1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
/*
* Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "mpdecimal.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "constants.h"
#include "memory.h"
#include "typearith.h"
#include "basearith.h"
/*********************************************************************/
/* Calculations in base MPD_RADIX */
/*********************************************************************/
/*
* Knuth, TAOCP, Volume 2, 4.3.1:
* w := sum of u (len m) and v (len n)
* n > 0 and m >= n
* The calling function has to handle a possible final carry.
*/
mpd_uint_t
_mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
mpd_size_t m, mpd_size_t n)
{
mpd_uint_t s;
mpd_uint_t carry = 0;
mpd_size_t i;
assert(n > 0 && m >= n);
/* add n members of u and v */
for (i = 0; i < n; i++) {
s = u[i] + (v[i] + carry);
carry = (s < u[i]) | (s >= MPD_RADIX);
w[i] = carry ? s-MPD_RADIX : s;
}
/* if there is a carry, propagate it */
for (; carry && i < m; i++) {
s = u[i] + carry;
carry = (s == MPD_RADIX);
w[i] = carry ? 0 : s;
}
/* copy the rest of u */
for (; i < m; i++) {
w[i] = u[i];
}
return carry;
}
/*
* Add the contents of u to w. Carries are propagated further. The caller
* has to make sure that w is big enough.
*/
void
_mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
{
mpd_uint_t s;
mpd_uint_t carry = 0;
mpd_size_t i;
if (n == 0) return;
/* add n members of u to w */
for (i = 0; i < n; i++) {
s = w[i] + (u[i] + carry);
carry = (s < w[i]) | (s >= MPD_RADIX);
w[i] = carry ? s-MPD_RADIX : s;
}
/* if there is a carry, propagate it */
for (; carry; i++) {
s = w[i] + carry;
carry = (s == MPD_RADIX);
w[i] = carry ? 0 : s;
}
}
/*
* Add v to w (len m). The calling function has to handle a possible
* final carry. Assumption: m > 0.
*/
mpd_uint_t
_mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
{
mpd_uint_t s;
mpd_uint_t carry;
mpd_size_t i;
assert(m > 0);
/* add v to w */
s = w[0] + v;
carry = (s < v) | (s >= MPD_RADIX);
w[0] = carry ? s-MPD_RADIX : s;
/* if there is a carry, propagate it */
for (i = 1; carry && i < m; i++) {
s = w[i] + carry;
carry = (s == MPD_RADIX);
w[i] = carry ? 0 : s;
}
return carry;
}
/* Increment u. The calling function has to handle a possible carry. */
mpd_uint_t
_mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
{
mpd_uint_t s;
mpd_uint_t carry = 1;
mpd_size_t i;
assert(n > 0);
/* if there is a carry, propagate it */
for (i = 0; carry && i < n; i++) {
s = u[i] + carry;
carry = (s == MPD_RADIX);
u[i] = carry ? 0 : s;
}
return carry;
}
/*
* Knuth, TAOCP, Volume 2, 4.3.1:
* w := difference of u (len m) and v (len n).
* number in u >= number in v;
*/
void
_mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
mpd_size_t m, mpd_size_t n)
{
mpd_uint_t d;
mpd_uint_t borrow = 0;
mpd_size_t i;
assert(m > 0 && n > 0);
/* subtract n members of v from u */
for (i = 0; i < n; i++) {
d = u[i] - (v[i] + borrow);
borrow = (u[i] < d);
w[i] = borrow ? d + MPD_RADIX : d;
}
/* if there is a borrow, propagate it */
for (; borrow && i < m; i++) {
d = u[i] - borrow;
borrow = (u[i] == 0);
w[i] = borrow ? MPD_RADIX-1 : d;
}
/* copy the rest of u */
for (; i < m; i++) {
w[i] = u[i];
}
}
/*
* Subtract the contents of u from w. w is larger than u. Borrows are
* propagated further, but eventually w can absorb the final borrow.
