summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/literature/fnt.py
blob: c1285a565db96bdbae9dc3ac19575ba6ca0bd171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#
# Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#


######################################################################
#  This file lists and checks some of the constants and limits used  #
#  in libmpdec's Number Theoretic Transform. At the end of the file  #
#  there is an example function for the plain DFT transform.         #
######################################################################


#
# Number theoretic transforms are done in subfields of F(p). P[i]
# are the primes, D[i] = P[i] - 1 are highly composite and w[i]
# are the respective primitive roots of F(p).
#
# The strategy is to convolute two coefficients modulo all three
# primes, then use the Chinese Remainder Theorem on the three
# result arrays to recover the result in the usual base RADIX
# form.
#

# ======================================================================
#                           Primitive roots
# ======================================================================

#
# Verify primitive roots:
#
# For a prime field, r is a primitive root if and only if for all prime
# factors f of p-1, r**((p-1)/f) =/= 1  (mod p).
#
def prod(F, E):
    """Check that the factorization of P-1 is correct. F is the list of
       factors of P-1, E lists the number of occurrences of each factor."""
    x = 1
    for y, z in zip(F, E):
        x *= y**z
    return x

def is_primitive_root(r, p, factors, exponents):
    """Check if r is a primitive root of F(p)."""
    if p != prod(factors, exponents) + 1:
        return False
    for f in factors:
        q, control = divmod(p-1, f)
        if control != 0:
            return False
        if pow(r, q, p) == 1:
            return False
    return True


# =================================================================
#             Constants and limits for the 64-bit version
# =================================================================

RADIX = 10**19

# Primes P1, P2 and P3:
P = [2**64-2**32+1, 2**64-2**34+1, 2**64-2**40+1]

# P-1, highly composite. The transform length d is variable and
# must divide D = P-1. Since all D are divisible by 3 * 2**32,
# transform lengths can be 2**n or 3 * 2**n (where n <= 32).
D = [2**32 * 3    * (5 * 17 * 257 * 65537),
     2**34 * 3**2 * (7 * 11 * 31 * 151 * 331),
     2**40 * 3**2 * (5 * 7 * 13 * 17 * 241)]

# Prime factors of P-1 and their exponents:
F = [(2,3,5,17,257,65537), (2,3,7,11,31,151,331), (2,3,5,7,13,17,241)]
E = [(32,1,1,1,1,1), (34,2,1,1,1,1,1), (40,2,1,1,1,1,1)]

# Maximum transform length for 2**n. Above that only 3 * 2**31
# or 3 * 2**32 are possible.
MPD_MAXTRANSFORM_2N = 2**32


# Limits in the terminology of Pollard's paper:
m2 = (MPD_MAXTRANSFORM_2N * 3) // 2 # Maximum length of the smaller array.
M1 = M2 = RADIX-1                   # Maximum value per single word.
L = m2 * M1 * M2
P[0] * P[1] * P[2] > 2 * L


# Primitive roots of F(P1), F(P2) and F(P3):
w = [7, 10, 19]

# The primitive roots are correct:
for i in range(3):
    if not is_primitive_root(w[i], P[i], F[i], E[i]):
        print("FAIL")


# =================================================================
#             Constants and limits for the 32-bit version
# =================================================================

RADIX = 10**9

# Primes P1, P2 and P3:
P = [2113929217, 2013265921, 1811939329]

# P-1, highly composite. All D = P-1 are divisible by 3 * 2**25,
# allowing for transform lengths up to 3 * 2**25 words.
D = [2**25 * 3**2 * 7,
     2**27 * 3    * 5,
     2**26 * 3**3]

# Prime factors of P-1 and their exponents:
F = [(2,3,7), (2,3,5), (2,3)]
E = [(25,2,1), (27,1,1), (26,3)]

# Maximum transform length for 2**n. Above that only 3 * 2**24 or
# 3 * 2**25 are possible.
MPD_MAXTRANSFORM_2N = 2**25


# Limits in the terminology of Pollard's paper:
m2 = (MPD_MAXTRANSFORM_2N * 3) // 2 # Maximum length of the smaller array.
M1 = M2 = RADIX-1                   # Maximum value per single word.
L = m2 * M1 * M2
P[0] * P[1] * P[2] > 2 * L


# Primitive roots of F(P1), F(P2) and F(P3):
w = [5, 31, 13]

# The primitive roots are correct:
for i in range(3):
    if not is_primitive_root(w[i], P[i], F[i], E[i]):
        print("FAIL")


# ======================================================================
#                 Example transform using a single prime
# ======================================================================

def ntt(lst, dir):
    """Perform a transform on the elements of lst. len(lst) must
       be 2**n or 3 * 2**n, where n <= 25. This is the slow DFT."""
    p = 2113929217             # prime
    d = len(lst)               # transform length
    d_prime = pow(d, (p-2), p) # inverse of d
    xi = (p-1)//d
    w = 5                         # primitive root of F(p)
    r = pow(w, xi, p)             # primitive root of the subfield
    r_prime = pow(w, (p-1-xi), p) # inverse of r
    if dir == 1:      # forward transform
        a = lst       # input array
        A = [0] * d   # transformed values
        for i in range(d):
            s = 0
            for j in range(d):
                s += a[j] * pow(r, i*j, p)
            A[i] = s % p
        return A
    elif dir == -1: # backward transform
        A = lst     # input array
        a = [0] * d # transformed values
        for j in range(d):
            s = 0
            for i in range(d):
                s += A[i] * pow(r_prime, i*j, p)
            a[j] = (d_prime * s) % p
        return a

def ntt_convolute(a, b):
    """convolute arrays a and b."""
    assert(len(a) == len(b))
    x = ntt(a, 1)
    y = ntt(b, 1)
    for i in range(len(a)):
        y[i] = y[i] * x[i]
    r = ntt(y, -1)
    return r


# Example: Two arrays representing 21 and 81 in little-endian:
a = [1, 2, 0, 0]
b = [1, 8, 0, 0]

assert(ntt_convolute(a, b) == [1,        10,        16,        0])
assert(21 * 81             == (1*10**0 + 10*10**1 + 16*10**2 + 0*10**3))