        self.checkJoin(RFC1808_BASE, 'g/../h', 'http://a/b/c/h')

        # RFC 1808 and RFC 1630 disagree on these (according to RFC 1808),
        # so we'll not actually run these tests (which expect 1808 behavior).
        #self.checkJoin(RFC1808_BASE, 'http:g', 'http:g')
        #self.checkJoin(RFC1808_BASE, 'http:', 'http:')

    def test_RFC2368(self):
        # Issue 11467: path that starts with a number is not parsed correctly
        self.assertEqual(urllib.parse.urlparse('mailto:1337@example.org'),
                ('mailto', '', '1337@example.org', '', '', ''))

    def test_RFC2396(self):
        # cases from RFC 2396


        self.checkJoin(RFC2396_BASE, 'g:h', 'g:h')
        self.checkJoin(RFC2396_BASE, 'g', 'http://a/b/c/g')
        self.checkJoin(RFC2396_BASE, './g', 'http://a/b/c/g')
        self.checkJoin(RFC2396_BASE, 'g/', 'http://a/b/c/g/')
        self.checkJoin(RFC2396_BASE, '/g', 'http://a/g')
        self.checkJoin(RFC2396_BASE, '//g', 'http://g')
        self.checkJoin(RFC2396_BASE, 'g?y', 'http://a/b/c/g?y')
        self.checkJoin(RFC2396_BASE, '#s', 'http://a/b/c/d;p?q#s')
        self.checkJoin(RFC2396_BASE, 'g#s', 'http://a/b/c/g#s')
        self.checkJoin(RFC2396_BASE, 'g?y#s', 'http://a/b/c/g?y#s')
        self.checkJoin(RFC2396_BASE, 'g;x', 'http://a/b/c/g;x')
        self.checkJoin(RFC2396_BASE, 'g;x?y#s', 'http://a/b/c/g;x?y#s')
        self.checkJoin(RFC2396_BASE, '.', 'http://a/b/c/')
        self.checkJoin(RFC2396_BASE, './', 'http://a/b/c/')
        self.checkJoin(RFC2396_BASE, '..', 'http://a/b/')
        self.checkJoin(RFC2396_BASE, '../', 'http://a/b/')
        self.checkJoin(RFC2396_BASE, '../g', 'http://a/b/g')
        self.checkJoin(RFC2396_BASE, '../..', 'http://a/')
        self.checkJoin(RFC2396_BASE, '../../', 'http://a/')
        self.checkJoin(RFC2396_BASE, '../../g', 'http://a/g')
        self.checkJoin(RFC2396_BASE, '', RFC2396_BASE)
        self.checkJoin(RFC2396_BASE, '../../../g', 'http://a/../g')
        self.checkJoin(RFC2396_BASE, '../../../../g', 'http://a/../../g')
        self.checkJoin(RFC2396_BASE, '/./g', 'http://a/./g')
        self.checkJoin(RFC2396_BASE, '/../g', 'http://a/../g')
        self.checkJoin(RFC2396_BASE, 'g.', 'http://a/b/c/g.')
        self.checkJoin(RFC2396_BASE, '.g', 'http://a/b/c/.g')
        self.checkJoin(RFC2396_BASE, 'g..', 'http://a/b/c/g..')
        self.checkJoin(RFC2396_BASE, '..g', 'http://a/b/c/..g')
        self.checkJoin(RFC2396_BASE, './../g', 'http://a/b/g')
        self.checkJoin(RFC2396_BASE, './g/.', 'http://a/b/c/g/')
        self.checkJoin(RFC2396_BASE, 'g/./h', 'http://a/b/c/g/h')
        self.checkJoin(RFC2396_BASE, 'g/../h', 'http://a/b/c/h')
        self.checkJoin(RFC2396_BASE, 'g;x=1/./y', 'http://a/b/c/g;x=1/y')
        self.checkJoin(RFC2396_BASE, 'g;x=1/../y', 'http://a/b/c/y')
        self.checkJoin(RFC2396_BASE, 'g?y/./x', 'http://a/b/c/g?y/./x')
        self.checkJoin(RFC2396_BASE, 'g?y/../x', 'http://a/b/c/g?y/../x')
        self.checkJoin(RFC2396_BASE, 'g#s/./x', 'http://a/b/c/g#s/./x')
        self.checkJoin(RFC2396_BASE, 'g#s/../x', 'http://a/b/c/g#s/../x')

    def test_RFC3986(self):
        # Test cases from RFC3986
        self.checkJoin(RFC3986_BASE, '?y','http://a/b/c/d;p?y')
        self.checkJoin(RFC2396_BASE, ';x', 'http://a/b/c/;x')
        self.checkJoin(RFC3986_BASE, 'g:h','g:h')
        self.checkJoin(RFC3986_BASE, 'g','http://a/b/c/g')
        self.checkJoin(RFC3986_BASE, './g','http://a/b/c/g')
        self.checkJoin(RFC3986_BASE, 'g/','http://a/b/c/g/')
        self.checkJoin(RFC3986_BASE, '/g','http://a/g')
        self.checkJoin(RFC3986_BASE, '//g','http://g')
        self.checkJoin(RFC3986_BASE, '?y','http://a/b/c/d;p?y')
        self.checkJoin(RFC3986_BASE, 'g?y','http://a/b/c/g?y')
        self.checkJoin(RFC3986_BASE, '#s','http://a/b/c/d;p?q#s')
        self.checkJoin(RFC3986_BASE, 'g#s','http://a/b/c/g#s')
        self.checkJoin(RFC3986_BASE, 'g?y#s','http://a/b/c/g?y#s')
        self.checkJoin(RFC3986_BASE, ';x','http://a/b/c/;x')
        self.checkJoin(RFC3986_BASE, 'g;x','http://a/b/c/g;x')
        self.checkJoin(RFC3986_BASE, 'g;x?y#s','http://a/b/c/g;x?y#s')
        self.checkJoin(RFC3986_BASE, '','http://a/b/c/d;p?q')
        self.checkJoin(RFC3986_BASE, '.','http://a/b/c/')
        self.checkJoin(RFC3986_BASE, './','http://a/b/c/')
        self.checkJoin(RFC3986_BASE, '..','http://a/b/')
        self.checkJoin(RFC3986_BASE, '../','http://a/b/')
        self.checkJoin(RFC3986_BASE, '../g','http://a/b/g')
        self.checkJoin(RFC3986_BASE, '../..','http://a/')
        self.checkJoin(RFC3986_BASE, '../../','http://a/')
        self.checkJoin(RFC3986_BASE, '../../g','http://a/g')

        #Abnormal Examples

        # The 'abnormal scenarios' are incompatible with RFC2986 parsing
        # Tests are here for reference.

        #self.checkJoin(RFC3986_BASE, '../../../g','http://a/g')
        #self.checkJoin(RFC3986_BASE, '../../../../g','http://a/g')
        #self.checkJoin(RFC3986_BASE, '/./g','http://a/g')
        #self.checkJoin(RFC3986_BASE, '/../g','http://a/g')

        self.checkJoin(RFC3986_BASE, 'g.','http://a/b/c/g.')
        self.checkJoin(RFC3986_BASE, '.g','http://a/b/c/.g')
        self.checkJoin(RFC3986_BASE, 'g..','http://a/b/c/g..')
        self.checkJoin(RFC3986_BASE, '..g','http://a/b/c/..g')
        self.checkJoin(RFC3986_BASE, './../g','http://a/b/g')
        self.checkJoin(RFC3986_BASE, './g/.','http://a/b/c/g/')
        self.checkJoin(RFC3986_BASE, 'g/./h','http://a/b/c/g/h')
        self.checkJoin(RFC3986_BASE, 'g/../h','http://a/b/c/h')
        self.checkJoin(RFC3986_BASE, 'g;x=1/./y','http://a/b/c/g;x=1/y')
        self.checkJoin(RFC3986_BASE, 'g;x=1/../y','http://a/b/c/y')
        self.checkJoin(RFC3986_BASE, 'g?y/./x','http://a/b/c/g?y/./x')
        self.checkJoin(RFC3986_BASE, 'g?y/../x','http://a/b/c/g?y/../x')
        self.checkJoin(RFC3986_BASE, 'g#s/./x','http://a/b/c/g#s/./x')
        self.checkJoin(RFC3986_BASE, 'g#s/../x','http://a/b/c/g#s/../x')
        #self.checkJoin(RFC3986_BASE, 'http:g','http:g') # strict parser
        self.checkJoin(RFC3986_BASE, 'http:g','http://a/b/c/g') #relaxed parser

        # Test for issue9721
        self.checkJoin('http://a/b/c/de', ';x','http://a/b/c/;x')

    def test_urljoins(self):
        self.checkJoin(SIMPLE_BASE, 'g:h','g:h')
        self.checkJoin(SIMPLE_BASE, 'http:g','http://a/b/c/g')
        self.checkJoin(SIMPLE_BASE, 'http:','http://a/b/c/d')
        self.checkJoin(SIMPLE_BASE, 'g','http://a/b/c/g')
        self.checkJoin(SIMPLE_BASE, './g','http://a/b/c/g')
        self.checkJoin(SIMPLE_BASE, 'g/','http://a/b/c/g/')
        self.checkJoin(SIMPLE_BASE, '/g','http://a/g')
        self.checkJoin(SIMPLE_BASE, '//g','http://g')
        self.checkJoin(SIMPLE_BASE, '?y','http://a/b/c/d?y')
        self.checkJoin(SIMPLE_BASE, 'g?y','http://a/b/c/g?y')
        self.checkJoin(SIMPLE_BASE, 'g?y/./x','http://a/b/c/g?y/./x')
        self.checkJoin(SIMPLE_BASE, '.','http://a/b/c/')
        self.checkJoin(SIMPLE_BASE, './','http://a/b/c/')
        self.checkJoin(SIMPLE_BASE, '..','http://a/b/')
        self.checkJoin(SIMPLE_BASE, '../','http://a/b/')
        self.checkJoin(SIMPLE_BASE, '../g','http://a/b/g')
        self.checkJoin(SIMPLE_BASE, '../..','http://a/')
        self.checkJoin(SIMPLE_BASE, '../../g','http://a/g')
        self.checkJoin(SIMPLE_BASE, '../../../g','http://a/../g')
        self.checkJoin(SIMPLE_BASE, './../g','http://a/b/g')
        self.checkJoin(SIMPLE_BASE, './g/.','http://a/b/c/g/')
        self.checkJoin(SIMPLE_BASE, '/./g','http://a/./g')
        self.checkJoin(SIMPLE_BASE, 'g/./h','http://a/b/c/g/h')
        self.checkJoin(SIMPLE_BASE, 'g/../h','http://a/b/c/h')
        self.checkJoin(SIMPLE_BASE, 'http:g','http://a/b/c/g')
        self.checkJoin(SIMPLE_BASE, 'http:','http://a/b/c/d')
        self.checkJoin(SIMPLE_BASE, 'http:?y','http://a/b/c/d?y')
        self.checkJoin(SIMPLE_BASE, 'http:g?y','http://a/b/c/g?y')
        self.checkJoin(SIMPLE_BASE, 'http:g?y/./x','http://a/b/c/g?y/./x')
        self.checkJoin('http:///', '..','http:///')
        self.checkJoin('', 'http://a/b/c/g?y/./x','http://a/b/c/g?y/./x')
        self.checkJoin('', 'http://a/./g', 'http://a/./g')
        self.checkJoin('svn://pathtorepo/dir1', 'dir2', 'svn://pathtorepo/dir2')
        self.checkJoin('svn+ssh://pathtorepo/dir1', 'dir2', 'svn+ssh://pathtorepo/dir2')

    def test_RFC2732(self):
        str_cases = [
            ('http://Test.python.org:5432/foo/', 'test.python.org', 5432),
            ('http://12.34.56.78:5432/foo/', '12.34.56.78', 5432),
            ('http://[::1]:5432/foo/', '::1', 5432),
            ('http://[dead:beef::1]:5432/foo/', 'dead:beef::1', 5432),
            ('http://[dead:beef::]:5432/foo/', 'dead:beef::', 5432),
            ('http://[dead:beef:cafe:5417:affe:8FA3:deaf:feed]:5432/foo/',
             'dead:beef:cafe:5417:affe:8fa3:deaf:feed', 5432),
            ('http://[::12.34.56.78]:5432/foo/', '::12.34.56.78', 5432),
            ('http://[::ffff:12.34.56.78]:5432/foo/',
             '::ffff:12.34.56.78', 5432),
            ('http://Test.python.org/foo/', 'test.python.org', None),
            ('http://12.34.56.78/foo/', '12.34.56.78', None),
            ('http://[::1]/foo/', '::1', None),
            ('http://[dead:beef::1]/foo/', 'dead:beef::1', None),
            ('http://[dead:beef::]/foo/', 'dead:beef::', None),
            ('http://[dead:beef:cafe:5417:affe:8FA3:deaf:feed]/foo/',
             'dead:beef:cafe:5417:affe:8fa3:deaf:feed', None),
            ('http://[::12.34.56.78]/foo/', '::12.34.56.78', None),
            ('http://[::ffff:12.34.56.78]/foo/',
             '::ffff:12.34.56.78', None),
            ]
        def _encode(t):
            return t[0].encode('ascii'), t[1].encode('ascii'), t[2]
        bytes_cases = [_encode(x) for x in str_cases]
        for url, hostname, port in str_cases + bytes_cases:
            urlparsed = urllib.parse.urlparse(url)
            self.assertEqual((urlparsed.hostname, urlparsed.port) , (hostname, port))

        str_cases = [
                'http://::12.34.56.78]/',
                'http://[::1/foo/',
                'ftp://[::1/foo/bad]/bad',
                'http://[::1/foo/bad]/bad',
                'http://[::ffff:12.34.56.78']
        bytes_cases = [x.encode('ascii') for x in str_cases]
        for invalid_url in str_cases + bytes_cases:
            self.assertRaises(ValueError, urllib.parse.urlparse, invalid_url)

    def test_urldefrag(self):
        str_cases = [
            ('http://python.org#frag', 'http://python.org', 'frag'),
            ('http://python.org', 'http://python.org', ''),
            ('http://python.org/#frag', 'http://python.org/', 'frag'),
            ('http://python.org/', 'http://python.org/', ''),
            ('http://python.org/?q#frag', 'http://python.org/?q', 'frag'),
            ('http://python.org/?q', 'http://python.org/?q', ''),
            ('http://python.org/p#frag', 'http://python.org/p', 'frag'),
            ('http://python.org/p?q', 'http://python.org/p?q', ''),
            (RFC1808_BASE, 'http://a/b/c/d;p?q', 'f'),
            (RFC2396_BASE, 'http://a/b/c/d;p?q', ''),
        ]
        def _encode(t):
            return type(t)(x.encode('ascii') for x in t)
        bytes_cases = [_encode(x) for x in str_cases]
        for url, defrag, frag in str_cases + bytes_cases:
            result = urllib.parse.urldefrag(url)
            self.assertEqual(result.geturl(), url)
            self.assertEqual(result, (defrag, frag))
            self.assertEqual(result.url, defrag)
            self.assertEqual(result.fragment, frag)

    def test_urlsplit_attributes(self):
        url = "HTTP://WWW.PYTHON.ORG/doc/#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, "http")
        self.assertEqual(p.netloc, "WWW.PYTHON.ORG")
        self.assertEqual(p.path, "/doc/")
        self.assertEqual(p.query, "")
        self.assertEqual(p.fragment, "frag")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, "www.python.org")
        self.assertEqual(p.port, None)
        # geturl() won't return exactly the original URL in this case
        # since the scheme is always case-normalized
        # We handle this by ignoring the first 4 characters of the URL
        self.assertEqual(p.geturl()[4:], url[4:])

        url = "http://User:Pass@www.python.org:080/doc/?query=yes#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, "http")
        self.assertEqual(p.netloc, "User:Pass@www.python.org:080")
        self.assertEqual(p.path, "/doc/")
        self.assertEqual(p.query, "query=yes")
        self.assertEqual(p.fragment, "frag")
        self.assertEqual(p.username, "User")
        self.assertEqual(p.password, "Pass")
        self.assertEqual(p.hostname, "www.python.org")
        self.assertEqual(p.port, 80)
        self.assertEqual(p.geturl(), url)