*/
void
_mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
{
mpd_uint_t d;
mpd_uint_t borrow = 0;
mpd_size_t i;
if (n == 0) return;
/* subtract n members of u from w */
for (i = 0; i < n; i++) {
d = w[i] - (u[i] + borrow);
borrow = (w[i] < d);
w[i] = borrow ? d + MPD_RADIX : d;
}
/* if there is a borrow, propagate it */
for (; borrow; i++) {
d = w[i] - borrow;
borrow = (w[i] == 0);
w[i] = borrow ? MPD_RADIX-1 : d;
}
}
/* w := product of u (len n) and v (single word) */
void
_mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
{
mpd_uint_t hi, lo;
mpd_uint_t carry = 0;
mpd_size_t i;
assert(n > 0);
for (i=0; i < n; i++) {
_mpd_mul_words(&hi, &lo, u[i], v);
lo = carry + lo;
if (lo < carry) hi++;
_mpd_div_words_r(&carry, &w[i], hi, lo);
}
w[i] = carry;
}
/*
* Knuth, TAOCP, Volume 2, 4.3.1:
* w := product of u (len m) and v (len n)
* w must be initialized to zero
*/
void
_mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
mpd_size_t m, mpd_size_t n)
{
mpd_uint_t hi, lo;
mpd_uint_t carry;
mpd_size_t i, j;
assert(m > 0 && n > 0);
for (j=0; j < n; j++) {
carry = 0;
for (i=0; i < m; i++) {
_mpd_mul_words(&hi, &lo, u[i], v[j]);
lo = w[i+j] + lo;
if (lo < w[i+j]) hi++;
lo = carry + lo;
if (lo < carry) hi++;
_mpd_div_words_r(&carry, &w[i+j], hi, lo);
}
w[j+m] = carry;
}
}
/*
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
* w := quotient of u (len n) divided by a single word v
*/
mpd_uint_t
_mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
{
mpd_uint_t hi, lo;
mpd_uint_t rem = 0;
mpd_size_t i;
assert(n > 0);
for (i=n-1; i != MPD_SIZE_MAX; i--) {
_mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
lo = u[i] + lo;
if (lo < u[i]) hi++;
_mpd_div_words(&w[i], &rem, hi, lo, v);
}
return rem;
}
/*
* Knuth, TAOCP Volume 2, 4.3.1:
* q, r := quotient and remainder of uconst (len nplusm)
* divided by vconst (len n)
* nplusm >= n
*
* If r is not NULL, r will contain the remainder. If r is NULL, the
* return value indicates if there is a remainder: 1 for true, 0 for
* false. A return value of -1 indicates an error.
*/
int
_mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
const mpd_uint_t *uconst, const mpd_uint_t *vconst,
mpd_size_t nplusm, mpd_size_t n)
{
mpd_uint_t ustatic[MPD_MINALLOC_MAX];
mpd_uint_t vstatic[MPD_MINALLOC_MAX];
mpd_uint_t *u = ustatic;
mpd_uint_t *v = vstatic;
mpd_uint_t d, qhat, rhat, w2[2];
mpd_uint_t hi, lo, x;
mpd_uint_t carry;
mpd_size_t i, j, m;
int retval = 0;
assert(n > 1 && nplusm >= n);
m = sub_size_t(nplusm, n);
/* D1: normalize */
d = MPD_RADIX / (vconst[n-1] + 1);
if (nplusm >= MPD_MINALLOC_MAX) {
if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
return -1;
}
}
if (n >= MPD_MINALLOC_MAX) {
if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
mpd_free(u);
return -1;
}
}
_mpd_shortmul(u, uconst, nplusm, d);
_mpd_shortmul(v, vconst, n, d);
/* D2: loop */
for (j=m; j != MPD_SIZE_MAX; j--) {
/* D3: calculate qhat and rhat */
rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
qhat = w2[1] * MPD_RADIX + w2[0];
while (1) {
if (qhat < MPD_RADIX) {
_mpd_singlemul(w2, qhat, v[n-2]);
if (w2[1] <= rhat) {
if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
break;
}
}
}
qhat -= 1;
rhat += v[n-1];
if (rhat < v[n-1] || rhat >= MPD_RADIX) {
break;
}
}
/* D4: multiply and subtract */
carry = 0;
for (i=0; i <= n; i++) {
_mpd_mul_words(&hi, &lo, qhat, v[i]);
lo = carry + lo;
if (lo < carry) hi++;
_mpd_div_words_r(&hi, &lo, hi, lo);
x = u[i+j] - lo;
carry = (u[i+j] < x);
u[i+j] = carry ? x+MPD_RADIX : x;
carry += hi;
}
q[j] = qhat;
/* D5: test remainder */
if (carry) {
q[j] -= 1;
/* D6: add back */
(void)_mpd_baseadd(u+j, u+j, v, n+1, n);
}
}
/* D8: unnormalize */
if (r != NULL) {
_mpd_shortdiv(r, u, n, d);
/* we are not interested in the return value here */
retval = 0;
}
else {
retval = !_mpd_isallzero(u, n);
}
if (u != ustatic) mpd_free(u);
if (v != vstatic) mpd_free(v);
return retval;
}
/*
* Left shift of src by 'shift' digits; src may equal dest.
*
* dest := area of n mpd_uint_t with space for srcdigits+shift digits.
* src := coefficient with length m.
*
* The case splits in the function are non-obvious. The following
* equations might help:
*
* Let msdigits denote the number of digits in the most significant
* word of src. Then 1 <= msdigits <= rdigits.
*
* 1) shift = q * rdigits + r
* 2) srcdigits = qsrc * rdigits + msdigits
* 3) destdigits = shift + srcdigits
* = q * rdigits + r + qsrc * rdigits + msdigits
* = q * rdigits + (qsrc * rdigits + (r + msdigits))
*
* The result has q zero words, followed by the coefficient that
* is left-shifted by r. The case r == 0 is trivial. For r > 0, it
* is important to keep in mind that we always read m source words,
* but write m+1 destination words if r + msdigits > rdigits, m words
* otherwise.
