summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/sixstep.c
blob: a4d1dbed7813c6c3aac64803db9e1620ebe8dd2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#include "mpdecimal.h"

#include <assert.h>
#include <stdio.h>

#include "bits.h"
#include "constants.h"
#include "difradix2.h"
#include "numbertheory.h"
#include "sixstep.h"
#include "transpose.h"
#include "umodarith.h"


/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
   form 2**n (See literature/six-step.txt). */


/* forward transform with sign = -1 */
int
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    struct fnt_params *tparams;
    mpd_size_t log2n, C, R;
    mpd_uint_t kernel;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_uint_t *x, w0, w1, wstep;
    mpd_size_t i, k;


    assert(ispower2(n));
    assert(n >= 16);
    assert(n <= MPD_MAXTRANSFORM_2N);

    log2n = mpd_bsr(n);
    C = ((mpd_size_t)1) << (log2n / 2);  /* number of columns */
    R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */


    /* Transpose the matrix. */
    if (!transpose_pow2(a, R, C)) {
        return 0;
    }

    /* Length R transform on the rows. */
    if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
        return 0;
    }
    for (x = a; x < a+n; x += R) {
        fnt_dif2(x, R, tparams);
    }

    /* Transpose the matrix. */
    if (!transpose_pow2(a, C, R)) {
        mpd_free(tparams);
        return 0;
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, -1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;                  /* r**(i*0): initial value for k=0 */
        w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
        wstep = MULMOD(w1, w1);  /* r**(2*i) */
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length C transform on the rows. */
    if (C != R) {
        mpd_free(tparams);
        if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
            return 0;
        }
    }
    for (x = a; x < a+n; x += C) {
        fnt_dif2(x, C, tparams);
    }
    mpd_free(tparams);

#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix. */
    if (!transpose_pow2(a, R, C)) {
        return 0;
    }
#endif

    return 1;
}


/* reverse transform, sign = 1 */
int
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    struct fnt_params *tparams;
    mpd_size_t log2n, C, R;
    mpd_uint_t kernel;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_uint_t *x, w0, w1, wstep;
    mpd_size_t i, k;


    assert(ispower2(n));
    assert(n >= 16);
    assert(n <= MPD_MAXTRANSFORM_2N);

    log2n = mpd_bsr(n);
    C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
    R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */


#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix, producing an R*C matrix. */
    if (!transpose_pow2(a, C, R)) {
        return 0;
    }
#endif

    /* Length C transform on the rows. */
    if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
        return 0;
    }
    for (x = a; x < a+n; x += C) {
        fnt_dif2(x, C, tparams);
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, 1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;
        w1 = POWMOD(kernel, i);
        wstep = MULMOD(w1, w1);
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Transpose the matrix. */
    if (!transpose_pow2(a, R, C)) {
        mpd_free(tparams);
        return 0;
    }

    /* Length R transform on the rows. */
    if (R != C) {
        mpd_free(tparams);
        if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
            return 0;
        }
    }
    for (x = a; x < a+n; x += R) {
        fnt_dif2(x, R, tparams);
    }
    mpd_free(tparams);

    /* Transpose the matrix. */
    if (!transpose_pow2(a, C, R)) {
        return 0;
    }

    return 1;
}