        # Addressing issue1698, which suggests Username can contain
        # "@" characters.  Though not RFC compliant, many ftp sites allow
        # and request email addresses as usernames.

        url = "http://User@example.com:Pass@www.python.org:080/doc/?query=yes#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, "http")
        self.assertEqual(p.netloc, "User@example.com:Pass@www.python.org:080")
        self.assertEqual(p.path, "/doc/")
        self.assertEqual(p.query, "query=yes")
        self.assertEqual(p.fragment, "frag")
        self.assertEqual(p.username, "User@example.com")
        self.assertEqual(p.password, "Pass")
        self.assertEqual(p.hostname, "www.python.org")
        self.assertEqual(p.port, 80)
        self.assertEqual(p.geturl(), url)

        # And check them all again, only with bytes this time
        url = b"HTTP://WWW.PYTHON.ORG/doc/#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, b"http")
        self.assertEqual(p.netloc, b"WWW.PYTHON.ORG")
        self.assertEqual(p.path, b"/doc/")
        self.assertEqual(p.query, b"")
        self.assertEqual(p.fragment, b"frag")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, b"www.python.org")
        self.assertEqual(p.port, None)
        self.assertEqual(p.geturl()[4:], url[4:])

        url = b"http://User:Pass@www.python.org:080/doc/?query=yes#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, b"http")
        self.assertEqual(p.netloc, b"User:Pass@www.python.org:080")
        self.assertEqual(p.path, b"/doc/")
        self.assertEqual(p.query, b"query=yes")
        self.assertEqual(p.fragment, b"frag")
        self.assertEqual(p.username, b"User")
        self.assertEqual(p.password, b"Pass")
        self.assertEqual(p.hostname, b"www.python.org")
        self.assertEqual(p.port, 80)
        self.assertEqual(p.geturl(), url)

        url = b"http://User@example.com:Pass@www.python.org:080/doc/?query=yes#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.scheme, b"http")
        self.assertEqual(p.netloc, b"User@example.com:Pass@www.python.org:080")
        self.assertEqual(p.path, b"/doc/")
        self.assertEqual(p.query, b"query=yes")
        self.assertEqual(p.fragment, b"frag")
        self.assertEqual(p.username, b"User@example.com")
        self.assertEqual(p.password, b"Pass")
        self.assertEqual(p.hostname, b"www.python.org")
        self.assertEqual(p.port, 80)
        self.assertEqual(p.geturl(), url)

        # Verify an illegal port is returned as None
        url = b"HTTP://WWW.PYTHON.ORG:65536/doc/#frag"
        p = urllib.parse.urlsplit(url)
        self.assertEqual(p.port, None)

    def test_attributes_bad_port(self):
        """Check handling of non-integer ports."""
        p = urllib.parse.urlsplit("http://www.example.net:foo")
        self.assertEqual(p.netloc, "www.example.net:foo")
        self.assertRaises(ValueError, lambda: p.port)

        p = urllib.parse.urlparse("http://www.example.net:foo")
        self.assertEqual(p.netloc, "www.example.net:foo")
        self.assertRaises(ValueError, lambda: p.port)

        # Once again, repeat ourselves to test bytes
        p = urllib.parse.urlsplit(b"http://www.example.net:foo")
        self.assertEqual(p.netloc, b"www.example.net:foo")
        self.assertRaises(ValueError, lambda: p.port)

        p = urllib.parse.urlparse(b"http://www.example.net:foo")
        self.assertEqual(p.netloc, b"www.example.net:foo")
        self.assertRaises(ValueError, lambda: p.port)

    def test_attributes_without_netloc(self):
        # This example is straight from RFC 3261.  It looks like it
        # should allow the username, hostname, and port to be filled
        # in, but doesn't.  Since it's a URI and doesn't use the
        # scheme://netloc syntax, the netloc and related attributes
        # should be left empty.
        uri = "sip:alice@atlanta.com;maddr=239.255.255.1;ttl=15"
        p = urllib.parse.urlsplit(uri)
        self.assertEqual(p.netloc, "")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, None)
        self.assertEqual(p.port, None)
        self.assertEqual(p.geturl(), uri)

        p = urllib.parse.urlparse(uri)
        self.assertEqual(p.netloc, "")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, None)
        self.assertEqual(p.port, None)
        self.assertEqual(p.geturl(), uri)

        # You guessed it, repeating the test with bytes input
        uri = b"sip:alice@atlanta.com;maddr=239.255.255.1;ttl=15"
        p = urllib.parse.urlsplit(uri)
        self.assertEqual(p.netloc, b"")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, None)
        self.assertEqual(p.port, None)
        self.assertEqual(p.geturl(), uri)

        p = urllib.parse.urlparse(uri)
        self.assertEqual(p.netloc, b"")
        self.assertEqual(p.username, None)
        self.assertEqual(p.password, None)
        self.assertEqual(p.hostname, None)
        self.assertEqual(p.port, None)
        self.assertEqual(p.geturl(), uri)

    def test_noslash(self):
        # Issue 1637: http://foo.com?query is legal
        self.assertEqual(urllib.parse.urlparse("http://example.com?blahblah=/foo"),
                         ('http', 'example.com', '', '', 'blahblah=/foo', ''))
        self.assertEqual(urllib.parse.urlparse(b"http://example.com?blahblah=/foo"),
                         (b'http', b'example.com', b'', b'', b'blahblah=/foo', b''))

    def test_withoutscheme(self):
        # Test urlparse without scheme
        # Issue 754016: urlparse goes wrong with IP:port without scheme
        # RFC 1808 specifies that netloc should start with //, urlparse expects
        # the same, otherwise it classifies the portion of url as path.
        self.assertEqual(urllib.parse.urlparse("path"),
                ('','','path','','',''))
        self.assertEqual(urllib.parse.urlparse("//www.python.org:80"),
                ('','www.python.org:80','','','',''))
        self.assertEqual(urllib.parse.urlparse("http://www.python.org:80"),
                ('http','www.python.org:80','','','',''))
        # Repeat for bytes input
        self.assertEqual(urllib.parse.urlparse(b"path"),
                (b'',b'',b'path',b'',b'',b''))
        self.assertEqual(urllib.parse.urlparse(b"//www.python.org:80"),
                (b'',b'www.python.org:80',b'',b'',b'',b''))
        self.assertEqual(urllib.parse.urlparse(b"http://www.python.org:80"),
                (b'http',b'www.python.org:80',b'',b'',b'',b''))

    def test_portseparator(self):
        # Issue 754016 makes changes for port separator ':' from scheme separator
        self.assertEqual(urllib.parse.urlparse("path:80"),
                ('','','path:80','','',''))
        self.assertEqual(urllib.parse.urlparse("http:"),('http','','','','',''))
        self.assertEqual(urllib.parse.urlparse("https:"),('https','','','','',''))
        self.assertEqual(urllib.parse.urlparse("http://www.python.org:80"),
                ('http','www.python.org:80','','','',''))
        # As usual, need to check bytes input as well
        self.assertEqual(urllib.parse.urlparse(b"path:80"),
                (b'',b'',b'path:80',b'',b'',b''))
        self.assertEqual(urllib.parse.urlparse(b"http:"),(b'http',b'',b'',b'',b'',b''))
        self.assertEqual(urllib.parse.urlparse(b"https:"),(b'https',b'',b'',b'',b'',b''))
        self.assertEqual(urllib.parse.urlparse(b"http://www.python.org:80"),
                (b'http',b'www.python.org:80',b'',b'',b'',b''))

    def test_usingsys(self):
        # Issue 3314: sys module is used in the error
        self.assertRaises(TypeError, urllib.parse.urlencode, "foo")

    def test_anyscheme(self):
        # Issue 7904: s3://foo.com/stuff has netloc "foo.com".
        self.assertEqual(urllib.parse.urlparse("s3://foo.com/stuff"),
                         ('s3', 'foo.com', '/stuff', '', '', ''))
        self.assertEqual(urllib.parse.urlparse("x-newscheme://foo.com/stuff"),
                         ('x-newscheme', 'foo.com', '/stuff', '', '', ''))
        self.assertEqual(urllib.parse.urlparse("x-newscheme://foo.com/stuff?query#fragment"),
                         ('x-newscheme', 'foo.com', '/stuff', '', 'query', 'fragment'))
        self.assertEqual(urllib.parse.urlparse("x-newscheme://foo.com/stuff?query"),
                         ('x-newscheme', 'foo.com', '/stuff', '', 'query', ''))

        # And for bytes...
        self.assertEqual(urllib.parse.urlparse(b"s3://foo.com/stuff"),
                         (b's3', b'foo.com', b'/stuff', b'', b'', b''))
        self.assertEqual(urllib.parse.urlparse(b"x-newscheme://foo.com/stuff"),
                         (b'x-newscheme', b'foo.com', b'/stuff', b'', b'', b''))
        self.assertEqual(urllib.parse.urlparse(b"x-newscheme://foo.com/stuff?query#fragment"),
                         (b'x-newscheme', b'foo.com', b'/stuff', b'', b'query', b'fragment'))
        self.assertEqual(urllib.parse.urlparse(b"x-newscheme://foo.com/stuff?query"),
                         (b'x-newscheme', b'foo.com', b'/stuff', b'', b'query', b''))

    def test_mixed_types_rejected(self):
        # Several functions that process either strings or ASCII encoded bytes
        # accept multiple arguments. Check they reject mixed type input
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlparse("www.python.org", b"http")
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlparse(b"www.python.org", "http")
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlsplit("www.python.org", b"http")
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlsplit(b"www.python.org", "http")
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlunparse(( b"http", "www.python.org","","","",""))
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlunparse(("http", b"www.python.org","","","",""))
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlunsplit((b"http", "www.python.org","","",""))
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urlunsplit(("http", b"www.python.org","","",""))
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urljoin("http://python.org", b"http://python.org")
        with self.assertRaisesRegex(TypeError, "Cannot mix str"):
            urllib.parse.urljoin(b"http://python.org", "http://python.org")

    def _check_result_type(self, str_type):
        num_args = len(str_type._fields)
        bytes_type = str_type._encoded_counterpart
        self.assertIs(bytes_type._decoded_counterpart, str_type)
        str_args = ('',) * num_args
        bytes_args = (b'',) * num_args
        str_result = str_type(*str_args)
        bytes_result = bytes_type(*bytes_args)
        encoding = 'ascii'
        errors = 'strict'
        self.assertEqual(str_result, str_args)
        self.assertEqual(bytes_result.decode(), str_args)
        self.assertEqual(bytes_result.decode(), str_result)
        self.assertEqual(bytes_result.decode(encoding), str_args)
        self.assertEqual(bytes_result.decode(encoding), str_result)
        self.assertEqual(bytes_result.decode(encoding, errors), str_args)
        self.assertEqual(bytes_result.decode(encoding, errors), str_result)
        self.assertEqual(bytes_result, bytes_args)
        self.assertEqual(str_result.encode(), bytes_args)
        self.assertEqual(str_result.encode(), bytes_result)
        self.assertEqual(str_result.encode(encoding), bytes_args)
        self.assertEqual(str_result.encode(encoding), bytes_result)
        self.assertEqual(str_result.encode(encoding, errors), bytes_args)
        self.assertEqual(str_result.encode(encoding, errors), bytes_result)

    def test_result_pairs(self):
        # Check encoding and decoding between result pairs
        result_types = [
          urllib.parse.DefragResult,
          urllib.parse.SplitResult,
          urllib.parse.ParseResult,
        ]
        for result_type in result_types:
            self._check_result_type(result_type)

    def test_parse_qs_encoding(self):
        result = urllib.parse.parse_qs("key=\u0141%E9", encoding="latin-1")
        self.assertEqual(result, {'key': ['\u0141\xE9']})
        result = urllib.parse.parse_qs("key=\u0141%C3%A9", encoding="utf-8")
        self.assertEqual(result, {'key': ['\u0141\xE9']})
        result = urllib.parse.parse_qs("key=\u0141%C3%A9", encoding="ascii")
        self.assertEqual(result, {'key': ['\u0141\ufffd\ufffd']})
        result = urllib.parse.parse_qs("key=\u0141%E9-", encoding="ascii")
        self.assertEqual(result, {'key': ['\u0141\ufffd-']})
        result = urllib.parse.parse_qs("key=\u0141%E9-", encoding="ascii",
                                                          errors="ignore")
        self.assertEqual(result, {'key': ['\u0141-']})

    def test_parse_qsl_encoding(self):
        result = urllib.parse.parse_qsl("key=\u0141%E9", encoding="latin-1")
        self.assertEqual(result, [('key', '\u0141\xE9')])
        result = urllib.parse.parse_qsl("key=\u0141%C3%A9", encoding="utf-8")
        self.assertEqual(result, [('key', '\u0141\xE9')])
        result = urllib.parse.parse_qsl("key=\u0141%C3%A9", encoding="ascii")
        self.assertEqual(result, [('key', '\u0141\ufffd\ufffd')])
        result = urllib.parse.parse_qsl("key=\u0141%E9-", encoding="ascii")
        self.assertEqual(result, [('key', '\u0141\ufffd-')])
        result = urllib.parse.parse_qsl("key=\u0141%E9-", encoding="ascii",
                                                          errors="ignore")
        self.assertEqual(result, [('key', '\u0141-')])

    def test_splitnport(self):
        # Normal cases are exercised by other tests; ensure that we also
        # catch cases with no port specified. (testcase ensuring coverage)
        result = urllib.parse.splitnport('parrot:88')
        self.assertEqual(result, ('parrot', 88))
        result = urllib.parse.splitnport('parrot')
        self.assertEqual(result, ('parrot', -1))
        result = urllib.parse.splitnport('parrot', 55)
        self.assertEqual(result, ('parrot', 55))
        result = urllib.parse.splitnport('parrot:')
        self.assertEqual(result, ('parrot', None))

    def test_splitquery(self):
        # Normal cases are exercised by other tests; ensure that we also
        # catch cases with no port specified (testcase ensuring coverage)
        result = urllib.parse.splitquery('http://python.org/fake?foo=bar')
        self.assertEqual(result, ('http://python.org/fake', 'foo=bar'))
        result = urllib.parse.splitquery('http://python.org/fake?foo=bar?')
        self.assertEqual(result, ('http://python.org/fake?foo=bar', ''))
        result = urllib.parse.splitquery('http://python.org/fake')
        self.assertEqual(result, ('http://python.org/fake', None))

