summaryrefslogtreecommitdiffstats
path: root/Modules/_randommodule.c
blob: 00863b6691e3c0e03e045aadd1243e197db0e4fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* Random objects */

/* ------------------------------------------------------------------
   The code in this module was based on a download from:
	  http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

   It was modified in 2002 by Raymond Hettinger as follows:

	* the principal computational lines untouched except for tabbing.

	* renamed genrand_res53() to random_random() and wrapped
	  in python calling/return code.

	* genrand_int32() and the helper functions, init_genrand()
	  and init_by_array(), were declared static, wrapped in
	  Python calling/return code.  also, their global data
	  references were replaced with structure references.

	* unused functions from the original were deleted.
	  new, original C python code was added to implement the
	  Random() interface.

   The following are the verbatim comments from the original code:

   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
	notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
	notice, this list of conditions and the following disclaimer in the
	documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote
	products derived from this software without specific prior written
	permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.keio.ac.jp/matumoto/emt.html
   email: matumoto@math.keio.ac.jp
*/

/* ---------------------------------------------------------------*/

#include "Python.h"
#include <time.h>		/* for seeding to current time */

/* Period parameters -- These are all magic.  Don't change. */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL	/* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

typedef struct {
	PyObject_HEAD
	unsigned long state[N];
	int index;
} RandomObject;

static PyTypeObject Random_Type;

#define RandomObject_Check(v)	   ((v)->ob_type == &Random_Type)


/* Random methods */


/* generates a random number on [0,0xffffffff]-interval */
static unsigned long
genrand_int32(RandomObject *self)
{
	unsigned long y;
	static unsigned long mag01[2]={0x0UL, MATRIX_A};
	/* mag01[x] = x * MATRIX_A  for x=0,1 */
	unsigned long *mt;

	mt = self->state;
	if (self->index >= N) { /* generate N words at one time */
		int kk;

		for (kk=0;kk<N-M;kk++) {
			y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
			mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
		}
		for (;kk<N-1;kk++) {
			y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
			mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
		}
		y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
		mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];

		self->index = 0;
	}

    y = mt[self->index++];
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);
    return y;
}

/* random_random is the function named genrand_res53 in the original code;
 * generates a random number on [0,1) with 53-bit resolution; note that
 * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as
 * multiply-by-reciprocal in the (likely vain) hope that the compiler will
 * optimize the division away at compile-time.  67108864 is 2**26.  In
 * effect, a contains 27 random bits shifted left 26, and b fills in the
 * lower 26 bits of the 53-bit numerator.
 * The orginal code credited Isaku Wada for this algorithm, 2002/01/09.
 */
static PyObject *
random_random(RandomObject *self)
{
	unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6;
    	return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
}

/* initializes mt[N] with a seed */
static void
init_genrand(RandomObject *self, unsigned long s)
{
	int mti;
	unsigned long *mt;

	mt = self->state;
	mt[0]= s & 0xffffffffUL;
	for (mti=1; mti<N; mti++) {
		mt[mti] =
		(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
		/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
		/* In the previous versions, MSBs of the seed affect   */
		/* only MSBs of the array mt[]. 		       */
		/* 2002/01/09 modified by Makoto Matsumoto	       */
		mt[mti] &= 0xffffffffUL;
		/* for >32 bit machines */
	}
	self->index = mti;
	return;
}

/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
static PyObject *
init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length)
{
	unsigned int i, j, k;	/* was signed in the original code. RDH 12/16/2002 */
	unsigned long *mt;

	mt = self->state;
	init_genrand(self, 19650218UL);
	i=1; j=0;
	k = (N>key_length ? N : key_length);
	for (; k; k--) {
		mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
			 + init_key[j] + j; /* non linear */
		mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
		i++; j++;
		if (i>=N) { mt[0] = mt[N-1]; i=1; }
		if (j>=key_length) j=0;
	}
	for (k=N-1; k; k--) {
		mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
			 - i; /* non linear */
		mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
		i++;
		if (i>=N) { mt[0] = mt[N-1]; i=1; }
	}

    mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
    Py_INCREF(Py_None);
    return Py_None;
}

/*
 * The rest is Python-specific code, neither part of, nor derived from, the
 * Twister download.
 */

static PyObject *
random_seed(RandomObject *self, PyObject *args)
{
	PyObject *result = NULL;	/* guilty until proved innocent */
	PyObject *masklower = NULL;
	PyObject *thirtytwo = NULL;
	PyObject *n = NULL;
	unsigned long *key = NULL;
	unsigned long keymax;		/* # of allocated slots in key */
	unsigned long keyused;		/* # of used slots in key */

