summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/transpose.c
blob: 55d6d8992279009f320e8479514f71412195fa48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#include "mpdecimal.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include "bits.h"
#include "constants.h"
#include "typearith.h"
#include "transpose.h"


#define BUFSIZE 4096
#define SIDE 128


/* Bignum: The transpose functions are used for very large transforms
   in sixstep.c and fourstep.c. */


/* Definition of the matrix transpose */
void
std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
{
    mpd_size_t idest, isrc;
    mpd_size_t r, c;

    for (r = 0; r < rows; r++) {
        isrc = r * cols;
        idest = r;
        for (c = 0; c < cols; c++) {
            dest[idest] = src[isrc];
            isrc += 1;
            idest += rows;
        }
    }
}

/*
 * Swap half-rows of 2^n * (2*2^n) matrix.
 * FORWARD_CYCLE: even/odd permutation of the halfrows.
 * BACKWARD_CYCLE: reverse the even/odd permutation.
 */
static int
swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
{
    mpd_uint_t buf1[BUFSIZE];
    mpd_uint_t buf2[BUFSIZE];
    mpd_uint_t *readbuf, *writebuf, *hp;
    mpd_size_t *done, dbits;
    mpd_size_t b = BUFSIZE, stride;
    mpd_size_t hn, hmax; /* halfrow number */
    mpd_size_t m, r=0;
    mpd_size_t offset;
    mpd_size_t next;


    assert(cols == mul_size_t(2, rows));

    if (dir == FORWARD_CYCLE) {
        r = rows;
    }
    else if (dir == BACKWARD_CYCLE) {
        r = 2;
    }
    else {
        abort(); /* GCOV_NOT_REACHED */
    }

    m = cols - 1;
    hmax = rows; /* cycles start at odd halfrows */
    dbits = 8 * sizeof *done;
    if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
        return 0;
    }

    for (hn = 1; hn <= hmax; hn += 2) {

        if (done[hn/dbits] & mpd_bits[hn%dbits]) {
            continue;
        }

        readbuf = buf1; writebuf = buf2;

        for (offset = 0; offset < cols/2; offset += b) {

            stride = (offset + b < cols/2) ? b : cols/2-offset;

            hp = matrix + hn*cols/2;
            memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
            pointerswap(&readbuf, &writebuf);

            next = mulmod_size_t(hn, r, m);
            hp = matrix + next*cols/2;

            while (next != hn) {

                memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
                memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
                pointerswap(&readbuf, &writebuf);

                done[next/dbits] |= mpd_bits[next%dbits];

                next = mulmod_size_t(next, r, m);
                    hp = matrix + next*cols/2;

            }

            memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));

            done[hn/dbits] |= mpd_bits[hn%dbits];
        }
    }

    mpd_free(done);
    return 1;
}

/* In-place transpose of a square matrix */
static inline void
squaretrans(mpd_uint_t *buf, mpd_size_t cols)
{
    mpd_uint_t tmp;
    mpd_size_t idest, isrc;
    mpd_size_t r, c;

    for (r = 0; r < cols; r++) {
        c = r+1;
        isrc = r*cols + c;
        idest = c*cols + r;
        for (c = r+1; c < cols; c++) {
            tmp = buf[isrc];
            buf[isrc] = buf[idest];
            buf[idest] = tmp;
            isrc += 1;
            idest += cols;
        }
    }
}

/*
 * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
 * square blocks with side length 'SIDE'. First, the blocks are transposed,
 * then a square transposition is done on each individual block.
 */
static void
squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
{
    mpd_uint_t buf1[SIDE*SIDE];
    mpd_uint_t buf2[SIDE*SIDE];
    mpd_uint_t *to, *from;
    mpd_size_t b = size;
    mpd_size_t r, c;
    mpd_size_t i;

    while (b > SIDE) b >>= 1;

    for (r = 0; r < size; r += b) {

        for (c = r; c < size; c += b) {

            from = matrix + r*size + c;
            to = buf1;
            for (i = 0; i < b; i++) {
                memcpy(to, from, b*(sizeof *to));
                from += size;
                to += b;
            }
            squaretrans(buf1, b);

            if (r == c) {
                to = matrix + r*size + c;
                from = buf1;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }
                continue;
            }
            else {
                from = matrix + c*size + r;
                to = buf2;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += size;
                    to += b;
                }
                squaretrans(buf2, b);

                to = matrix + c*size + r;
                from = buf1;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }

                to = matrix + r*size + c;
                from = buf2;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }
            }
        }
    }

}

/*
 * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
 * or a (2*2^n) x 2^n matrix.
 */
int
transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
{
    mpd_size_t size = mul_size_t(rows, cols);

    assert(ispower2(rows));
    assert(ispower2(cols));

    if (cols == rows) {
        squaretrans_pow2(matrix, rows);
    }
    else if (cols == mul_size_t(2, rows)) {
        if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
            return 0;
        }
        squaretrans_pow2(matrix, rows);
        squaretrans_pow2(matrix+(size/2), rows);
    }
    else if (rows == mul_size_t(2, cols)) {
        squaretrans_pow2(matrix, cols);
        squaretrans_pow2(matrix+(size/2), cols);
        if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
            return 0;
        }
    }
    else {
        abort(); /* GCOV_NOT_REACHED */
    }

    return 1;
}