    def test_splitvalue(self):
        # Normal cases are exercised by other tests; test pathological cases
        # with no key/value pairs. (testcase ensuring coverage)
        result = urllib.parse.splitvalue('foo=bar')
        self.assertEqual(result, ('foo', 'bar'))
        result = urllib.parse.splitvalue('foo=')
        self.assertEqual(result, ('foo', ''))
        result = urllib.parse.splitvalue('foobar')
        self.assertEqual(result, ('foobar', None))

    def test_to_bytes(self):
        result = urllib.parse.to_bytes('http://www.python.org')
        self.assertEqual(result, 'http://www.python.org')
        self.assertRaises(UnicodeError, urllib.parse.to_bytes,
                          'http://www.python.org/medi\u00e6val')

    def test_urlencode_sequences(self):
        # Other tests incidentally urlencode things; test non-covered cases:
        # Sequence and object values.
        result = urllib.parse.urlencode({'a': [1, 2], 'b': (3, 4, 5)}, True)
        # we cannot rely on ordering here
        assert set(result.split('&')) == {'a=1', 'a=2', 'b=3', 'b=4', 'b=5'}

        class Trivial:
            def __str__(self):
                return 'trivial'

        result = urllib.parse.urlencode({'a': Trivial()}, True)
        self.assertEqual(result, 'a=trivial')

    def test_quote_from_bytes(self):
        self.assertRaises(TypeError, urllib.parse.quote_from_bytes, 'foo')
        result = urllib.parse.quote_from_bytes(b'archaeological arcana')
        self.assertEqual(result, 'archaeological%20arcana')
        result = urllib.parse.quote_from_bytes(b'')
        self.assertEqual(result, '')

    def test_unquote_to_bytes(self):
        result = urllib.parse.unquote_to_bytes('abc%20def')
        self.assertEqual(result, b'abc def')
        result = urllib.parse.unquote_to_bytes('')
        self.assertEqual(result, b'')

    def test_quote_errors(self):
        self.assertRaises(TypeError, urllib.parse.quote, b'foo',
                          encoding='utf-8')
        self.assertRaises(TypeError, urllib.parse.quote, b'foo', errors='strict')

    def test_issue14072(self):
        p1 = urllib.parse.urlsplit('tel:+31-641044153')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '+31-641044153')
        p2 = urllib.parse.urlsplit('tel:+31641044153')
        self.assertEqual(p2.scheme, 'tel')
        self.assertEqual(p2.path, '+31641044153')
        # assert the behavior for urlparse
        p1 = urllib.parse.urlparse('tel:+31-641044153')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '+31-641044153')
        p2 = urllib.parse.urlparse('tel:+31641044153')
        self.assertEqual(p2.scheme, 'tel')
        self.assertEqual(p2.path, '+31641044153')

    def test_telurl_params(self):
        p1 = urllib.parse.urlparse('tel:123-4;phone-context=+1-650-516')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '123-4')
        self.assertEqual(p1.params, 'phone-context=+1-650-516')

        p1 = urllib.parse.urlparse('tel:+1-201-555-0123')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '+1-201-555-0123')
        self.assertEqual(p1.params, '')

        p1 = urllib.parse.urlparse('tel:7042;phone-context=example.com')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '7042')
        self.assertEqual(p1.params, 'phone-context=example.com')

        p1 = urllib.parse.urlparse('tel:863-1234;phone-context=+1-914-555')
        self.assertEqual(p1.scheme, 'tel')
        self.assertEqual(p1.path, '863-1234')
        self.assertEqual(p1.params, 'phone-context=+1-914-555')


def test_main():
    support.run_unittest(UrlParseTestCase)