*/
void
_mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
mpd_size_t shift)
{
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
/* spurious uninitialized warnings */
mpd_uint_t l=l, lprev=lprev, h=h;
#else
mpd_uint_t l, lprev, h;
#endif
mpd_uint_t q, r;
mpd_uint_t ph;
assert(m > 0 && n >= m);
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
if (r != 0) {
ph = mpd_pow10[r];
--m; --n;
_mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
dest[n--] = h;
}
/* write m-1 shifted words */
for (; m != MPD_SIZE_MAX; m--,n--) {
_mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
dest[n] = ph * lprev + h;
lprev = l;
}
/* write least significant word */
dest[q] = ph * lprev;
}
else {
while (--m != MPD_SIZE_MAX) {
dest[m+q] = src[m];
}
}
mpd_uint_zero(dest, q);
}
/*
* Right shift of src by 'shift' digits; src may equal dest.
* Assumption: srcdigits-shift > 0.
*
* dest := area with space for srcdigits-shift digits.
* src := coefficient with length 'slen'.
*
* The case splits in the function rely on the following equations:
*
* Let msdigits denote the number of digits in the most significant
* word of src. Then 1 <= msdigits <= rdigits.
*
* 1) shift = q * rdigits + r
* 2) srcdigits = qsrc * rdigits + msdigits
* 3) destdigits = srcdigits - shift
* = qsrc * rdigits + msdigits - (q * rdigits + r)
* = (qsrc - q) * rdigits + msdigits - r
*
* Since destdigits > 0 and 1 <= msdigits <= rdigits:
*
* 4) qsrc >= q
* 5) qsrc == q ==> msdigits > r
*
* The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
*/
mpd_uint_t
_mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
mpd_size_t shift)
{
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
/* spurious uninitialized warnings */
mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
#else
mpd_uint_t l, h, hprev; /* low, high, previous high */
#endif
mpd_uint_t rnd, rest; /* rounding digit, rest */
mpd_uint_t q, r;
mpd_size_t i, j;
mpd_uint_t ph;
assert(slen > 0);
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
rnd = rest = 0;
if (r != 0) {
ph = mpd_pow10[MPD_RDIGITS-r];
_mpd_divmod_pow10(&hprev, &rest, src[q], r);
_mpd_divmod_pow10(&rnd, &rest, rest, r-1);
if (rest == 0 && q > 0) {
rest = !_mpd_isallzero(src, q);
}
/* write slen-q-1 words */
for (j=0,i=q+1; i<slen; i++,j++) {
_mpd_divmod_pow10(&h, &l, src[i], r);
dest[j] = ph * l + hprev;
hprev = h;
}
/* write most significant word */
if (hprev != 0) { /* always the case if slen==q-1 */
dest[j] = hprev;
}
}
else {
if (q > 0) {
_mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
/* is there any non-zero digit below rnd? */
if (rest == 0) rest = !_mpd_isallzero(src, q-1);
}
for (j = 0; j < slen-q; j++) {
dest[j] = src[q+j];
}
}
/* 0-4 ==> rnd+rest < 0.5 */
/* 5 ==> rnd+rest == 0.5 */
/* 6-9 ==> rnd+rest > 0.5 */
return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
}
/*********************************************************************/
/* Calculations in base b */
/*********************************************************************/
/*
* Add v to w (len m). The calling function has to handle a possible
* final carry. Assumption: m > 0.
*/
mpd_uint_t
_mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
{
mpd_uint_t s;
mpd_uint_t carry;
mpd_size_t i;
assert(m > 0);
/* add v to w */
s = w[0] + v;
carry = (s < v) | (s >= b);
w[0] = carry ? s-b : s;
/* if there is a carry, propagate it */
for (i = 1; carry && i < m; i++) {
s = w[i] + carry;
carry = (s == b);
w[i] = carry ? 0 : s;
}
return carry;
}
/* w := product of u (len n) and v (single word). Return carry. */
mpd_uint_t
_mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
{
mpd_uint_t hi, lo;
mpd_uint_t carry = 0;
mpd_size_t i;
assert(n > 0);
for (i=0; i < n; i++) {
_mpd_mul_words(&hi, &lo, u[i], v);
lo = carry + lo;
if (lo < carry) hi++;
_mpd_div_words_r(&carry, &w[i], hi, lo);
}
return carry;
}
/* w := product of u (len n) and v (single word) */
mpd_uint_t
_mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
mpd_uint_t v, mpd_uint_t b)
{
mpd_uint_t hi, lo;
mpd_uint_t carry = 0;
mpd_size_t i;
assert(n > 0);
for (i=0; i < n; i++) {
_mpd_mul_words(&hi, &lo, u[i], v);
lo = carry + lo;
if (lo < carry) hi++;
_mpd_div_words(&carry, &w[i], hi, lo, b);
}
return carry;
}
/*
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
* w := quotient of u (len n) divided by a single word v
*/
mpd_uint_t
_mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
mpd_uint_t v, mpd_uint_t b)
{
mpd_uint_t hi, lo;
mpd_uint_t rem = 0;
mpd_size_t i;
assert(n > 0);
for (i=n-1; i != MPD_SIZE_MAX; i--) {
_mpd_mul_words(&hi, &lo, rem, b);
lo = u[i] + lo;
if (lo < u[i]) hi++;
_mpd_div_words(&w[i], &rem, hi, lo, v);
}
return rem;
}
|