	PyObject *arg = NULL;

	if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg))
		return NULL;

	if (arg == NULL || arg == Py_None) {
		time_t now;

		time(&now);
		init_genrand(self, (unsigned long)now);
		Py_INCREF(Py_None);
		return Py_None;
	}
	/* If the arg is an int or long, use its absolute value; else use
	 * the absolute value of its hash code.
	 */
	if (PyInt_Check(arg) || PyLong_Check(arg))
		n = PyNumber_Absolute(arg);
	else {
		long hash = PyObject_Hash(arg);
		if (hash == -1)
			goto Done;
		n = PyLong_FromUnsignedLong((unsigned long)hash);
	}
	if (n == NULL)
		goto Done;

	/* Now split n into 32-bit chunks, from the right.  Each piece is
	 * stored into key, which has a capacity of keymax chunks, of which
	 * keyused are filled.  Alas, the repeated shifting makes this a
	 * quadratic-time algorithm; we'd really like to use
	 * _PyLong_AsByteArray here, but then we'd have to break into the
	 * long representation to figure out how big an array was needed
	 * in advance.
	 */
	keymax = 8; 	/* arbitrary; grows later if needed */
	keyused = 0;
	key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key));
	if (key == NULL)
		goto Done;

	masklower = PyLong_FromUnsignedLong(0xffffffffU);
	if (masklower == NULL)
		goto Done;
	thirtytwo = PyInt_FromLong(32L);
	if (thirtytwo == NULL)
		goto Done;
	while (PyObject_IsTrue(n)) {
		PyObject *newn;
		PyObject *pychunk;
		unsigned long chunk;

		pychunk = PyNumber_And(n, masklower);
		if (pychunk == NULL)
			goto Done;
		chunk = PyLong_AsUnsignedLong(pychunk);
		Py_DECREF(pychunk);
		if (chunk == (unsigned long)-1 && PyErr_Occurred())
			goto Done;
		newn = PyNumber_Rshift(n, thirtytwo);
		if (newn == NULL)
			goto Done;
		Py_DECREF(n);
		n = newn;
		if (keyused >= keymax) {
			unsigned long bigger = keymax << 1;
			if ((bigger >> 1) != keymax) {
				PyErr_NoMemory();
				goto Done;
			}
			key = (unsigned long *)PyMem_Realloc(key,
						bigger * sizeof(*key));
			if (key == NULL)
				goto Done;
			keymax = bigger;
		}
		assert(keyused < keymax);
		key[keyused++] = chunk;
	}

	if (keyused == 0)
		key[keyused++] = 0UL;
	result = init_by_array(self, key, keyused);
Done:
	Py_XDECREF(masklower);
	Py_XDECREF(thirtytwo);
	Py_XDECREF(n);
	PyMem_Free(key);
	return result;
}

static PyObject *
random_getstate(RandomObject *self)
{
	PyObject *state;
	PyObject *element;
	int i;

	state = PyTuple_New(N+1);
	if (state == NULL)
		return NULL;
	for (i=0; i<N ; i++) {
		element = PyInt_FromLong((long)(self->state[i]));
		if (element == NULL)
			goto Fail;
		PyTuple_SET_ITEM(state, i, element);
	}
	element = PyInt_FromLong((long)(self->index));
	if (element == NULL)
		goto Fail;
	PyTuple_SET_ITEM(state, i, element);
	return state;

Fail:
	Py_DECREF(state);
	return NULL;
}

static PyObject *
random_setstate(RandomObject *self, PyObject *state)
{
	int i;
	long element;

	if (!PyTuple_Check(state)) {
		PyErr_SetString(PyExc_TypeError,
			"state vector must be a tuple");
		return NULL;
	}
	if (PyTuple_Size(state) != N+1) {
		PyErr_SetString(PyExc_ValueError,
			"state vector is the wrong size");
		return NULL;
	}

	for (i=0; i<N ; i++) {
		element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
		if (element == -1 && PyErr_Occurred())
			return NULL;
		self->state[i] = (unsigned long)element;
	}

	element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
	if (element == -1 && PyErr_Occurred())
		return NULL;
	self->index = (int)element;

	Py_INCREF(Py_None);
	return Py_None;
}

/*
Jumpahead should be a fast way advance the generator n-steps ahead, but
lacking a formula for that, the next best is to use n and the existing
state to create a new state far away from the original.

The generator uses constant spaced additive feedback, so shuffling the
state elements ought to produce a state which would not be encountered
(in the near term) by calls to random().  Shuffling is normally
implemented by swapping the ith element with another element ranging
from 0 to i inclusive.  That allows the element to have the possibility
of not being moved.  Since the goal is to produce a new, different
state, the swap element is ranged from 0 to i-1 inclusive.  This assures
that each element gets moved at least once.

To make sure that consecutive calls to jumpahead(n) produce different
states (even in the rare case of involutory shuffles), i+1 is added to
each element at position i.  Successive calls are then guaranteed to
have changing (growing) values as well as shuffled positions.