if __name__ == "__main__":
    test_main()
> /* Exception occurred */ WHY_RERAISE = 0x0004, /* Exception re-raised by 'finally' */ WHY_RETURN = 0x0008, /* 'return' statement */ WHY_BREAK = 0x0010, /* 'break' statement */ WHY_CONTINUE = 0x0020, /* 'continue' statement */ WHY_YIELD = 0x0040, /* 'yield' operator */ WHY_SILENCED = 0x0080 /* Exception silenced by 'with' */ }; static enum why_code do_raise(PyObject *, PyObject *); static int unpack_iterable(PyObject *, int, int, PyObject **); /* Records whether tracing is on for any thread. Counts the number of threads for which tstate->c_tracefunc is non-NULL, so if the value is 0, we know we don't have to check this thread's c_tracefunc. This speeds up the if statement in PyEval_EvalFrameEx() after fast_next_opcode*/ static int _Py_TracingPossible = 0; /* for manipulating the thread switch and periodic "stuff" - used to be per thread, now just a pair o' globals */ int _Py_CheckInterval = 100; volatile int _Py_Ticker = 0; /* so that we hit a "tick" first thing */ PyObject * PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals) { return PyEval_EvalCodeEx(co, globals, locals, (PyObject **)NULL, 0, (PyObject **)NULL, 0, (PyObject **)NULL, 0, NULL, NULL); } /* Interpreter main loop */ PyObject * PyEval_EvalFrame(PyFrameObject *f) { /* This is for backward compatibility with extension modules that used this API; core interpreter code should call PyEval_EvalFrameEx() */ return PyEval_EvalFrameEx(f, 0); } PyObject * PyEval_EvalFrameEx(PyFrameObject *f, int throwflag) { #ifdef DXPAIRS int lastopcode = 0; #endif register PyObject **stack_pointer; /* Next free slot in value stack */ register unsigned char *next_instr; register int opcode; /* Current opcode */ register int oparg; /* Current opcode argument, if any */ register enum why_code why; /* Reason for block stack unwind */ register int err; /* Error status -- nonzero if error */ register PyObject *x; /* Result object -- NULL if error */ register PyObject *v; /* Temporary objects popped off stack */ register PyObject *w; register PyObject *u; register PyObject *t; register PyObject **fastlocals, **freevars; PyObject *retval = NULL; /* Return value */ PyThreadState *tstate = PyThreadState_GET(); PyCodeObject *co; /* when tracing we set things up so that not (instr_lb <= current_bytecode_offset < instr_ub) is true when the line being executed has changed. The initial values are such as to make this false the first time it is tested. */ int instr_ub = -1, instr_lb = 0, instr_prev = -1; unsigned char *first_instr; PyObject *names; PyObject *consts; #if defined(Py_DEBUG) || defined(LLTRACE) /* Make it easier to find out where we are with a debugger */ char *filename; #endif /* Computed GOTOs, or the-optimization-commonly-but-improperly-known-as-"threaded code" using gcc's labels-as-values extension (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html). The traditional bytecode evaluation loop uses a "switch" statement, which decent compilers will optimize as a single indirect branch instruction combined with a lookup table of jump addresses. However, since the indirect jump instruction is shared by all opcodes, the CPU will have a hard time making the right prediction for where to jump next (actually, it will be always wrong except in the uncommon case of a sequence of several identical opcodes). "Threaded code" in contrast, uses an explicit jump table and an explicit indirect jump instruction at the end of each opcode. Since the jump instruction is at a different address for each opcode, the CPU will make a separate prediction for each of these instructions, which is equivalent to predicting the second opcode of each opcode pair. These predictions have a much better chance to turn out valid, especially in small bytecode loops. A mispredicted branch on a modern CPU flushes the whole pipeline and can cost several CPU cycles (depending on the pipeline depth), and potentially many more instructions (depending on the pipeline width). A correctly predicted branch, however, is nearly free. At the time of this writing, the "threaded code" version is up to 15-20% faster than the normal "switch" version, depending on the compiler and the CPU architecture. We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined, because it would render the measurements invalid. NOTE: care must be taken that the compiler doesn't try to "optimize" the indirect jumps by sharing them between all opcodes. Such optimizations can be disabled on gcc by using the -fno-gcse flag (or possibly -fno-crossjumping). */ #if defined(USE_COMPUTED_GOTOS) && defined(DYNAMIC_EXECUTION_PROFILE) #undef USE_COMPUTED_GOTOS #endif #ifdef USE_COMPUTED_GOTOS /* Import the static jump table */ #include "opcode_targets.h" /* This macro is used when several opcodes defer to the same implementation (e.g. SETUP_LOOP, SETUP_FINALLY) */ #define TARGET_WITH_IMPL(op, impl) \ TARGET_##op: \ opcode = op; \ if (HAS_ARG(op)) \ oparg = NEXTARG(); \ case op: \ goto impl; \ #define TARGET(op) \ TARGET_##op: \ opcode = op; \ if (HAS_ARG(op)) \ oparg = NEXTARG(); \ case op: #define DISPATCH() \ { \ /* Avoid multiple loads from _Py_Ticker despite `volatile` */ \ int _tick = _Py_Ticker - 1; \ _Py_Ticker = _tick; \ if (_tick >= 0) { \ FAST_DISPATCH(); \ } \ continue; \ } #ifdef LLTRACE #define FAST_DISPATCH() \ { \ if (!lltrace && !_Py_TracingPossible) { \ f->f_lasti = INSTR_OFFSET(); \ goto *opcode_targets[*next_instr++]; \ } \ goto fast_next_opcode; \ } #else #define FAST_DISPATCH() \ { \ if (!_Py_TracingPossible) { \ f->f_lasti = INSTR_OFFSET(); \ goto *opcode_targets[*next_instr++]; \ } \ goto fast_next_opcode; \ } #endif #else #define TARGET(op) \ case op: #define TARGET_WITH_IMPL(op, impl) \ /* silence compiler warnings about `impl` unused */ \ if (0) goto impl; \ case op: #define DISPATCH() continue #define FAST_DISPATCH() goto fast_next_opcode #endif /* Tuple access macros */ #ifndef Py_DEBUG #define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i)) #else #define GETITEM(v, i) PyTuple_GetItem((v), (i)) #endif #ifdef WITH_TSC /* Use Pentium timestamp counter to mark certain events: inst0 -- beginning of switch statement for opcode dispatch inst1 -- end of switch statement (may be skipped) loop0 -- the top of the mainloop loop1 -- place where control returns again to top of mainloop (may be skipped) intr1 -- beginning of long interruption intr2 -- end of long interruption Many opcodes call out to helper C functions. In some cases, the time in those functions should be counted towards the time for the opcode, but not in all cases. For example, a CALL_FUNCTION opcode calls another Python function; there's no point in charge all the bytecode executed by the called function to the caller. It's hard to make a useful judgement statically. In the presence of operator overloading, it's impossible to tell if a call will execute new Python code or not. It's a case-by-case judgement. I'll use intr1 for the following cases: IMPORT_STAR IMPORT_FROM CALL_FUNCTION (and friends) */ uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0; int ticked = 0; READ_TIMESTAMP(inst0); READ_TIMESTAMP(inst1); READ_TIMESTAMP(loop0); READ_TIMESTAMP(loop1); /* shut up the compiler */ opcode = 0; #endif /* Code access macros */ #define INSTR_OFFSET() ((int)(next_instr - first_instr)) #define NEXTOP() (*next_instr++) #define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2]) #define PEEKARG() ((next_instr[2]<<8) + next_instr[1]) #define JUMPTO(x) (next_instr = first_instr + (x)) #define JUMPBY(x) (next_instr += (x)) /* OpCode prediction macros Some opcodes tend to come in pairs thus making it possible to predict the second code when the first is run. For example, COMPARE_OP is often followed by JUMP_IF_FALSE or JUMP_IF_TRUE. And, those opcodes are often followed by a POP_TOP. Verifying the prediction costs a single high-speed test of a register variable against a constant. If the pairing was good, then the processor's own internal branch predication has a high likelihood of success, resulting in a nearly zero-overhead transition to the next opcode. A successful prediction saves a trip through the eval-loop including its two unpredictable branches, the HAS_ARG test and the switch-case. Combined with the processor's internal branch prediction, a successful PREDICT has the effect of making the two opcodes run as if they were a single new opcode with the bodies combined. If collecting opcode statistics, your choices are to either keep the predictions turned-on and interpret the results as if some opcodes had been combined or turn-off predictions so that the opcode frequency counter updates for both opcodes. Opcode prediction is disabled with threaded code, since the latter allows the CPU to record separate branch prediction information for each opcode. */ #if defined(DYNAMIC_EXECUTION_PROFILE) || defined(USE_COMPUTED_GOTOS) #define PREDICT(op) if (0) goto PRED_##op #define PREDICTED(op) PRED_##op: #define PREDICTED_WITH_ARG(op) PRED_##op: #else #define PREDICT(op) if (*next_instr == op) goto PRED_##op #define PREDICTED(op) PRED_##op: next_instr++ #define PREDICTED_WITH_ARG(op) PRED_##op: oparg = PEEKARG(); next_instr += 3 #endif /* Stack manipulation macros */ /* The stack can grow at most MAXINT deep, as co_nlocals and co_stacksize are ints. */ #define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack)) #define EMPTY() (STACK_LEVEL() == 0) #define TOP() (stack_pointer[-1]) #define SECOND() (stack_pointer[-2]) #define THIRD() (stack_pointer[-3]) #define FOURTH() (stack_pointer[-4]) #define SET_TOP(v) (stack_pointer[-1] = (v)) #define SET_SECOND(v) (stack_pointer[-2] = (v)) #define SET_THIRD(v) (stack_pointer[-3] = (v)) #define SET_FOURTH(v) (stack_pointer[-4] = (v)) #define BASIC_STACKADJ(n) (stack_pointer += n) #define BASIC_PUSH(v) (*stack_pointer++ = (v)) #define BASIC_POP() (*--stack_pointer) #ifdef LLTRACE #define PUSH(v) { (void)(BASIC_PUSH(v), \ lltrace && prtrace(TOP(), "push")); \ assert(STACK_LEVEL() <= co->co_stacksize); } #define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \ BASIC_POP()) #define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \ lltrace && prtrace(TOP(), "stackadj")); \ assert(STACK_LEVEL() <= co->co_stacksize); } #define EXT_POP(STACK_POINTER) ((void)(lltrace && \ prtrace((STACK_POINTER)[-1], "ext_pop")), \ *--(STACK_POINTER)) #else #define PUSH(v) BASIC_PUSH(v) #define POP() BASIC_POP() #define STACKADJ(n) BASIC_STACKADJ(n) #define EXT_POP(STACK_POINTER) (*--(STACK_POINTER)) #endif /* Local variable macros */ #define GETLOCAL(i) (fastlocals[i]) /* The SETLOCAL() macro must not DECREF the local variable in-place and then store the new value; it must copy the old value to a temporary value, then store the new value, and then DECREF the temporary value. This is because it is possible that during the DECREF the frame is accessed by other code (e.g. a __del__ method or gc.collect()) and the variable would be pointing to already-freed memory. */ #define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \ GETLOCAL(i) = value; \ Py_XDECREF(tmp); } while (0) #define UNWIND_BLOCK(b) \ while (STACK_LEVEL() > (b)->b_level) { \ PyObject *v = POP(); \ Py_XDECREF(v); \ } #define UNWIND_EXCEPT_HANDLER(b) \ { \ PyObject *type, *value, *traceback; \ assert(STACK_LEVEL() >= (b)->b_level + 3); \ while (STACK_LEVEL() > (b)->b_level + 3) { \ value = POP(); \ Py_XDECREF(value); \ } \ type = tstate->exc_type; \ value = tstate->exc_value; \ traceback = tstate->exc_traceback; \ tstate->exc_type = POP(); \ tstate->exc_value = POP(); \ tstate->exc_traceback = POP(); \ Py_XDECREF(type); \ Py_XDECREF(value); \ Py_XDECREF(traceback); \ } #define SAVE_EXC_STATE() \ { \ PyObject *type, *value, *traceback; \ Py_XINCREF(tstate->exc_type); \ Py_XINCREF(tstate->exc_value); \ Py_XINCREF(tstate->exc_traceback); \ type = f->f_exc_type; \ value = f->f_exc_value; \ traceback = f->f_exc_traceback; \ f->f_exc_type = tstate->exc_type; \ f->f_exc_value = tstate->exc_value; \ f->f_exc_traceback = tstate->exc_traceback; \ Py_XDECREF(type); \ Py_XDECREF(value); \ Py_XDECREF(traceback); \ } #define SWAP_EXC_STATE() \ { \ PyObject *tmp; \ tmp = tstate->exc_type; \ tstate->exc_type = f->f_exc_type; \ f->f_exc_type = tmp; \ tmp = tstate->exc_value; \ tstate->exc_value = f->f_exc_value; \ f->f_exc_value = tmp; \ tmp = tstate->exc_traceback; \ tstate->exc_traceback = f->f_exc_traceback; \ f->f_exc_traceback = tmp; \ } /* Start of code */ if (f == NULL) return NULL; /* push frame */ if (Py_EnterRecursiveCall("")) return NULL; tstate->frame = f; if (tstate->use_tracing) { if (tstate->c_tracefunc != NULL) { /* tstate->c_tracefunc, if defined, is a function that will be called on *every* entry to a code block. Its return value, if not None, is a function that will be called at the start of each executed line of code. (Actually, the function must return itself in order to continue tracing.) The trace functions are called with three arguments: a pointer to the current frame, a string indicating why the function is called, and an argument which depends on the situation. The global trace function is also called whenever an exception is detected. */ if (call_trace_protected(tstate->c_tracefunc, tstate->c_traceobj, f, PyTrace_CALL, Py_None)) { /* Trace function raised an error */ goto exit_eval_frame; } } if (tstate->c_profilefunc != NULL) { /* Similar for c_profilefunc, except it needn't return itself and isn't called for "line" events */ if (call_trace_protected(tstate->c_profilefunc, tstate->c_profileobj, f, PyTrace_CALL, Py_None)) { /* Profile function raised an error */ goto exit_eval_frame; } } } co = f->f_code; names = co->co_names; consts = co->co_consts; fastlocals = f->f_localsplus; freevars = f->f_localsplus + co->co_nlocals; first_instr = (unsigned char*) PyBytes_AS_STRING(co->co_code); /* An explanation is in order for the next line. f->f_lasti now refers to the index of the last instruction executed. You might think this was obvious from the name, but this wasn't always true before 2.3! PyFrame_New now sets f->f_lasti to -1 (i.e. the index *before* the first instruction) and YIELD_VALUE doesn't fiddle with f_lasti any more. So this does work. Promise. When the PREDICT() macros are enabled, some opcode pairs follow in direct succession without updating f->f_lasti. A successful prediction effectively links the two codes together as if they were a single new opcode; accordingly,f->f_lasti will point to the first code in the pair (for instance, GET_ITER followed by FOR_ITER is effectively a single opcode and f->f_lasti will point at to the beginning of the combined pair.) */ next_instr = first_instr + f->f_lasti + 1; stack_pointer = f->f_stacktop; assert(stack_pointer != NULL); f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */ if (co->co_flags & CO_GENERATOR && !throwflag) { if (f->f_exc_type != NULL && f->f_exc_type != Py_None) { /* We were in an except handler when we left, restore the exception state which was put aside (see YIELD_VALUE). */ SWAP_EXC_STATE(); } else { SAVE_EXC_STATE(); } } #ifdef LLTRACE lltrace = PyDict_GetItemString(f->f_globals, "__lltrace__") != NULL; #endif #if defined(Py_DEBUG) || defined(LLTRACE) filename = _PyUnicode_AsString(co->co_filename); #endif why = WHY_NOT; err = 0; x = Py_None; /* Not a reference, just anything non-NULL */ w = NULL; if (throwflag) { /* support for generator.throw() */ why = WHY_EXCEPTION; goto on_error; } for (;;) { #ifdef WITH_TSC if (inst1 == 0) { /* Almost surely, the opcode executed a break or a continue, preventing inst1 from being set on the way out of the loop. */ READ_TIMESTAMP(inst1); loop1 = inst1; } dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1, intr0, intr1); ticked = 0; inst1 = 0; intr0 = 0; intr1 = 0; READ_TIMESTAMP(loop0); #endif assert(stack_pointer >= f->f_valuestack); /* else underflow */ assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */ /* Do periodic things. Doing this every time through the loop would add too much overhead, so we do it only every Nth instruction. We also do it if ``pendingcalls_to_do'' is set, i.e. when an asynchronous event needs attention (e.g. a signal handler or async I/O handler); see Py_AddPendingCall() and Py_MakePendingCalls() above. */ if (--_Py_Ticker < 0) { if (*next_instr == SETUP_FINALLY) { /* Make the last opcode before a try: finally: block uninterruptible. */ goto fast_next_opcode; } _Py_Ticker = _Py_CheckInterval; tstate->tick_counter++; #ifdef WITH_TSC ticked = 1; #endif if (pendingcalls_to_do) { if (Py_MakePendingCalls() < 0) { why = WHY_EXCEPTION; goto on_error; } if (pendingcalls_to_do) /* MakePendingCalls() didn't succeed. Force early re-execution of this "periodic" code, possibly after a thread switch */ _Py_Ticker = 0; } #ifdef WITH_THREAD if (interpreter_lock) { /* Give another thread a chance */ if (PyThreadState_Swap(NULL) != tstate) Py_FatalError("ceval: tstate mix-up"); PyThread_release_lock(interpreter_lock); /* Other threads may run now */ PyThread_acquire_lock(interpreter_lock, 1); if (PyThreadState_Swap(tstate) != NULL) Py_FatalError("ceval: orphan tstate"); /* Check for thread interrupts */ if (tstate->async_exc != NULL) { x = tstate->async_exc; tstate->async_exc = NULL; PyErr_SetNone(x); Py_DECREF(x); why = WHY_EXCEPTION; goto on_error; } } #endif } fast_next_opcode: f->f_lasti = INSTR_OFFSET(); /* line-by-line tracing support */ if (_Py_TracingPossible && tstate->c_tracefunc != NULL && !tstate->tracing) { /* see maybe_call_line_trace for expository comments */ f->f_stacktop = stack_pointer; err = maybe_call_line_trace(tstate->c_tracefunc, tstate->c_traceobj, f, &instr_lb, &instr_ub, &instr_prev); /* Reload possibly changed frame fields */ JUMPTO(f->f_lasti); if (f->f_stacktop != NULL) { stack_pointer = f->f_stacktop; f->f_stacktop = NULL; } if (err) { /* trace function raised an exception */ goto on_error; } } /* Extract opcode and argument */ opcode = NEXTOP(); oparg = 0; /* allows oparg to be stored in a register because it doesn't have to be remembered across a full loop */ if (HAS_ARG(opcode)) oparg = NEXTARG(); dispatch_opcode: #ifdef DYNAMIC_EXECUTION_PROFILE #ifdef DXPAIRS dxpairs[lastopcode][opcode]++; lastopcode = opcode; #endif dxp[opcode]++; #endif #ifdef LLTRACE /* Instruction tracing */ if (lltrace) { if (HAS_ARG(opcode)) { printf("%d: %d, %d\n", f->f_lasti, opcode, oparg); } else { printf("%d: %d\n", f->f_lasti, opcode); } } #endif /* Main switch on opcode */ READ_TIMESTAMP(inst0); switch (opcode) { /* BEWARE! It is essential that any operation that fails sets either x to NULL, err to nonzero, or why to anything but WHY_NOT, and that no operation that succeeds does this! */ /* case STOP_CODE: this is an error! */ TARGET(NOP) FAST_DISPATCH(); TARGET(LOAD_FAST) x = GETLOCAL(oparg); if (x != NULL) { Py_INCREF(x); PUSH(x); FAST_DISPATCH(); } format_exc_check_arg(PyExc_UnboundLocalError, UNBOUNDLOCAL_ERROR_MSG, PyTuple_GetItem(co->co_varnames, oparg)); break; TARGET(LOAD_CONST) x = GETITEM(consts, oparg); Py_INCREF(x); PUSH(x); FAST_DISPATCH(); PREDICTED_WITH_ARG(STORE_FAST); TARGET(STORE_FAST) v = POP(); SETLOCAL(oparg, v); FAST_DISPATCH(); TARGET(POP_TOP) v = POP(); Py_DECREF(v); FAST_DISPATCH(); TARGET(ROT_TWO) v = TOP(); w = SECOND(); SET_TOP(w); SET_SECOND(v); FAST_DISPATCH(); TARGET(ROT_THREE) v = TOP(); w = SECOND(); x = THIRD(); SET_TOP(w); SET_SECOND(x); SET_THIRD(v); FAST_DISPATCH(); TARGET(ROT_FOUR) u = TOP(); v = SECOND(); w = THIRD(); x = FOURTH(); SET_TOP(v); SET_SECOND(w); SET_THIRD(x); SET_FOURTH(u); FAST_DISPATCH(); TARGET(DUP_TOP) v = TOP(); Py_INCREF(v); PUSH(v); FAST_DISPATCH(); TARGET(DUP_TOPX) if (oparg == 2) { x = TOP(); Py_INCREF(x); w = SECOND(); Py_INCREF(w); STACKADJ(2); SET_TOP(x); SET_SECOND(w); FAST_DISPATCH(); } else if (oparg == 3) { x = TOP(); Py_INCREF(x); w = SECOND(); Py_INCREF(w); v = THIRD(); Py_INCREF(v); STACKADJ(3); SET_TOP(x); SET_SECOND(w); SET_THIRD(v); FAST_DISPATCH(); } Py_FatalError("invalid argument to DUP_TOPX" " (bytecode corruption?)"); /* Never returns, so don't bother to set why. */ break; TARGET(UNARY_POSITIVE) v = TOP(); x = PyNumber_Positive(v); Py_DECREF(v); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(UNARY_NEGATIVE) v = TOP(); x = PyNumber_Negative(v); Py_DECREF(v); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(UNARY_NOT) v = TOP(); err = PyObject_IsTrue(v); Py_DECREF(v); if (err == 0) { Py_INCREF(Py_True); SET_TOP(Py_True); DISPATCH(); } else if (err > 0) { Py_INCREF(Py_False); SET_TOP(Py_False); err = 0; DISPATCH(); } STACKADJ(-1); break; TARGET(UNARY_INVERT) v = TOP(); x = PyNumber_Invert(v); Py_DECREF(v); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_POWER) w = POP(); v = TOP(); x = PyNumber_Power(v, w, Py_None); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_MULTIPLY) w = POP(); v = TOP(); x = PyNumber_Multiply(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_TRUE_DIVIDE) w = POP(); v = TOP(); x = PyNumber_TrueDivide(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_FLOOR_DIVIDE) w = POP(); v = TOP(); x = PyNumber_FloorDivide(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_MODULO) w = POP(); v = TOP(); if (PyUnicode_CheckExact(v)) x = PyUnicode_Format(v, w); else x = PyNumber_Remainder(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_ADD) w = POP(); v = TOP(); if (PyUnicode_CheckExact(v) && PyUnicode_CheckExact(w)) { x = unicode_concatenate(v, w, f, next_instr); /* unicode_concatenate consumed the ref to v */ goto skip_decref_vx; } else { x = PyNumber_Add(v, w); } Py_DECREF(v); skip_decref_vx: Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_SUBTRACT) w = POP(); v = TOP(); x = PyNumber_Subtract(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_SUBSCR) w = POP(); v = TOP(); x = PyObject_GetItem(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_LSHIFT) w = POP(); v = TOP(); x = PyNumber_Lshift(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_RSHIFT) w = POP(); v = TOP(); x = PyNumber_Rshift(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_AND) w = POP(); v = TOP(); x = PyNumber_And(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_XOR) w = POP(); v = TOP(); x = PyNumber_Xor(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(BINARY_OR) w = POP(); v = TOP(); x = PyNumber_Or(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(LIST_APPEND) w = POP(); v = stack_pointer[-oparg]; err = PyList_Append(v, w); Py_DECREF(w); if (err == 0) { PREDICT(JUMP_ABSOLUTE); DISPATCH(); } break; TARGET(SET_ADD) w = POP(); v = stack_pointer[-oparg]; err = PySet_Add(v, w); Py_DECREF(w); if (err == 0) { PREDICT(JUMP_ABSOLUTE); DISPATCH(); } break; TARGET(INPLACE_POWER) w = POP(); v = TOP(); x = PyNumber_InPlacePower(v, w, Py_None); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_MULTIPLY) w = POP(); v = TOP(); x = PyNumber_InPlaceMultiply(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_TRUE_DIVIDE) w = POP(); v = TOP(); x = PyNumber_InPlaceTrueDivide(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_FLOOR_DIVIDE) w = POP(); v = TOP(); x = PyNumber_InPlaceFloorDivide(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_MODULO) w = POP(); v = TOP(); x = PyNumber_InPlaceRemainder(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_ADD) w = POP(); v = TOP(); if (PyUnicode_CheckExact(v) && PyUnicode_CheckExact(w)) { x = unicode_concatenate(v, w, f, next_instr); /* unicode_concatenate consumed the ref to v */ goto skip_decref_v; } else { x = PyNumber_InPlaceAdd(v, w); } Py_DECREF(v); skip_decref_v: Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_SUBTRACT) w = POP(); v = TOP(); x = PyNumber_InPlaceSubtract(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_LSHIFT) w = POP(); v = TOP(); x = PyNumber_InPlaceLshift(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_RSHIFT) w = POP(); v = TOP(); x = PyNumber_InPlaceRshift(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_AND) w = POP(); v = TOP(); x = PyNumber_InPlaceAnd(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_XOR) w = POP(); v = TOP(); x = PyNumber_InPlaceXor(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(INPLACE_OR) w = POP(); v = TOP(); x = PyNumber_InPlaceOr(v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(STORE_SUBSCR) w = TOP(); v = SECOND(); u = THIRD(); STACKADJ(-3); /* v[w] = u */ err = PyObject_SetItem(v, w, u); Py_DECREF(u); Py_DECREF(v); Py_DECREF(w); if (err == 0) DISPATCH(); break; TARGET(DELETE_SUBSCR) w = TOP(); v = SECOND(); STACKADJ(-2); /* del v[w] */ err = PyObject_DelItem(v, w); Py_DECREF(v); Py_DECREF(w); if (err == 0) DISPATCH(); break; TARGET(PRINT_EXPR) v = POP(); w = PySys_GetObject("displayhook"); if (w == NULL) { PyErr_SetString(PyExc_RuntimeError, "lost sys.displayhook"); err = -1; x = NULL; } if (err == 0) { x = PyTuple_Pack(1, v); if (x == NULL) err = -1; } if (err == 0) { w = PyEval_CallObject(w, x); Py_XDECREF(w); if (w == NULL) err = -1; } Py_DECREF(v); Py_XDECREF(x); break; #ifdef CASE_TOO_BIG default: switch (opcode) { #endif TARGET(RAISE_VARARGS) v = w = NULL; switch (oparg) { case 2: v = POP(); /* cause */ case 1: w = POP(); /* exc */ case 0: /* Fallthrough */ why = do_raise(w, v); break; default: PyErr_SetString(PyExc_SystemError, "bad RAISE_VARARGS oparg"); why = WHY_EXCEPTION; break; } break; TARGET(STORE_LOCALS) x = POP(); v = f->f_locals; Py_XDECREF(v); f->f_locals = x; DISPATCH(); TARGET(RETURN_VALUE) retval = POP(); why = WHY_RETURN; goto fast_block_end; TARGET(YIELD_VALUE) retval = POP(); f->f_stacktop = stack_pointer; why = WHY_YIELD; /* Put aside the current exception state and restore that of the calling frame. This only serves when "yield" is used inside an except handler. */ SWAP_EXC_STATE(); goto fast_yield; TARGET(POP_EXCEPT) { PyTryBlock *b = PyFrame_BlockPop(f); if (b->b_type != EXCEPT_HANDLER) { PyErr_SetString(PyExc_SystemError, "popped block is not an except handler"); why = WHY_EXCEPTION; break; } UNWIND_EXCEPT_HANDLER(b); } DISPATCH(); TARGET(POP_BLOCK) { PyTryBlock *b = PyFrame_BlockPop(f); UNWIND_BLOCK(b); } DISPATCH(); PREDICTED(END_FINALLY); TARGET(END_FINALLY) v = POP(); if (PyLong_Check(v)) { why = (enum why_code) PyLong_AS_LONG(v); assert(why != WHY_YIELD); if (why == WHY_RETURN || why == WHY_CONTINUE) retval = POP(); if (why == WHY_SILENCED) { /* An exception was silenced by 'with', we must manually unwind the EXCEPT_HANDLER block which was created when the exception was caught, otherwise the stack will be in an inconsistent state. */ PyTryBlock *b = PyFrame_BlockPop(f); if (b->b_type != EXCEPT_HANDLER) { PyErr_SetString(PyExc_SystemError, "popped block is not an except handler"); why = WHY_EXCEPTION; } else { UNWIND_EXCEPT_HANDLER(b); why = WHY_NOT; } } } else if (PyExceptionClass_Check(v)) { w = POP(); u = POP(); PyErr_Restore(v, w, u); why = WHY_RERAISE; break; } else if (v != Py_None) { PyErr_SetString(PyExc_SystemError, "'finally' pops bad exception"); why = WHY_EXCEPTION; } Py_DECREF(v); break; TARGET(LOAD_BUILD_CLASS) x = PyDict_GetItemString(f->f_builtins, "__build_class__"); if (x == NULL) { PyErr_SetString(PyExc_ImportError, "__build_class__ not found"); break; } Py_INCREF(x); PUSH(x); break; TARGET(STORE_NAME) w = GETITEM(names, oparg); v = POP(); if ((x = f->f_locals) != NULL) { if (PyDict_CheckExact(x)) err = PyDict_SetItem(x, w, v); else err = PyObject_SetItem(x, w, v); Py_DECREF(v); if (err == 0) DISPATCH(); break; } PyErr_Format(PyExc_SystemError, "no locals found when storing %R", w); break; TARGET(DELETE_NAME) w = GETITEM(names, oparg); if ((x = f->f_locals) != NULL) { if ((err = PyObject_DelItem(x, w)) != 0) format_exc_check_arg(PyExc_NameError, NAME_ERROR_MSG, w); break; } PyErr_Format(PyExc_SystemError, "no locals when deleting %R", w); break; PREDICTED_WITH_ARG(UNPACK_SEQUENCE); TARGET(UNPACK_SEQUENCE) v = POP(); if (PyTuple_CheckExact(v) && PyTuple_GET_SIZE(v) == oparg) { PyObject **items = \ ((PyTupleObject *)v)->ob_item; while (oparg--) { w = items[oparg]; Py_INCREF(w); PUSH(w); } Py_DECREF(v); DISPATCH(); } else if (PyList_CheckExact(v) && PyList_GET_SIZE(v) == oparg) { PyObject **items = \ ((PyListObject *)v)->ob_item; while (oparg--) { w = items[oparg]; Py_INCREF(w); PUSH(w); } } else if (unpack_iterable(v, oparg, -1, stack_pointer + oparg)) { stack_pointer += oparg; } else { /* unpack_iterable() raised an exception */ why = WHY_EXCEPTION; } Py_DECREF(v); break; TARGET(UNPACK_EX) { int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8); v = POP(); if (unpack_iterable(v, oparg & 0xFF, oparg >> 8, stack_pointer + totalargs)) { stack_pointer += totalargs; } else { why = WHY_EXCEPTION; } Py_DECREF(v); break; } TARGET(STORE_ATTR) w = GETITEM(names, oparg); v = TOP(); u = SECOND(); STACKADJ(-2); err = PyObject_SetAttr(v, w, u); /* v.w = u */ Py_DECREF(v); Py_DECREF(u); if (err == 0) DISPATCH(); break; TARGET(DELETE_ATTR) w = GETITEM(names, oparg); v = POP(); err = PyObject_SetAttr(v, w, (PyObject *)NULL); /* del v.w */ Py_DECREF(v); break; TARGET(STORE_GLOBAL) w = GETITEM(names, oparg); v = POP(); err = PyDict_SetItem(f->f_globals, w, v); Py_DECREF(v); if (err == 0) DISPATCH(); break; TARGET(DELETE_GLOBAL) w = GETITEM(names, oparg); if ((err = PyDict_DelItem(f->f_globals, w)) != 0) format_exc_check_arg( PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w); break; TARGET(LOAD_NAME) w = GETITEM(names, oparg); if ((v = f->f_locals) == NULL) { PyErr_Format(PyExc_SystemError, "no locals when loading %R", w); why = WHY_EXCEPTION; break; } if (PyDict_CheckExact(v)) { x = PyDict_GetItem(v, w); Py_XINCREF(x); } else { x = PyObject_GetItem(v, w); if (x == NULL && PyErr_Occurred()) { if (!PyErr_ExceptionMatches( PyExc_KeyError)) break; PyErr_Clear(); } } if (x == NULL) { x = PyDict_GetItem(f->f_globals, w); if (x == NULL) { x = PyDict_GetItem(f->f_builtins, w); if (x == NULL) { format_exc_check_arg( PyExc_NameError, NAME_ERROR_MSG, w); break; } } Py_INCREF(x); } PUSH(x); DISPATCH(); TARGET(LOAD_GLOBAL) w = GETITEM(names, oparg); if (PyUnicode_CheckExact(w)) { /* Inline the PyDict_GetItem() calls. WARNING: this is an extreme speed hack. Do not try this at home. */ long hash = ((PyUnicodeObject *)w)->hash; if (hash != -1) { PyDictObject *d; PyDictEntry *e; d = (PyDictObject *)(f->f_globals); e = d->ma_lookup(d, w, hash); if (e == NULL) { x = NULL; break; } x = e->me_value; if (x != NULL) { Py_INCREF(x); PUSH(x); DISPATCH(); } d = (PyDictObject *)(f->f_builtins); e = d->ma_lookup(d, w, hash); if (e == NULL) { x = NULL; break; } x = e->me_value; if (x != NULL) { Py_INCREF(x); PUSH(x); DISPATCH(); } goto load_global_error; } } /* This is the un-inlined version of the code above */ x = PyDict_GetItem(f->f_globals, w); if (x == NULL) { x = PyDict_GetItem(f->f_builtins, w); if (x == NULL) { load_global_error: format_exc_check_arg( PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w); break; } } Py_INCREF(x); PUSH(x); DISPATCH(); TARGET(DELETE_FAST) x = GETLOCAL(oparg); if (x != NULL) { SETLOCAL(oparg, NULL); DISPATCH(); } format_exc_check_arg( PyExc_UnboundLocalError, UNBOUNDLOCAL_ERROR_MSG, PyTuple_GetItem(co->co_varnames, oparg) ); break; TARGET(LOAD_CLOSURE) x = freevars[oparg]; Py_INCREF(x); PUSH(x); if (x != NULL) DISPATCH(); break; TARGET(LOAD_DEREF) x = freevars[oparg]; w = PyCell_Get(x); if (w != NULL) { PUSH(w); DISPATCH(); } err = -1; /* Don't stomp existing exception */ if (PyErr_Occurred()) break; if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) { v = PyTuple_GET_ITEM(co->co_cellvars, oparg); format_exc_check_arg( PyExc_UnboundLocalError, UNBOUNDLOCAL_ERROR_MSG, v); } else { v = PyTuple_GET_ITEM(co->co_freevars, oparg - PyTuple_GET_SIZE(co->co_cellvars)); format_exc_check_arg(PyExc_NameError, UNBOUNDFREE_ERROR_MSG, v); } break; TARGET(STORE_DEREF) w = POP(); x = freevars[oparg]; PyCell_Set(x, w); Py_DECREF(w); DISPATCH(); TARGET(BUILD_TUPLE) x = PyTuple_New(oparg); if (x != NULL) { for (; --oparg >= 0;) { w = POP(); PyTuple_SET_ITEM(x, oparg, w); } PUSH(x); DISPATCH(); } break; TARGET(BUILD_LIST) x = PyList_New(oparg); if (x != NULL) { for (; --oparg >= 0;) { w = POP(); PyList_SET_ITEM(x, oparg, w); } PUSH(x); DISPATCH(); } break; TARGET(BUILD_SET) x = PySet_New(NULL); if (x != NULL) { for (; --oparg >= 0;) { w = POP(); if (err == 0) err = PySet_Add(x, w); Py_DECREF(w); } if (err != 0) { Py_DECREF(x); break; } PUSH(x); DISPATCH(); } break; TARGET(BUILD_MAP) x = _PyDict_NewPresized((Py_ssize_t)oparg); PUSH(x); if (x != NULL) DISPATCH(); break; TARGET(STORE_MAP) w = TOP(); /* key */ u = SECOND(); /* value */ v = THIRD(); /* dict */ STACKADJ(-2); assert (PyDict_CheckExact(v)); err = PyDict_SetItem(v, w, u); /* v[w] = u */ Py_DECREF(u); Py_DECREF(w); if (err == 0) DISPATCH(); break; TARGET(MAP_ADD) w = TOP(); /* key */ u = SECOND(); /* value */ STACKADJ(-2); v = stack_pointer[-oparg]; /* dict */ assert (PyDict_CheckExact(v)); err = PyDict_SetItem(v, w, u); /* v[w] = u */ Py_DECREF(u); Py_DECREF(w); if (err == 0) { PREDICT(JUMP_ABSOLUTE); DISPATCH(); } break; TARGET(LOAD_ATTR) w = GETITEM(names, oparg); v = TOP(); x = PyObject_GetAttr(v, w); Py_DECREF(v); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(COMPARE_OP) w = POP(); v = TOP(); x = cmp_outcome(oparg, v, w); Py_DECREF(v); Py_DECREF(w); SET_TOP(x); if (x == NULL) break; PREDICT(POP_JUMP_IF_FALSE); PREDICT(POP_JUMP_IF_TRUE); DISPATCH(); TARGET(IMPORT_NAME) w = GETITEM(names, oparg); x = PyDict_GetItemString(f->f_builtins, "__import__"); if (x == NULL) { PyErr_SetString(PyExc_ImportError, "__import__ not found"); break; } Py_INCREF(x); v = POP(); u = TOP(); if (PyLong_AsLong(u) != -1 || PyErr_Occurred()) w = PyTuple_Pack(5, w, f->f_globals, f->f_locals == NULL ? Py_None : f->f_locals, v, u); else w = PyTuple_Pack(4, w, f->f_globals, f->f_locals == NULL ? Py_None : f->f_locals, v); Py_DECREF(v); Py_DECREF(u); if (w == NULL) { u = POP(); Py_DECREF(x); x = NULL; break; } READ_TIMESTAMP(intr0); v = x; x = PyEval_CallObject(v, w); Py_DECREF(v); READ_TIMESTAMP(intr1); Py_DECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(IMPORT_STAR) v = POP(); PyFrame_FastToLocals(f); if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals found during 'import *'"); break; } READ_TIMESTAMP(intr0); err = import_all_from(x, v); READ_TIMESTAMP(intr1); PyFrame_LocalsToFast(f, 0); Py_DECREF(v); if (err == 0) DISPATCH(); break; TARGET(IMPORT_FROM) w = GETITEM(names, oparg); v = TOP(); READ_TIMESTAMP(intr0); x = import_from(v, w); READ_TIMESTAMP(intr1); PUSH(x); if (x != NULL) DISPATCH(); break; TARGET(JUMP_FORWARD) JUMPBY(oparg); FAST_DISPATCH(); PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE); TARGET(POP_JUMP_IF_FALSE) w = POP(); if (w == Py_True) { Py_DECREF(w); FAST_DISPATCH(); } if (w == Py_False) { Py_DECREF(w); JUMPTO(oparg); FAST_DISPATCH(); } err = PyObject_IsTrue(w); Py_DECREF(w); if (err > 0) err = 0; else if (err == 0) JUMPTO(oparg); else break; DISPATCH(); PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE); TARGET(POP_JUMP_IF_TRUE) w = POP(); if (w == Py_False) { Py_DECREF(w); FAST_DISPATCH(); } if (w == Py_True) { Py_DECREF(w); JUMPTO(oparg); FAST_DISPATCH(); } err = PyObject_IsTrue(w); Py_DECREF(w); if (err > 0) { err = 0; JUMPTO(oparg); } else if (err == 0) ; else break; DISPATCH(); TARGET(JUMP_IF_FALSE_OR_POP) w = TOP(); if (w == Py_True) { STACKADJ(-1); Py_DECREF(w); FAST_DISPATCH(); } if (w == Py_False) { JUMPTO(oparg); FAST_DISPATCH(); } err = PyObject_IsTrue(w); if (err > 0) { STACKADJ(-1); Py_DECREF(w); err = 0; } else if (err == 0) JUMPTO(oparg); else break; DISPATCH(); TARGET(JUMP_IF_TRUE_OR_POP) w = TOP(); if (w == Py_False) { STACKADJ(-1); Py_DECREF(w); FAST_DISPATCH(); } if (w == Py_True) { JUMPTO(oparg); FAST_DISPATCH(); } err = PyObject_IsTrue(w); if (err > 0) { err = 0; JUMPTO(oparg); } else if (err == 0) { STACKADJ(-1); Py_DECREF(w); } else break; DISPATCH(); PREDICTED_WITH_ARG(JUMP_ABSOLUTE); TARGET(JUMP_ABSOLUTE) JUMPTO(oparg); #if FAST_LOOPS /* Enabling this path speeds-up all while and for-loops by bypassing the per-loop checks for signals. By default, this should be turned-off because it prevents detection of a control-break in tight loops like "while 1: pass". Compile with this option turned-on when you need the speed-up and do not need break checking inside tight loops (ones that contain only instructions ending with FAST_DISPATCH). */ FAST_DISPATCH(); #else DISPATCH(); #endif TARGET(GET_ITER) /* before: [obj]; after [getiter(obj)] */ v = TOP(); x = PyObject_GetIter(v); Py_DECREF(v); if (x != NULL) { SET_TOP(x); PREDICT(FOR_ITER); DISPATCH(); } STACKADJ(-1); break; PREDICTED_WITH_ARG(FOR_ITER); TARGET(FOR_ITER) /* before: [iter]; after: [iter, iter()] *or* [] */ v = TOP(); x = (*v->ob_type->tp_iternext)(v); if (x != NULL) { PUSH(x); PREDICT(STORE_FAST); PREDICT(UNPACK_SEQUENCE); DISPATCH(); } if (PyErr_Occurred()) { if (!PyErr_ExceptionMatches( PyExc_StopIteration)) break; PyErr_Clear(); } /* iterator ended normally */ x = v = POP(); Py_DECREF(v); JUMPBY(oparg); DISPATCH(); TARGET(BREAK_LOOP) why = WHY_BREAK; goto fast_block_end; TARGET(CONTINUE_LOOP) retval = PyLong_FromLong(oparg); if (!retval) { x = NULL; break; } why = WHY_CONTINUE; goto fast_block_end; TARGET_WITH_IMPL(SETUP_LOOP, _setup_finally) TARGET_WITH_IMPL(SETUP_EXCEPT, _setup_finally) TARGET(SETUP_FINALLY) _setup_finally: /* NOTE: If you add any new block-setup opcodes that are not try/except/finally handlers, you may need to update the PyGen_NeedsFinalizing() function. */ PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg, STACK_LEVEL()); DISPATCH(); TARGET(WITH_CLEANUP) { /* At the top of the stack are 1-3 values indicating how/why we entered the finally clause: - TOP = None - (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval - TOP = WHY_*; no retval below it - (TOP, SECOND, THIRD) = exc_info() Below them is EXIT, the context.__exit__ bound method. In the last case, we must call EXIT(TOP, SECOND, THIRD) otherwise we must call EXIT(None, None, None) In all cases, we remove EXIT from the stack, leaving the rest in the same order. In addition, if the stack represents an exception, *and* the function call returns a 'true' value, we "zap" this information, to prevent END_FINALLY from re-raising the exception. (But non-local gotos should still be resumed.) */ PyObject *exit_func = POP(); u = TOP(); if (u == Py_None) { v = w = Py_None; } else if (PyLong_Check(u)) { u = v = w = Py_None; } else { v = SECOND(); w = THIRD(); } /* XXX Not the fastest way to call it... */ x = PyObject_CallFunctionObjArgs(exit_func, u, v, w, NULL); Py_DECREF(exit_func); if (x == NULL) break; /* Go to error exit */ if (u != Py_None) err = PyObject_IsTrue(x); else err = 0; Py_DECREF(x); if (err < 0) break; /* Go to error exit */ else if (err > 0) { err = 0; /* There was an exception and a True return */ STACKADJ(-2); SET_TOP(PyLong_FromLong((long) WHY_SILENCED)); Py_DECREF(u); Py_DECREF(v); Py_DECREF(w); } PREDICT(END_FINALLY); break; } TARGET(CALL_FUNCTION) { PyObject **sp; PCALL(PCALL_ALL); sp = stack_pointer; #ifdef WITH_TSC x = call_function(&sp, oparg, &intr0, &intr1); #else x = call_function(&sp, oparg); #endif stack_pointer = sp; PUSH(x); if (x != NULL) DISPATCH(); break; } TARGET_WITH_IMPL(CALL_FUNCTION_VAR, _call_function_var_kw) TARGET_WITH_IMPL(CALL_FUNCTION_KW, _call_function_var_kw) TARGET(CALL_FUNCTION_VAR_KW) _call_function_var_kw: { int na = oparg & 0xff; int nk = (oparg>>8) & 0xff; int flags = (opcode - CALL_FUNCTION) & 3; int n = na + 2 * nk; PyObject **pfunc, *func, **sp; PCALL(PCALL_ALL); if (flags & CALL_FLAG_VAR) n++; if (flags & CALL_FLAG_KW) n++; pfunc = stack_pointer - n - 1; func = *pfunc; if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) { PyObject *self = PyMethod_GET_SELF(func); Py_INCREF(self); func = PyMethod_GET_FUNCTION(func); Py_INCREF(func); Py_DECREF(*pfunc); *pfunc = self; na++; n++; } else Py_INCREF(func); sp = stack_pointer; READ_TIMESTAMP(intr0); x = ext_do_call(func, &sp, flags, na, nk); READ_TIMESTAMP(intr1); stack_pointer = sp; Py_DECREF(func); while (stack_pointer > pfunc) { w = POP(); Py_DECREF(w); } PUSH(x); if (x != NULL) DISPATCH(); break; } TARGET_WITH_IMPL(MAKE_CLOSURE, _make_function) TARGET(MAKE_FUNCTION) _make_function: { int posdefaults = oparg & 0xff; int kwdefaults = (oparg>>8) & 0xff; int num_annotations = (oparg >> 16) & 0x7fff; v = POP(); /* code object */ x = PyFunction_New(v, f->f_globals); Py_DECREF(v); if (x != NULL && opcode == MAKE_CLOSURE) { v = POP(); if (PyFunction_SetClosure(x, v) != 0) { /* Can't happen unless bytecode is corrupt. */ why = WHY_EXCEPTION; } Py_DECREF(v); } if (x != NULL && num_annotations > 0) { Py_ssize_t name_ix; u = POP(); /* names of args with annotations */ v = PyDict_New(); if (v == NULL) { Py_DECREF(x); x = NULL; break; } name_ix = PyTuple_Size(u); assert(num_annotations == name_ix+1); while (name_ix > 0) { --name_ix; t = PyTuple_GET_ITEM(u, name_ix); w = POP(); /* XXX(nnorwitz): check for errors */ PyDict_SetItem(v, t, w); Py_DECREF(w); } if (PyFunction_SetAnnotations(x, v) != 0) { /* Can't happen unless PyFunction_SetAnnotations changes. */ why = WHY_EXCEPTION; } Py_DECREF(v); Py_DECREF(u); } /* XXX Maybe this should be a separate opcode? */ if (x != NULL && posdefaults > 0) { v = PyTuple_New(posdefaults); if (v == NULL) { Py_DECREF(x); x = NULL; break; } while (--posdefaults >= 0) { w = POP(); PyTuple_SET_ITEM(v, posdefaults, w); } if (PyFunction_SetDefaults(x, v) != 0) { /* Can't happen unless PyFunction_SetDefaults changes. */ why = WHY_EXCEPTION; } Py_DECREF(v); } if (x != NULL && kwdefaults > 0) { v = PyDict_New(); if (v == NULL) { Py_DECREF(x); x = NULL; break; } while (--kwdefaults >= 0) { w = POP(); /* default value */ u = POP(); /* kw only arg name */ /* XXX(nnorwitz): check for errors */ PyDict_SetItem(v, u, w); Py_DECREF(w); Py_DECREF(u); } if (PyFunction_SetKwDefaults(x, v) != 0) { /* Can't happen unless PyFunction_SetKwDefaults changes. */ why = WHY_EXCEPTION; } Py_DECREF(v); } PUSH(x); break; } TARGET(BUILD_SLICE) if (oparg == 3) w = POP(); else w = NULL; v = POP(); u = TOP(); x = PySlice_New(u, v, w); Py_DECREF(u); Py_DECREF(v); Py_XDECREF(w); SET_TOP(x); if (x != NULL) DISPATCH(); break; TARGET(EXTENDED_ARG) opcode = NEXTOP(); oparg = oparg<<16 | NEXTARG(); goto dispatch_opcode; #ifdef USE_COMPUTED_GOTOS _unknown_opcode: #endif default: fprintf(stderr, "XXX lineno: %d, opcode: %d\n", PyCode_Addr2Line(f->f_code, f->f_lasti), opcode); PyErr_SetString(PyExc_SystemError, "unknown opcode"); why = WHY_EXCEPTION; break; #ifdef CASE_TOO_BIG } #endif } /* switch */ on_error: READ_TIMESTAMP(inst1); /* Quickly continue if no error occurred */ if (why == WHY_NOT) { if (err == 0 && x != NULL) { #ifdef CHECKEXC /* This check is expensive! */ if (PyErr_Occurred()) fprintf(stderr, "XXX undetected error\n"); else { #endif READ_TIMESTAMP(loop1); continue; /* Normal, fast path */ #ifdef CHECKEXC } #endif } why = WHY_EXCEPTION; x = Py_None; err = 0; } /* Double-check exception status */ if (why == WHY_EXCEPTION || why == WHY_RERAISE) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_SystemError, "error return without exception set"); why = WHY_EXCEPTION; } } #ifdef CHECKEXC else { /* This check is expensive! */ if (PyErr_Occurred()) { char buf[128]; sprintf(buf, "Stack unwind with exception " "set and why=%d", why); Py_FatalError(buf); } } #endif /* Log traceback info if this is a real exception */ if (why == WHY_EXCEPTION) { PyTraceBack_Here(f); if (tstate->c_tracefunc != NULL) call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, f); } /* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */ if (why == WHY_RERAISE) why = WHY_EXCEPTION; /* Unwind stacks if a (pseudo) exception occurred */ fast_block_end: while (why != WHY_NOT && f->f_iblock > 0) { PyTryBlock *b = PyFrame_BlockPop(f); assert(why != WHY_YIELD); if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) { /* For a continue inside a try block, don't pop the block for the loop. */ PyFrame_BlockSetup(f, b->b_type, b->b_handler, b->b_level); why = WHY_NOT; JUMPTO(PyLong_AS_LONG(retval)); Py_DECREF(retval); break; } if (b->b_type == EXCEPT_HANDLER) { UNWIND_EXCEPT_HANDLER(b); continue; } UNWIND_BLOCK(b); if (b->b_type == SETUP_LOOP && why == WHY_BREAK) { why = WHY_NOT; JUMPTO(b->b_handler); break; } if (why == WHY_EXCEPTION && (b->b_type == SETUP_EXCEPT || b->b_type == SETUP_FINALLY)) { PyObject *exc, *val, *tb; int handler = b->b_handler; /* Beware, this invalidates all b->b_* fields */ PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL()); PUSH(tstate->exc_traceback); PUSH(tstate->exc_value); if (tstate->exc_type != NULL) { PUSH(tstate->exc_type); } else { Py_INCREF(Py_None); PUSH(Py_None); } PyErr_Fetch(&exc, &val, &tb); /* Make the raw exception data available to the handler, so a program can emulate the Python main loop. */ PyErr_NormalizeException( &exc, &val, &tb); PyException_SetTraceback(val, tb); Py_INCREF(exc); tstate->exc_type = exc; Py_INCREF(val); tstate->exc_value = val; tstate->exc_traceback = tb; if (tb == NULL) tb = Py_None; Py_INCREF(tb); PUSH(tb); PUSH(val); PUSH(exc); why = WHY_NOT; JUMPTO(handler); break; } if (b->b_type == SETUP_FINALLY) { if (why & (WHY_RETURN | WHY_CONTINUE)) PUSH(retval); PUSH(PyLong_FromLong((long)why)); why = WHY_NOT; JUMPTO(b->b_handler); break; } } /* unwind stack */ /* End the loop if we still have an error (or return) */ if (why != WHY_NOT) break; READ_TIMESTAMP(loop1); } /* main loop */ assert(why != WHY_YIELD); /* Pop remaining stack entries. */ while (!EMPTY()) { v = POP(); Py_XDECREF(v); } if (why != WHY_RETURN) retval = NULL; fast_yield: if (tstate->use_tracing) { if (tstate->c_tracefunc) { if (why == WHY_RETURN || why == WHY_YIELD) { if (call_trace(tstate->c_tracefunc, tstate->c_traceobj, f, PyTrace_RETURN, retval)) { Py_XDECREF(retval); retval = NULL; why = WHY_EXCEPTION; } } else if (why == WHY_EXCEPTION) { call_trace_protected(tstate->c_tracefunc, tstate->c_traceobj, f, PyTrace_RETURN, NULL); } } if (tstate->c_profilefunc) { if (why == WHY_EXCEPTION) call_trace_protected(tstate->c_profilefunc, tstate->c_profileobj, f, PyTrace_RETURN, NULL); else if (call_trace(tstate->c_profilefunc, tstate->c_profileobj, f, PyTrace_RETURN, retval)) { Py_XDECREF(retval); retval = NULL; why = WHY_EXCEPTION; } } } /* pop frame */ exit_eval_frame: Py_LeaveRecursiveCall(); tstate->frame = f->f_back; return retval; } /* This is gonna seem *real weird*, but if you put some other code between PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust the test in the if statements in Misc/gdbinit (pystack and pystackv). */ PyObject * PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args, int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount, PyObject *kwdefs, PyObject *closure) { register PyFrameObject *f; register PyObject *retval = NULL; register PyObject **fastlocals, **freevars; PyThreadState *tstate = PyThreadState_GET(); PyObject *x, *u; if (globals == NULL) { PyErr_SetString(PyExc_SystemError, "PyEval_EvalCodeEx: NULL globals"); return NULL; } assert(tstate != NULL); assert(globals != NULL); f = PyFrame_New(tstate, co, globals, locals); if (f == NULL) return NULL; fastlocals = f->f_localsplus; freevars = f->f_localsplus + co->co_nlocals; if (co->co_argcount > 0 || co->co_kwonlyargcount > 0 || co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) { int i; int n = argcount; PyObject *kwdict = NULL; if (co->co_flags & CO_VARKEYWORDS) { kwdict = PyDict_New(); if (kwdict == NULL) goto fail; i = co->co_argcount + co->co_kwonlyargcount; if (co->co_flags & CO_VARARGS) i++; SETLOCAL(i, kwdict); } if (argcount > co->co_argcount) { if (!(co->co_flags & CO_VARARGS)) { PyErr_Format(PyExc_TypeError, "%U() takes %s %d " "%spositional argument%s (%d given)", co->co_name, defcount ? "at most" : "exactly", co->co_argcount, kwcount ? "non-keyword " : "", co->co_argcount == 1 ? "" : "s", argcount); goto fail; } n = co->co_argcount; } for (i = 0; i < n; i++) { x = args[i]; Py_INCREF(x); SETLOCAL(i, x); } if (co->co_flags & CO_VARARGS) { u = PyTuple_New(argcount - n); if (u == NULL) goto fail; SETLOCAL(co->co_argcount + co->co_kwonlyargcount, u); for (i = n; i < argcount; i++) { x = args[i]; Py_INCREF(x); PyTuple_SET_ITEM(u, i-n, x); } } for (i = 0; i < kwcount; i++) { PyObject **co_varnames; PyObject *keyword = kws[2*i]; PyObject *value = kws[2*i + 1]; int j; if (keyword == NULL || !PyUnicode_Check(keyword)) { PyErr_Format(PyExc_TypeError, "%U() keywords must be strings", co->co_name); goto fail; } /* Speed hack: do raw pointer compares. As names are normally interned this should almost always hit. */ co_varnames = PySequence_Fast_ITEMS(co->co_varnames); for (j = 0; j < co->co_argcount + co->co_kwonlyargcount; j++) { PyObject *nm = co_varnames[j]; if (nm == keyword) goto kw_found; } /* Slow fallback, just in case */ for (j = 0; j < co->co_argcount + co->co_kwonlyargcount; j++) { PyObject *nm = co_varnames[j]; int cmp = PyObject_RichCompareBool( keyword, nm, Py_EQ); if (cmp > 0) goto kw_found; else if (cmp < 0) goto fail; } /* Check errors from Compare */ if (PyErr_Occurred()) goto fail; if (j >= co->co_argcount + co->co_kwonlyargcount) { if (kwdict == NULL) { PyErr_Format(PyExc_TypeError, "%U() got an unexpected " "keyword argument '%S'", co->co_name, keyword); goto fail; } PyDict_SetItem(kwdict, keyword, value); continue; } kw_found: if (GETLOCAL(j) != NULL) { PyErr_Format(PyExc_TypeError, "%U() got multiple " "values for keyword " "argument '%S'", co->co_name, keyword); goto fail; } Py_INCREF(value); SETLOCAL(j, value); } if (co->co_kwonlyargcount > 0) { for (i = co->co_argcount; i < co->co_argcount + co->co_kwonlyargcount; i++) { PyObject *name, *def; if (GETLOCAL(i) != NULL) continue; name = PyTuple_GET_ITEM(co->co_varnames, i); def = NULL; if (kwdefs != NULL) def = PyDict_GetItem(kwdefs, name); if (def != NULL) { Py_INCREF(def); SETLOCAL(i, def); continue; } PyErr_Format(PyExc_TypeError, "%U() needs keyword-only argument %S", co->co_name, name); goto fail; } } if (argcount < co->co_argcount) { int m = co->co_argcount - defcount; for (i = argcount; i < m; i++) { if (GETLOCAL(i) == NULL) { PyErr_Format(PyExc_TypeError, "%U() takes %s %d " "%spositional argument%s " "(%d given)", co->co_name, ((co->co_flags & CO_VARARGS) || defcount) ? "at least" : "exactly", m, kwcount ? "non-keyword " : "", m == 1 ? "" : "s", i); goto fail; } } if (n > m) i = n - m; else i = 0; for (; i < defcount; i++) { if (GETLOCAL(m+i) == NULL) { PyObject *def = defs[i]; Py_INCREF(def); SETLOCAL(m+i, def); } } } } else { if (argcount > 0 || kwcount > 0) { PyErr_Format(PyExc_TypeError, "%U() takes no arguments (%d given)", co->co_name, argcount + kwcount); goto fail; } } /* Allocate and initialize storage for cell vars, and copy free vars into frame. This isn't too efficient right now. */ if (PyTuple_GET_SIZE(co->co_cellvars)) { int i, j, nargs, found; Py_UNICODE *cellname, *argname; PyObject *c; nargs = co->co_argcount + co->co_kwonlyargcount; if (co->co_flags & CO_VARARGS) nargs++; if (co->co_flags & CO_VARKEYWORDS) nargs++; /* Initialize each cell var, taking into account cell vars that are initialized from arguments. Should arrange for the compiler to put cellvars that are arguments at the beginning of the cellvars list so that we can march over it more efficiently? */ for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) { cellname = PyUnicode_AS_UNICODE( PyTuple_GET_ITEM(co->co_cellvars, i)); found = 0; for (j = 0; j < nargs; j++) { argname = PyUnicode_AS_UNICODE( PyTuple_GET_ITEM(co->co_varnames, j)); if (Py_UNICODE_strcmp(cellname, argname) == 0) { c = PyCell_New(GETLOCAL(j)); if (c == NULL) goto fail; GETLOCAL(co->co_nlocals + i) = c; found = 1; break; } } if (found == 0) { c = PyCell_New(NULL); if (c == NULL) goto fail; SETLOCAL(co->co_nlocals + i, c); } } } if (PyTuple_GET_SIZE(co->co_freevars)) { int i; for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) { PyObject *o = PyTuple_GET_ITEM(closure, i); Py_INCREF(o); freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o; } } if (co->co_flags & CO_GENERATOR) { /* Don't need to keep the reference to f_back, it will be set * when the generator is resumed. */ Py_XDECREF(f->f_back); f->f_back = NULL; PCALL(PCALL_GENERATOR); /* Create a new generator that owns the ready to run frame * and return that as the value. */ return PyGen_New(f); } retval = PyEval_EvalFrameEx(f,0); fail: /* Jump here from prelude on failure */ /* decref'ing the frame can cause __del__ methods to get invoked, which can call back into Python. While we're done with the current Python frame (f), the associated C stack is still in use, so recursion_depth must be boosted for the duration. */ assert(tstate != NULL); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return retval; } /* Logic for the raise statement (too complicated for inlining). This *consumes* a reference count to each of its arguments. */ static enum why_code do_raise(PyObject *exc, PyObject *cause) { PyObject *type = NULL, *value = NULL; if (exc == NULL) { /* Reraise */ PyThreadState *tstate = PyThreadState_GET(); PyObject *tb; type = tstate->exc_type; value = tstate->exc_value; tb = tstate->exc_traceback; if (type == Py_None) { PyErr_SetString(PyExc_RuntimeError, "No active exception to reraise"); return WHY_EXCEPTION; } Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); PyErr_Restore(type, value, tb); return WHY_RERAISE; } /* We support the following forms of raise: raise raise <instance> raise <type> */ if (PyExceptionClass_Check(exc)) { type = exc; value = PyObject_CallObject(exc, NULL); if (value == NULL) goto raise_error; } else if (PyExceptionInstance_Check(exc)) { value = exc; type = PyExceptionInstance_Class(exc); Py_INCREF(type); } else { /* Not something you can raise. You get an exception anyway, just not what you specified :-) */ Py_DECREF(exc); PyErr_SetString(PyExc_TypeError, "exceptions must derive from BaseException"); goto raise_error; } if (cause) { PyObject *fixed_cause; if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto raise_error; Py_DECREF(cause); } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto raise_error; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); /* PyErr_SetObject incref's its arguments */ Py_XDECREF(value); Py_XDECREF(type); return WHY_EXCEPTION; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(cause); return WHY_EXCEPTION; } /* Iterate v argcnt times and store the results on the stack (via decreasing sp). Return 1 for success, 0 if error. If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack with a variable target. */ static int unpack_iterable(PyObject *v, int argcnt, int argcntafter, PyObject **sp) { int i = 0, j = 0; Py_ssize_t ll = 0; PyObject *it; /* iter(v) */ PyObject *w; PyObject *l = NULL; /* variable list */ assert(v != NULL); it = PyObject_GetIter(v); if (it == NULL) goto Error; for (; i < argcnt; i++) { w = PyIter_Next(it); if (w == NULL) { /* Iterator done, via error or exhaustion. */ if (!PyErr_Occurred()) { PyErr_Format(PyExc_ValueError, "need more than %d value%s to unpack", i, i == 1 ? "" : "s"); } goto Error; } *--sp = w; } if (argcntafter == -1) { /* We better have exhausted the iterator now. */ w = PyIter_Next(it); if (w == NULL) { if (PyErr_Occurred()) goto Error; Py_DECREF(it); return 1; } Py_DECREF(w); PyErr_SetString(PyExc_ValueError, "too many values to unpack"); goto Error; } l = PySequence_List(it); if (l == NULL) goto Error; *--sp = l; i++; ll = PyList_GET_SIZE(l); if (ll < argcntafter) { PyErr_Format(PyExc_ValueError, "need more than %zd values to unpack", argcnt + ll); goto Error; } /* Pop the "after-variable" args off the list. */ for (j = argcntafter; j > 0; j--, i++) { *--sp = PyList_GET_ITEM(l, ll - j); } /* Resize the list. */ Py_SIZE(l) = ll - argcntafter; Py_DECREF(it); return 1; Error: for (; i > 0; i--, sp++) Py_DECREF(*sp); Py_XDECREF(it); return 0; } #ifdef LLTRACE static int prtrace(PyObject *v, char *str) { printf("%s ", str); if (PyObject_Print(v, stdout, 0) != 0) PyErr_Clear(); /* Don't know what else to do */ printf("\n"); return 1; } #endif static void call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f) { PyObject *type, *value, *traceback, *arg; int err; PyErr_Fetch(&type, &value, &traceback); if (value == NULL) { value = Py_None; Py_INCREF(value); } arg = PyTuple_Pack(3, type, value, traceback); if (arg == NULL) { PyErr_Restore(type, value, traceback); return; } err = call_trace(func, self, f, PyTrace_EXCEPTION, arg); Py_DECREF(arg); if (err == 0) PyErr_Restore(type, value, traceback); else { Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(traceback); } } static int call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame, int what, PyObject *arg) { PyObject *type, *value, *traceback; int err; PyErr_Fetch(&type, &value, &traceback); err = call_trace(func, obj, frame, what, arg); if (err == 0) { PyErr_Restore(type, value, traceback); return 0; } else { Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(traceback); return -1; } } static int call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame, int what, PyObject *arg) { register PyThreadState *tstate = frame->f_tstate; int result; if (tstate->tracing) return 0; tstate->tracing++; tstate->use_tracing = 0; result = func(obj, frame, what, arg); tstate->use_tracing = ((tstate->c_tracefunc != NULL) || (tstate->c_profilefunc != NULL)); tstate->tracing--; return result; } PyObject * _PyEval_CallTracing(PyObject *func, PyObject *args) { PyFrameObject *frame = PyEval_GetFrame(); PyThreadState *tstate = frame->f_tstate; int save_tracing = tstate->tracing; int save_use_tracing = tstate->use_tracing; PyObject *result; tstate->tracing = 0; tstate->use_tracing = ((tstate->c_tracefunc != NULL) || (tstate->c_profilefunc != NULL)); result = PyObject_Call(func, args, NULL); tstate->tracing = save_tracing; tstate->use_tracing = save_use_tracing; return result; } static int maybe_call_line_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame, int *instr_lb, int *instr_ub, int *instr_prev) { int result = 0; /* If the last instruction executed isn't in the current instruction window, reset the window. If the last instruction happens to fall at the start of a line or if it represents a jump backwards, call the trace function. */ if ((frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub)) { int line; PyAddrPair bounds; line = PyCode_CheckLineNumber(frame->f_code, frame->f_lasti, &bounds); if (line >= 0) { frame->f_lineno = line; result = call_trace(func, obj, frame, PyTrace_LINE, Py_None); } *instr_lb = bounds.ap_lower; *instr_ub = bounds.ap_upper; } else if (frame->f_lasti <= *instr_prev) { result = call_trace(func, obj, frame, PyTrace_LINE, Py_None); } *instr_prev = frame->f_lasti; return result; } void PyEval_SetProfile(Py_tracefunc func, PyObject *arg) { PyThreadState *tstate = PyThreadState_GET(); PyObject *temp = tstate->c_profileobj; Py_XINCREF(arg); tstate->c_profilefunc = NULL; tstate->c_profileobj = NULL; /* Must make sure that tracing is not ignored if 'temp' is freed */ tstate->use_tracing = tstate->c_tracefunc != NULL; Py_XDECREF(temp); tstate->c_profilefunc = func; tstate->c_profileobj = arg; /* Flag that tracing or profiling is turned on */ tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL); } void PyEval_SetTrace(Py_tracefunc func, PyObject *arg) { PyThreadState *tstate = PyThreadState_GET(); PyObject *temp = tstate->c_traceobj; _Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL); Py_XINCREF(arg); tstate->c_tracefunc = NULL; tstate->c_traceobj = NULL; /* Must make sure that profiling is not ignored if 'temp' is freed */ tstate->use_tracing = tstate->c_profilefunc != NULL; Py_XDECREF(temp); tstate->c_tracefunc = func; tstate->c_traceobj = arg; /* Flag that tracing or profiling is turned on */ tstate->use_tracing = ((func != NULL) || (tstate->c_profilefunc != NULL)); } PyObject * PyEval_GetBuiltins(void) { PyFrameObject *current_frame = PyEval_GetFrame(); if (current_frame == NULL) return PyThreadState_GET()->interp->builtins; else return current_frame->f_builtins; } PyObject * PyEval_GetLocals(void) { PyFrameObject *current_frame = PyEval_GetFrame(); if (current_frame == NULL) return NULL; PyFrame_FastToLocals(current_frame); return current_frame->f_locals; } PyObject * PyEval_GetGlobals(void) { PyFrameObject *current_frame = PyEval_GetFrame(); if (current_frame == NULL) return NULL; else return current_frame->f_globals; } PyFrameObject * PyEval_GetFrame(void) { PyThreadState *tstate = PyThreadState_GET(); return _PyThreadState_GetFrame(tstate); } int PyEval_MergeCompilerFlags(PyCompilerFlags *cf) { PyFrameObject *current_frame = PyEval_GetFrame(); int result = cf->cf_flags != 