Finally, the self->index value is set to N so that the generator itself
kicks in on the next call to random().	This assures that all results
have been through the generator and do not just reflect alterations to
the underlying state.
*/

static PyObject *
random_jumpahead(RandomObject *self, PyObject *n)
{
	long i, j;
	PyObject *iobj;
	PyObject *remobj;
	unsigned long *mt, tmp;

	if (!PyInt_Check(n) && !PyLong_Check(n)) {
		PyErr_Format(PyExc_TypeError, "jumpahead requires an "
			     "integer, not '%s'",
			     n->ob_type->tp_name);
		return NULL;
	}

	mt = self->state;
	for (i = N-1; i > 1; i--) {
		iobj = PyInt_FromLong(i);
		if (iobj == NULL)
			return NULL;
		remobj = PyNumber_Remainder(n, iobj);
		Py_DECREF(iobj);
		if (remobj == NULL)
			return NULL;
		j = PyInt_AsLong(remobj);
		Py_DECREF(remobj);
		if (j == -1L && PyErr_Occurred())
			return NULL;
		tmp = mt[i];
		mt[i] = mt[j];
		mt[j] = tmp;
	}

	for (i = 0; i < N; i++)
		mt[i] += i+1;

	self->index = N;
	Py_INCREF(Py_None);
	return Py_None;
}

static PyObject *
random_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
	RandomObject *self;
	PyObject *tmp;

	self = (RandomObject *)type->tp_alloc(type, 0);
	if (self == NULL)
		return NULL;
	tmp = random_seed(self, args);
	if (tmp == NULL) {
		Py_DECREF(self);
		return NULL;
	}
	Py_DECREF(tmp);
	return (PyObject *)self;
}

static PyMethodDef random_methods[] = {
	{"random",	(PyCFunction)random_random,  METH_NOARGS,
		PyDoc_STR("random() -> x in the interval [0, 1).")},
	{"seed",	(PyCFunction)random_seed,  METH_VARARGS,
		PyDoc_STR("seed([n]) -> None.  Defaults to current time.")},
	{"getstate",	(PyCFunction)random_getstate,  METH_NOARGS,
		PyDoc_STR("getstate() -> tuple containing the current state.")},
	{"setstate",	  (PyCFunction)random_setstate,  METH_O,
		PyDoc_STR("setstate(state) -> None.  Restores generator state.")},
	{"jumpahead",	(PyCFunction)random_jumpahead,	METH_O,
		PyDoc_STR("jumpahead(int) -> None.  Create new state from "
			  "existing state and integer.")},
	{NULL,		NULL}		/* sentinel */
};

PyDoc_STRVAR(random_doc,
"Random() -> create a random number generator with its own internal state.");

static PyTypeObject Random_Type = {
	PyObject_HEAD_INIT(NULL)
	0,				/*ob_size*/
	"_random.Random",		/*tp_name*/
	sizeof(RandomObject),		/*tp_basicsize*/
	0,				/*tp_itemsize*/
	/* methods */
	0,				/*tp_dealloc*/
	0,				/*tp_print*/
	0,				/*tp_getattr*/
	0,				/*tp_setattr*/
	0,				/*tp_compare*/
	0,				/*tp_repr*/
	0,				/*tp_as_number*/
	0,				/*tp_as_sequence*/
	0,				/*tp_as_mapping*/
	0,				/*tp_hash*/
	0,				/*tp_call*/
	0,				/*tp_str*/
	PyObject_GenericGetAttr,	/*tp_getattro*/
	0,				/*tp_setattro*/
	0,				/*tp_as_buffer*/
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/*tp_flags*/
	random_doc,			/*tp_doc*/
	0,				/*tp_traverse*/
	0,				/*tp_clear*/
	0,				/*tp_richcompare*/
	0,				/*tp_weaklistoffset*/
	0,				/*tp_iter*/
	0,				/*tp_iternext*/
	random_methods, 		/*tp_methods*/
	0,				/*tp_members*/
	0,				/*tp_getset*/
	0,				/*tp_base*/
	0,				/*tp_dict*/
	0,				/*tp_descr_get*/
	0,				/*tp_descr_set*/
	0,				/*tp_dictoffset*/
	0,				/*tp_init*/
	PyType_GenericAlloc,		/*tp_alloc*/
	random_new,			/*tp_new*/
	_PyObject_Del,			/*tp_free*/
	0,				/*tp_is_gc*/
};

PyDoc_STRVAR(module_doc,
"Module implements the Mersenne Twister random number generator.");

PyMODINIT_FUNC
init_random(void)
{
	PyObject *m;

	if (PyType_Ready(&Random_Type) < 0)
		return;
	m = Py_InitModule3("_random", NULL, module_doc);
	Py_INCREF(&Random_Type);
	PyModule_AddObject(m, "Random", (PyObject *)&Random_Type);
}