0; if (current_frame != NULL) { const int codeflags = current_frame->f_code->co_flags; const int compilerflags = codeflags & PyCF_MASK; if (compilerflags) { result = 1; cf->cf_flags |= compilerflags; } #if 0 /* future keyword */ if (codeflags & CO_GENERATOR_ALLOWED) { result = 1; cf->cf_flags |= CO_GENERATOR_ALLOWED; } #endif } return result; } /* External interface to call any callable object. The arg must be a tuple or NULL. */ #undef PyEval_CallObject /* for backward compatibility: export this interface */ PyObject * PyEval_CallObject(PyObject *func, PyObject *arg) { return PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL); } #define PyEval_CallObject(func,arg) \ PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL) PyObject * PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; if (arg == NULL) { arg = PyTuple_New(0); if (arg == NULL) return NULL; } else if (!PyTuple_Check(arg)) { PyErr_SetString(PyExc_TypeError, "argument list must be a tuple"); return NULL; } else Py_INCREF(arg); if (kw != NULL && !PyDict_Check(kw)) { PyErr_SetString(PyExc_TypeError, "keyword list must be a dictionary"); Py_DECREF(arg); return NULL; } result = PyObject_Call(func, arg, kw); Py_DECREF(arg); return result; } const char * PyEval_GetFuncName(PyObject *func) { if (PyMethod_Check(func)) return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func)); else if (PyFunction_Check(func)) return _PyUnicode_AsString(((PyFunctionObject*)func)->func_name); else if (PyCFunction_Check(func)) return ((PyCFunctionObject*)func)->m_ml->ml_name; else return func->ob_type->tp_name; } const char * PyEval_GetFuncDesc(PyObject *func) { if (PyMethod_Check(func)) return "()"; else if (PyFunction_Check(func)) return "()"; else if (PyCFunction_Check(func)) return "()"; else return " object"; } static void err_args(PyObject *func, int flags, int nargs) { if (flags & METH_NOARGS) PyErr_Format(PyExc_TypeError, "%.200s() takes no arguments (%d given)", ((PyCFunctionObject *)func)->m_ml->ml_name, nargs); else PyErr_Format(PyExc_TypeError, "%.200s() takes exactly one argument (%d given)", ((PyCFunctionObject *)func)->m_ml->ml_name, nargs); } #define C_TRACE(x, call) \ if (tstate->use_tracing && tstate->c_profilefunc) { \ if (call_trace(tstate->c_profilefunc, \ tstate->c_profileobj, \ tstate->frame, PyTrace_C_CALL, \ func)) { \ x = NULL; \ } \ else { \ x = call; \ if (tstate->c_profilefunc != NULL) { \ if (x == NULL) { \ call_trace_protected(tstate->c_profilefunc, \ tstate->c_profileobj, \ tstate->frame, PyTrace_C_EXCEPTION, \ func); \ /* XXX should pass (type, value, tb) */ \ } else { \ if (call_trace(tstate->c_profilefunc, \ tstate->c_profileobj, \ tstate->frame, PyTrace_C_RETURN, \ func)) { \ Py_DECREF(x); \ x = NULL; \ } \ } \ } \ } \ } else { \ x = call; \ } static PyObject * call_function(PyObject ***pp_stack, int oparg #ifdef WITH_TSC , uint64* pintr0, uint64* pintr1 #endif ) { int na = oparg & 0xff; int nk = (oparg>>8) & 0xff; int n = na + 2 * nk; PyObject **pfunc = (*pp_stack) - n - 1; PyObject *func = *pfunc; PyObject *x, *w; /* Always dispatch PyCFunction first, because these are presumed to be the most frequent callable object. */ if (PyCFunction_Check(func) && nk == 0) { int flags = PyCFunction_GET_FLAGS(func); PyThreadState *tstate = PyThreadState_GET(); PCALL(PCALL_CFUNCTION); if (flags & (METH_NOARGS | METH_O)) { PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); if (flags & METH_NOARGS && na == 0) { C_TRACE(x, (*meth)(self,NULL)); } else if (flags & METH_O && na == 1) { PyObject *arg = EXT_POP(*pp_stack); C_TRACE(x, (*meth)(self,arg)); Py_DECREF(arg); } else { err_args(func, flags, na); x = NULL; } } else { PyObject *callargs; callargs = load_args(pp_stack, na); READ_TIMESTAMP(*pintr0); C_TRACE(x, PyCFunction_Call(func,callargs,NULL)); READ_TIMESTAMP(*pintr1); Py_XDECREF(callargs); } } else { if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) { /* optimize access to bound methods */ PyObject *self = PyMethod_GET_SELF(func); PCALL(PCALL_METHOD); PCALL(PCALL_BOUND_METHOD); Py_INCREF(self); func = PyMethod_GET_FUNCTION(func); Py_INCREF(func); Py_DECREF(*pfunc); *pfunc = self; na++; n++; } else Py_INCREF(func); READ_TIMESTAMP(*pintr0); if (PyFunction_Check(func)) x = fast_function(func, pp_stack, n, na, nk); else x = do_call(func, pp_stack, na, nk); READ_TIMESTAMP(*pintr1); Py_DECREF(func); } /* Clear the stack of the function object. Also removes the arguments in case they weren't consumed already (fast_function() and err_args() leave them on the stack). */ while ((*pp_stack) > pfunc) { w = EXT_POP(*pp_stack); Py_DECREF(w); PCALL(PCALL_POP); } return x; } /* The fast_function() function optimize calls for which no argument tuple is necessary; the objects are passed directly from the stack. For the simplest case -- a function that takes only positional arguments and is called with only positional arguments -- it inlines the most primitive frame setup code from PyEval_EvalCodeEx(), which vastly reduces the checks that must be done before evaluating the frame. */ static PyObject * fast_function(PyObject *func, PyObject ***pp_stack, int n, int na, int nk) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *kwdefs = PyFunction_GET_KW_DEFAULTS(func); PyObject **d = NULL; int nd = 0; PCALL(PCALL_FUNCTION); PCALL(PCALL_FAST_FUNCTION); if (argdefs == NULL && co->co_argcount == n && co->co_kwonlyargcount == 0 && nk==0 && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { PyFrameObject *f; PyObject *retval = NULL; PyThreadState *tstate = PyThreadState_GET(); PyObject **fastlocals, **stack; int i; PCALL(PCALL_FASTER_FUNCTION); assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) return NULL; fastlocals = f->f_localsplus; stack = (*pp_stack) - n; for (i = 0; i < n; i++) { Py_INCREF(*stack); fastlocals[i] = *stack++; } retval = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return retval; } if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } return PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, (*pp_stack)-n, na, (*pp_stack)-2*nk, nk, d, nd, kwdefs, PyFunction_GET_CLOSURE(func)); } static PyObject * update_keyword_args(PyObject *orig_kwdict, int nk, PyObject ***pp_stack, PyObject *func) { PyObject *kwdict = NULL; if (orig_kwdict == NULL) kwdict = PyDict_New(); else { kwdict = PyDict_Copy(orig_kwdict); Py_DECREF(orig_kwdict); } if (kwdict == NULL) return NULL; while (--nk >= 0) { int err; PyObject *value = EXT_POP(*pp_stack); PyObject *key = EXT_POP(*pp_stack); if (PyDict_GetItem(kwdict, key) != NULL) { PyErr_Format(PyExc_TypeError, "%.200s%s got multiple values " "for keyword argument '%U'", PyEval_GetFuncName(func), PyEval_GetFuncDesc(func), key); Py_DECREF(key); Py_DECREF(value); Py_DECREF(kwdict); return NULL; } err = PyDict_SetItem(kwdict, key, value); Py_DECREF(key); Py_DECREF(value); if (err) { Py_DECREF(kwdict); return NULL; } } return kwdict; } static PyObject * update_star_args(int nstack, int nstar, PyObject *stararg, PyObject ***pp_stack) { PyObject *callargs, *w; callargs = PyTuple_New(nstack + nstar); if (callargs == NULL) { return NULL; } if (nstar) { int i; for (i = 0; i < nstar; i++) { PyObject *a = PyTuple_GET_ITEM(stararg, i); Py_INCREF(a); PyTuple_SET_ITEM(callargs, nstack + i, a); } } while (--nstack >= 0) { w = EXT_POP(*pp_stack); PyTuple_SET_ITEM(callargs, nstack, w); } return callargs; } static PyObject * load_args(PyObject ***pp_stack, int na) { PyObject *args = PyTuple_New(na); PyObject *w; if (args == NULL) return NULL; while (--na >= 0) { w = EXT_POP(*pp_stack); PyTuple_SET_ITEM(args, na, w); } return args; } static PyObject * do_call(PyObject *func, PyObject ***pp_stack, int na, int nk) { PyObject *callargs = NULL; PyObject *kwdict = NULL; PyObject *result = NULL; if (nk > 0) { kwdict = update_keyword_args(NULL, nk, pp_stack, func); if (kwdict == NULL) goto call_fail; } callargs = load_args(pp_stack, na); if (callargs == NULL) goto call_fail; #ifdef CALL_PROFILE /* At this point, we have to look at the type of func to update the call stats properly. Do it here so as to avoid exposing the call stats machinery outside ceval.c */ if (PyFunction_Check(func)) PCALL(PCALL_FUNCTION); else if (PyMethod_Check(func)) PCALL(PCALL_METHOD); else if (PyType_Check(func)) PCALL(PCALL_TYPE); else if (PyCFunction_Check(func)) PCALL(PCALL_CFUNCTION); else PCALL(PCALL_OTHER); #endif if (PyCFunction_Check(func)) { PyThreadState *tstate = PyThreadState_GET(); C_TRACE(result, PyCFunction_Call(func, callargs, kwdict)); } else result = PyObject_Call(func, callargs, kwdict); call_fail: Py_XDECREF(callargs); Py_XDECREF(kwdict); return result; } static PyObject * ext_do_call(PyObject *func, PyObject ***pp_stack, int flags, int na, int nk) { int nstar = 0; PyObject *callargs = NULL; PyObject *stararg = NULL; PyObject *kwdict = NULL; PyObject *result = NULL; if (flags & CALL_FLAG_KW) { kwdict = EXT_POP(*pp_stack); if (!PyDict_Check(kwdict)) { PyObject *d; d = PyDict_New(); if (d == NULL) goto ext_call_fail; if (PyDict_Update(d, kwdict) != 0) { Py_DECREF(d); /* PyDict_Update raises attribute * error (percolated from an attempt * to get 'keys' attribute) instead of * a type error if its second argument * is not a mapping. */ if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_TypeError, "%.200s%.200s argument after ** " "must be a mapping, not %.200s", PyEval_GetFuncName(func), PyEval_GetFuncDesc(func), kwdict->ob_type->tp_name); } goto ext_call_fail; } Py_DECREF(kwdict); kwdict = d; } } if (flags & CALL_FLAG_VAR) { stararg = EXT_POP(*pp_stack); if (!PyTuple_Check(stararg)) { PyObject *t = NULL; t = PySequence_Tuple(stararg); if (t == NULL) { if (PyErr_ExceptionMatches(PyExc_TypeError)) { PyErr_Format(PyExc_TypeError, "%.200s%.200s argument after * " "must be a sequence, not %200s", PyEval_GetFuncName(func), PyEval_GetFuncDesc(func), stararg->ob_type->tp_name); } goto ext_call_fail; } Py_DECREF(stararg); stararg = t; } nstar = PyTuple_GET_SIZE(stararg); } if (nk > 0) { kwdict = update_keyword_args(kwdict, nk, pp_stack, func); if (kwdict == NULL) goto ext_call_fail; } callargs = update_star_args(na, nstar, stararg, pp_stack); if (callargs == NULL) goto ext_call_fail; #ifdef CALL_PROFILE /* At this point, we have to look at the type of func to update the call stats properly. Do it here so as to avoid exposing the call stats machinery outside ceval.c */ if (PyFunction_Check(func)) PCALL(PCALL_FUNCTION); else if (PyMethod_Check(func)) PCALL(PCALL_METHOD); else if (PyType_Check(func)) PCALL(PCALL_TYPE); else if (PyCFunction_Check(func)) PCALL(PCALL_CFUNCTION); else PCALL(PCALL_OTHER); #endif if (PyCFunction_Check(func)) { PyThreadState *tstate = PyThreadState_GET(); C_TRACE(result, PyCFunction_Call(func, callargs, kwdict)); } else result = PyObject_Call(func, callargs, kwdict); ext_call_fail: Py_XDECREF(callargs); Py_XDECREF(kwdict); Py_XDECREF(stararg); return result; } /* Extract a slice index from a PyInt or PyLong or an object with the nb_index slot defined, and store in *pi. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, and silently boost values less than -PY_SSIZE_T_MAX-1 to -PY_SSIZE_T_MAX-1. Return 0 on error, 1 on success. */ /* Note: If v is NULL, return success without storing into *pi. This is because_PyEval_SliceIndex() is called by apply_slice(), which can be called by the SLICE opcode with v and/or w equal to NULL. */ int _PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi) { if (v != NULL) { Py_ssize_t x; if (PyIndex_Check(v)) { x = PyNumber_AsSsize_t(v, NULL); if (x == -1 && PyErr_Occurred()) return 0; } else { PyErr_SetString(PyExc_TypeError, "slice indices must be integers or " "None or have an __index__ method"); return 0; } *pi = x; } return 1; } #define CANNOT_CATCH_MSG "catching classes that do not inherit from "\ "BaseException is not allowed" static PyObject * cmp_outcome(int op, register PyObject *v, register PyObject *w) { int res = 0; switch (op) { case PyCmp_IS: res = (v == w); break; case PyCmp_IS_NOT: res = (v != w); break; case PyCmp_IN: res = PySequence_Contains(w, v); if (res < 0) return NULL; break; case PyCmp_NOT_IN: res = PySequence_Contains(w, v); if (res < 0) return NULL; res = !res; break; case PyCmp_EXC_MATCH: if (PyTuple_Check(w)) { Py_ssize_t i, length; length = PyTuple_Size(w); for (i = 0; i < length; i += 1) { PyObject *exc = PyTuple_GET_ITEM(w, i); if (!PyExceptionClass_Check(exc)) { PyErr_SetString(PyExc_TypeError, CANNOT_CATCH_MSG); return NULL; } } } else { if (!PyExceptionClass_Check(w)) { PyErr_SetString(PyExc_TypeError, CANNOT_CATCH_MSG); return NULL; } } res = PyErr_GivenExceptionMatches(v, w); break; default: return PyObject_RichCompare(v, w, op); } v = res ? Py_True : Py_False; Py_INCREF(v); return v; } static PyObject * import_from(PyObject *v, PyObject *name) { PyObject *x; x = PyObject_GetAttr(v, name); if (x == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, "cannot import name %S", name); } return x; } static int import_all_from(PyObject *locals, PyObject *v) { PyObject *all = PyObject_GetAttrString(v, "__all__"); PyObject *dict, *name, *value; int skip_leading_underscores = 0; int pos, err; if (all == NULL) { if (!PyErr_ExceptionMatches(PyExc_AttributeError)) return -1; /* Unexpected error */ PyErr_Clear(); dict = PyObject_GetAttrString(v, "__dict__"); if (dict == NULL) { if (!PyErr_ExceptionMatches(PyExc_AttributeError)) return -1; PyErr_SetString(PyExc_ImportError, "from-import-* object has no __dict__ and no __all__"); return -1; } all = PyMapping_Keys(dict); Py_DECREF(dict); if (all == NULL) return -1; skip_leading_underscores = 1; } for (pos = 0, err = 0; ; pos++) { name = PySequence_GetItem(all, pos); if (name == NULL) { if (!PyErr_ExceptionMatches(PyExc_IndexError)) err = -1; else PyErr_Clear(); break; } if (skip_leading_underscores && PyUnicode_Check(name) && PyUnicode_AS_UNICODE(name)[0] == '_') { Py_DECREF(name); continue; } value = PyObject_GetAttr(v, name); if (value == NULL) err = -1; else if (PyDict_CheckExact(locals)) err = PyDict_SetItem(locals, name, value); else err = PyObject_SetItem(locals, name, value); Py_DECREF(name); Py_XDECREF(value); if (err != 0) break; } Py_DECREF(all); return err; } static void format_exc_check_arg(PyObject *exc, const char *format_str, PyObject *obj) { const char *obj_str; if (!obj) return; obj_str = _PyUnicode_AsString(obj); if (!obj_str) return; PyErr_Format(exc, format_str, obj_str); } static PyObject * unicode_concatenate(PyObject *v, PyObject *w, PyFrameObject *f, unsigned char *next_instr) { /* This function implements 'variable += expr' when both arguments are (Unicode) strings. */ Py_ssize_t v_len = PyUnicode_GET_SIZE(v); Py_ssize_t w_len = PyUnicode_GET_SIZE(w); Py_ssize_t new_len = v_len + w_len; if (new_len < 0) { PyErr_SetString(PyExc_OverflowError, "strings are too large to concat"); return NULL; } if (v->ob_refcnt == 2) { /* In the common case, there are 2 references to the value * stored in 'variable' when the += is performed: one on the * value stack (in 'v') and one still stored in the * 'variable'. We try to delete the variable now to reduce * the refcnt to 1. */ switch (*next_instr) { case STORE_FAST: { int oparg = PEEKARG();